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A series of papers has developed a statistical mechanics of neocortical interactions (SMNI), deriving
aggregate behavior of experimentally observed columns of neurons from statistical electrical-chemical
properties of synaptic interactions. While not useful to yield insights at the single-neuron level, SMNI
has demonstrated its capability in describing large-scale properties of short-term memory and electroen-
cephalographic (EEG) systematics. The necessity of including nonlinear and stochastic structures in this
development has been stressed. In this paper, a more stringent test is placed on SMNI: The algebraic
and numerical algorithms previously developed in this and similar systems are brought to bear to fit
large sets of EEG and evoked-potential data being collected to investigate genetic predispositions to al-
coholism and to extract brain “signatures” of short-term memory. Using the numerical algorithm of
very fast simulated reannealing, it is demonstrated that SMNI can indeed fit these data within experi-
mentally observed ranges of its underlying neuronal-synaptic parameters, and the quantitative modeling
results are used to examine physical neocortical mechanisms to discriminate high-risk and low-risk pop-
ulations genetically predisposed to alcoholism. Since this study is a control to span relatively long time
epochs, similar to earlier attempts to establish such correlations, this discrimination is inconclusive be-
cause of other neuronal activity which can mask such effects. However, the SMNI model is shown to be
consistent with EEG data during selective attention tasks and with neocortical mechanisms describing
short-term memory previously published using this approach. This paper explicitly identifies similar
nonlinear stochastic mechanisms of interaction at the microscopic-neuronal, mesoscopic-columnar, and
macroscopic-regional scales of neocortical interactions. These results give strong quantitative support
for an accurate intuitive picture, portraying neocortical interactions as having common algebraic or
physics mechanisms that scale across quite disparate spatial scales and functional or behavioral phenom-
ena, i.e., describing interactions among neurons, columns of neurons, and regional masses of neurons.
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I. INTRODUCTION

A. Methodology

In many complex systems, as spatial-temporal scales of
observation are increased, new phenomena arise by virtue
of synergistic interactions among smaller-scale entities—
perhaps more properly labeled “quasientities”—which
serve to explain much observed data in a parsimonious,
usually mathematically aesthetic, fashion [1,2]. For ex-
ample, in classical thermodynamics of equilibrium sys-
tems, it is possible to leap from microscopic molecular
scales to macroscopic scales, to use the macroscopic con-
cept of temperature to describe the average kinetic ener-
gy of microscopic molecular activity, or to use the mac-
roscopic concept of pressure to describe the average rate
of change of momentum per unit area of microscopic
molecules bombarding the wall of a cavity.

However, many complex systems are in nonequilibri-
um, being driven by nonlinear and stochastic interactions
of many external and internal degrees of freedom. For
these systems, classical thermodynamics typically does
not apply [3]. For example, the description of weather
and ocean patterns, which attempt to include important
features such as turbulence, rely on semiphenomenologi-
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cal mesoscopic models, those in agreement with molecu-
lar theories but not capable of being rigorously derived
from them. Phase transitions in magnetic systems, and
many systems similarly modeled [4-6], require careful
treatment of a continuum of scales near critical points.
In general, rather than having a general theory of non-
equilibrium nonlinear process, there are several overlap-
ping approaches, typically geared to classes of systems,
usually expanding on nonlinear treatments of stochastic
systems [1,2,7-9]. Many biological systems give rise to
phenomena at overlapping spatial-temporal scales. For
example, the coiling of DNA is reasonably approached
by blending microscopic molecular-dynamics calculations
with mesoscopic diffusion equations to study angular
winding [10]. These approaches have been directed to
study electroencephalography (EEG) [11], as well as oth-
er biological systems [12].

Therefore, it should not be surprising that the complex
human brain supports many phenomena arising at
different spatial-temporal scales. What is perhaps
surprising is that it seems possible to study truly macro-
scopic neocortical phenomena such as EEG by appealing
to a chain of arguments dealing with overlapping micro-
scopic and mesoscopic scales. A series of papers has
developed this statistical mechanics of neocortical in-
teractions (SMNI) [13-25]. This approach permits us to
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find models of EEG whose variables and parameters are
reasonably identified with ensembles of synaptic and neu-
ronal interactions. This approach has only recently been
made possible by developments in mathematical physics
since the late 1970s, in the field of nonlinear nonequilibri-
um statistical mechanics. The origins of this theory are
in quantum and gravitational field theory.

Other physical systems have varying degrees of
theoretical support leading to Fokker-Planck partial-
differential equation descriptions. Here, new problems
arise in nonlinear nonequilibrium systems, often requiring
modeling with the introduction of a nonconstant
coefficient of the second-derivative “diffusion” term. The
spatial second-derivative term usually represents the ki-
netic energy, when the first derivative represents the
momentum in the differential-equation description of a
system. It was early noticed that a similar treatment of
the gravitational equation [26] required a modification of
the potential term of the corresponding Lagrangian. We
now better understand the mathematical and physical
similarities between classical stochastic processes de-
scribed by Fokker-Planck equations and quantum pro-
cesses described by the Schrodinger equation [27]. The
Lagrangian, essentially equal to the kinetic energy minus
the potential energy, to first order in an expansion about
the most likely state of a quantum or stochastic system,
gives a global formulation and generalization of the well-
known relation, force equals mass times acceleration [28].
In the neocortex, the velocity corresponds to the rate of
firing of a column of neurons, and a potential is derived
which includes nearest-neighbor interactions between
columns. The Lagrangian formulation also accounts for
the influence of fluctuations about such most likely paths
of the evolution of a system, by use of a variational prin-
ciple associated with its development. The Lagrangian is
therefore often more useful than the Hamiltonian, essen-
tially equal to the kinetic energy plus the potential ener-
gy, related to the energy in many systems. As will be
demonstrated, this is especially useful to obtain informa-
tion about the system without solving the time-dependent
Fokker-Planck equation; however, we also will describe
neocortical phenomena requiring the full solution.

In its differential form, the momentum is proportional
to the derivative operator. For classical systems, the
coefficient of the square of the momentum is twice the
diffusion, e.g., the second moment of a probability distri-
bution describing some systems. The introduction of a
nonconstant coefficient of even the first-derivative term
requires careful treatment. Such a problem arises for a
charged particle in an electromagnetic field [29], which
originally was treated by physical arguments to enforce
“minimal coupling,” whereby the momentum p is simply
replaced by p — Ae /c, where A is the electromagnetic po-
tential, e is the electric charge, and c is the speed of light.
Minimal coupling excludes other 4?2 terms from appear-
ing in the equation of evolution, e.g., Schrodinger’s equa-
tion. Such problems are related to the operator-ordering
of the derivative operators with respect to their noncon-
stant coefficients. For classical systems, the analogous
expression to Ae /c is the drift, e.g., the first moment of a
probability distribution describing some systems. In the
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neocortex, we derive nonlinear expressions for both the
drift and diffusion. The detailed mathematical relation-
ships to the physical content of these issues was only
clarified in the late 1970s and early 1980s, and is relevant
to the mathematics of the neocortex. The first real break-
through was achieved by noting how these issues should
be treated in the context of classical nonlinear nonequili-
brium statistical mechanics [30,31].

While application has been made of these new
mathematical physics techniques in quantum and classi-
cal statistical mechanics [32-34], we are not merely
bringing over techniques to neuroscience from other dis-
ciplines out of curiousity. Indeed, the contention appears
to be well supported that a mathematical investigation of
the neocortex reasonably demands these mathematical
techniques, to such an extent that it can be argued that, if
the neocortex had been studied and sufficient data collect-
ed prior to mathematical developments in quantum or
gravitational theory, then these mathematical techniques
might have been developed in neuroscience first. The
brain is sufficiently complex that it requires the same
tools used for similar very complex physical systems. In
many ways, we may consider the brain as the prototypi-
cal information processing system, and the mathematical
techniques used here may be rigorously viewed as filters
to describe the processing of this information.

This statistical-mechanics approach, at many junctions
in its development, may be intuitively compared to the
approach used in simple magnetic systems, a comparison
made early in neuronal modeling [35]. While caution
must be exercised to respect the integrity of the neocorti-
cal system, such comparisons can be useful pedagogical-
ly. The mathematical approach presented here also has
been useful to describe phenomena in social systems,
ranging from military command, control and communi-
cations [36-38], to political systems [39], to pricing
bonds on financial markets [40-42]. In this context, it
has been noted that the activity of neurons may resemble
the activity of a throng of people, in which interactions
take place at multiple hierarchical levels [43]. The nu-
merical algorithms used in this paper were developed in
part in the process of investigating these other systems.

B. Top-down versus bottom-up approaches

There are at least two ways to present this admittedly
complex technical approach. First, we will take the top-
down approach, essentially examining some macroscopic
issues in EEG measurement. This will motivate us to
then look to a bottom-up approach, starting with micro-
scopic synaptic activity and neuronal interactions, then
scaling up through mesocolumnar activity of columns of
neurons, to finally achieve a reasonable macroscopic
description of EEG activity. The confluence of these ap-
proaches is expected to yield a tractable approach to
EEG analyses [17,24,44].

Section II presents the current dipole string model as a
top-down approach to give a rationale for incorporating
several scales of neuronal interactions in order to under-
stand macroscopic EEG phenomena. We demonstrate
how this dipole string model is the Euler-Lagrange varia-
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tional limit of the derived bottom-up electric-potential
EEG Lagrangian.

Section III presents a self-contained outline of the pa-
pers describing SMNI, highlighting the essential steps in
aggregating from microscopic scales of synaptic-neuronal
interactions, to mesoscopic scales of minicolumns and
macrocolumns of neurons, to macroscopic scales of re-
gional activity over centimeters of neocortex. Appendix
A gives a brief derivation of the three equivalent
mathematical representations used here, i.e., coupled
Langevin stochastic rate equations, the Fokker-Planck
partial-differential equation, and the path-integral equa-
tion defined by the Lagrangian.

Section IV presents a self-contained outline of previous
verification of SMNI theory, applied to short-term
memory (STM) at the mesoscopic scale, EEG systematics
at the macroscopic scale, and statistical constraints on
synaptic modification coding STM into long-term
memories. Some discussion is given on the relevance of
chaos in this system.

Section V presents an approach to directly fit SMNI
theory to specific sets of EEG data, utilizing algorithms
and physical insights gained in Secs. II-IV. It is demon-
strated that SMNI can indeed fit these data within exper-
imentally observed ranges of its underlying neuronal-
synaptic parameters, and use the quantitative modeling
results to examine physical neocortical mechanisms to
discriminate high-risk and low-risk populations genetical-
ly predisposed to alcoholism. The SMNI model of STM
is shown to be consistent with EEG data during selective
attention tasks.

Section VI gives our conclusions, based on the success
of the calculations presented in the previous sections. We
emphasize the success in finding SMNI to be a reasonable
model of neocortical interactions that can fit STM and
EEG using only physically based parameters. We also
emphasize the scaling of common similar nonlinear sto-
chastic interactions at multiple levels, i.e., at
microscopic-neuronal, mesoscopic-columnar, and
macroscopic-regional scales.

II. DIPOLE STRING MODEL

A. Background

The human neocortex is a complex physical and bio-
logical system that processes information at multiple spa-
tial and temporal scales. Connections between cortical
neurons are of two major types: the short-range in-
tracortical fibers (both excitatory and inhibitory) of aver-
age length less than 1 mm, and the long-range cortico-
cortical fibers (exclusively excitatory) which form most of
the white matter in humans and have an average length
of several centimeters [45,46].

There are several noninvasive experimental or clinical
methods of recording brain activity, e.g., EEG, magne-
toencephalography (MEG), magnetic resonance imaging
(MRI), positron-emission tomography (PET), and single-
photon-emission-computed tomography (SPECT). While
MRI, PET, and SPECT offer better three-dimensional
presentations of brain activity, EEG and MEG offer su-
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perior temporal resolutions on the order of neuronal re-
laxation times, i.e., milliseconds. Recently, it also has
been shown that EEG and MEG offer comparable spatial
resolutions on the order of several millimeters; a square
millimeter is the approximate resolution of a macro-
column representing the activity of approximately 10°
neurons.

Limiting cases of linear macroscopic theories of in-
tracortical interaction predict local wave phenomena and
obtain dispersion relations with typical wave numbers
k= 10 to 100 cm ™! and dominant frequencies in the gen-
eral range of human spontaneous EEG (1-20 Hz) [17,47].
However, human scalp potentials are spatially filtered by
both distance and tissue between cortical current sources
and surface electrodes so that scalp EEG power is at-
tenuated to about 1% of its cortical value at k= 1 or 2
cm ™!, This implies that spontaneous cortical activity is
only measurable on the scalp if at least several hundred
contiguous cortical macrocolumns, each macrocolumn
being comprised of about 10° neurons, produce coherent
source activity. Many such columns of correlated
sources cause substantial cortical power at low Kk,
measurable on the scalp. The use of an average reference
removes spectral power near k=0, and skull and scalp
tissue effects strongly attenuate power for K >0.5 cm™ 1.
At k= 0.5 cm ™!, scalp power is typically below the noise
level of the EEG machine. In one study, it was suggested
that the a mode (9.5 Hz) is consistent with standing
waves, whereas the u mode (8.0 Hz) is more consistent
with posterior-to-anterior traveling waves across the elec-
trode array [24,46].

Vertically oriented neuronal columns generally receive
input in the top two of six horizontal laminae and output
their neuronal signals from the lower laminae. This
justifies a dipole model of the neocortex, albeit care must
be taken in this interpretation to account for spreading of
electric potentials due to volume effects and skull and
scalp mismatched conductivities [46,48-50]. Since
coherent vertically oriented dipoles greatly enhance their
contribution to the scalp electric potential, only a small
fraction of columns approaching this idealized structure
are required to justify this approximation [51].

It must be appreciated that this effective dipole model
is just that, and is appropriate only at spatial scales of
about a millimeter to a centimeter. Using a scalp EEG or
MEG to infer sources at resolutions less than a millime-
ter is likely an inappropriate use of this tool as it underes-
timates the complex neurophysiology giving rise to elec-
tromagnetic recordings. Using scalp EEG or MEG on
the order of tens of centimeters to infer a single source of
regional activity also often is inappropriate, as in many
situations there are likely to be many sources of activity
giving rise to such recordings. The resolution of several
millimeters to several centimeters appears to be quite ap-
propriate to model statistically aggregated activity as an
effective dipole.

These experimental considerations of scalp EEG have
led to the development of a linear model of neocortical
dynamics in which global delays are dominant and local
delays are either neglected or treated as a perturbation
[46]. Standing brain waves are predicted with resonant
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modes determined partly by cortical surface geometry.
Both temporal and spatial properties predicted by this
theoretical approach are in semiquantitative agreement
with EEG states associated with minimal cognitive pro-
cessing, i.e., awake resting with eyes closed (a¢ rhythm),
asleep, or under the influence of an anesthetic agent
[48,49,52,53]. Recently, this approach has been extended
to encompass theories based on linear interactions in
which local delays (rise and decay times of postsynaptic
potentials) are included [44].

There is ample experimental evidence of the existence
of linear EEG phenomena in lower mammals [54,55] and
humans [46,56] which occurs over limited ranges of ex-
perimental conditions (modulation depth of sinusoidal
driving of the brain, for example). However, the use of
linear and quasilinear theories and the neglect of interac-
tions across spatial scales are evidently crude approxima-
tions.

Complementing these studies, SMNI has shown that
limiting cases of nonlinear treatments of the neocortex
across microscopic-mesoscopic-macroscopic scales give
similar numerical confirmation of EEG observables,
thereby addressing both of the above approximations,
i.e., nonlinearities and multiple scales of interaction. The
SMNI approach has recently outlined a means to con-
sistently include the long-range cortico-cortical interac-
tions that appear critical to the observed characteristics
of scalp potentials [23].

B. Modeling of observables

The mechanical string model of the neocortex assumes
linear properties of connected local nonlinear oscillators
[24]. Local cortical dynamics in dipole layers is con-
sidered analogous to the nonlinear mechanical oscillators
that influence global modes. Macroscopic scalp poten-
tials are analogous to the lower modes of string displace-
ment. The linear global model of EEG waves is much
more involved than the simple linear string. For exam-
ple, multiple long-range fiber systems cause multiple
branches of the dispersion relation, and distributed prop-
agation velocities cause selective damping of macroscopic
modes [44,46,53]. The application of boundary condi-
tions to the two-dimensional cortical surface has predict-
ed other EEG properties [44,46]. Many of these features
can be included in our nonlinear generalization of the
simple string described here.

The equation for the string displacement P is

v L, 3P
—c
ar? dx?
for a linear array (length I) of sensors (electrodes) of size

s. We can only observe wave numbers in the approxi-
mate range

+[wd3+f(P)]P=0, (1)

T<k<T. )
I s

If the center-to-center spacing of sensors, considered to

form a closed loop, is also s,  =Ms, where M= (number

of sensors) —1, k= 2nw/R for n={1,2,3,...}, and

sensors span half the string, /=R /2, then
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1=n=M (3)

for some maximum M, which is on the order of 3 to 7 in
EEG studies using multielectrode recordings in two-
dimensional arrays on the cortical surface. A typical cir-
cumference of the neocortex following a coordinate in
and out of fissures and sulci is R =100 cm (about 50 cm
along the scalp surface). If EEG power is mostly restrict-
ed to k<0.5 cm™}, only modes n <4 are observed, in-
dependent of the number of electrodes.
Thus, the string displacement ®(potential within the
cortex) is given by
®(x,t)= 3 G,(t)sink,x , 4)

n=1
where we have assumed zero boundary conditions at the

ends of the string for simplicity of presentation, but our
observed @ is given by

M
®'(x,0)= 3 G,(t)sink,x . (5)
n=1
In the linear case, where f(®)=0(equal linear oscilla-
tors to simulate local circuit effects in cortical columns),
we have

2 2

d q; —22 q; +w0p®=0,

at ox

o= ¥ A,cosw,tsink,x , (6)
n=1

wf, =a)(2)+czk,f ,

giving a dispersion relation w,(k,). For the nonlinear
case, f(®)70, the restoring force of each spring is ampli-
tude dependent [57].

Returning to the cortical medium, what can we say
about

of(x,1)= § G,(t)sink,x , ¥)

n=1

the macroscopic observable displacement potential on the
scalp or cortical surface? On the basis of previous studies
of EEG dispersion relations [17,46], it would seem that
we should be able to describe @' as a linear or quasilinear
variable, but influenced by the local nonlinear behavior
that crosses the hierarchical level from mesoscopic to
macroscopic (columnar dipoles). How do we mathemati-
cally articulate this intuition, for the purposes of con-
sistent description as well as lay the foundation for future
detailed numerical calculations? We suggest answers to
these questions in the “bottom-up” approach part of this
paper.

We examine these issues by taking reasonable synaptic
parameters, developing the statistical mechanics of neo-
cortical interactions, and then determining whether they
are consistent with observed EEG data. In fact, here we
report fits of multichannel human scalp EEG data to
these algebraic forms. A current project is investigating
the response of the cortical system to given initial driving
forces that match or mismatch firing patterns of colum-
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nar firings possessed by a given set of synaptic parame-
ters, and under conditions of plastically changing synap-
tic parameters reflecting changes of these patterns. This
should help in clinical diagnoses using the EEG tool.

C. Outline of derivation of the nonlinear string model

We use a mechanical-analog model, the string model,
derived explicitly for neocortical interactions using
SMNI [24]. This defines a probability distribution of
firing activity, which can be used to further investigate
the existence of other nonlinear phenomena, e.g., bifurca-
tions or chaotic behavior, in brain states.

Previous studies have detailed that the predominant
physics of short-term memory and of (short-fiber contri-
bution to) EEG phenomena takes place in a narrow “par-
abolic trough” in M€ space, roughly along a diagonal
line [16]. Here, G represents E or I, M % represents con-
tributions to columnar firing from excitatory neurons,
and M represents contributions to columnar firing from
inhibitory neurons. The object of interest within a short
refractory time, 7, approximately 5 to 10 msec, is the La-
grangian L for a mesocolumn, detailed further below. 7L
can vary by as much as a factor of 10° from the highest
peak to the lowest valley in M space. Therefore, it is
reasonable to assume that a single independent firing
variable might offer a crude description of this physics.
Furthermore, the scalp potential ® can be considered to
be a function of this firing variable. (Here, ‘“potential”
refers to the electric potential, not the potential term in
the Lagrangian derived below.) In an abbreviated nota-
tion subscripting the time-dependence,

D, — <<d>=0MEMH=~a(MF— <<MF>>)

+bo(Ml—<<M'>>), (8

where a and b are constants, and <<®>> and <<M%>>
represent typical minima in the trough. In the context of
fitting data to the dynamic variables, there are three
effective constants, {a,b,¢},

O, —p=aMF+bM/] . )
We scale and aggregate the mesoscopic probability dis-
tributions, P, over this columnar firing space to obtain

the macroscopic probability distribution over the scalp-
potential space:

Po[®@]= [ dMZdM'P[MEM"15[®—d'(MF,M7)] .

(10)
The parabolic trough described above justifies a form

Py=(2m0?) " V2exp

>

At
—Zz‘ deLq>

(11)
oP

at

2
= 0P Y i®l2
Lg O ‘ + 5 |®|2+F(D) ,

' B
2 Ty

where F(®) contains nonlinearities away from the
trough, o2 is on the order of 1/N given the derivation of
L above, and the integral over x is taken over the spatial
region of interest. In general, there also will be terms
linear in 0® /9t and in 0® /dx.

Previous calculations of EEG phenomena, described
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below [17], show that the short-fiber contribution to the
a frequency and the movement of attention across the
visual field are consistent with the assumption that the
EEG physics is derived from an average over the fluctua-
tions of the system, e.g., represented by o in the above
equation. lLe., this is described by the Euler-Lagrange
equations derived from the variational principle pos-
sessed by L4 (essentially the counterpart to force equals
mass times acceleration), more properly by the
“midpoint-discretized”” Feynman L 4, with its Riemanni-
an terms, as discussed below [14,15,23]. Hence, we can
use the variational principle,
i) dL g d

AL, ALy

ot 9(0P/3t) 3dx (0P /dx) oP (12)
The result is
Fe | P oF
+ +yd——-=0. 13
a3 B ax2 Y EYS (13)
If there exist regions in neocortical parameter space such
that we can identify B/a= —c?, y /a=w}(e.g., as explic-
itly calculated below),
1 oF
— = f(D), 14
o 3D f(P) (14)

and we take x to be one-dimensional, then we recover our
nonlinear string, Eq. (1) above. Terms linear in d® /3¢
and in 0® /0x in L4 in Eq. (11) can make other contribu-
tions, e.g., giving rise to damping terms.

The path-integral formulation has a utility beyond its
deterministic Euler-Lagrange limit. We have utilized this
to explicitly examine the long-time evolution of systems,
to compare models to long-time correlations in data
[36,37]. This use is being extended to other systems, in
finance [41,42] and in EEG modeling as described here.

D. Macroscopic coarse-graining and renormalization

We now are in a position to address the issue posed
originally of how to mathematically justify the intuitive
coarse-graini f o ¥ i

graining o to get ®'. In L, above, consider
terms of the form

[ ®%dx= [ dx 3 3 G,G,, sink,x sink,,x
=>3G,G, f dx sink,x sink,,x
=27 /R) Y G} . (15)

By similarly considering all terms in L4, we effectively
define a short-time probability distribution for the change
in node n, defined by

palG,(t+AD)|G, ()], (16)

where we note that in general the F(®) term in Ly will
require coupling between G,(t+At?) and G, (1), n¥#m,
likely including more than one m. Therefore, we can
define

Po=p\py" " "Po - 17

We now physically and mathematically can define a
coarse-graining, '
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Pyr= fdkM+1dkM+2"'dkooP1P2"'PMPM+LPM+2"'P00 . (18)

IL.e., since we have a bona fide probability distribution Py,
we can integrate over those fine-grained variables, which
are not observed. This procedure is one contribution to
algorithms used in “‘renormalization-group” theory [6],
to account for multiple intermediate scales of interac-
tions. While other criteria for use of this theory certainly
are not present here, it is useful to recognize that this is a
reasonable phenomenological approach to integrating
over many scales of neocortical interactions.

The integration over the fine-grained wave numbers
tends to smooth out the influence of the k,’s for n > M,
effectively “‘renormalizing”

G,—G,
>0, (19)
Lo—L' .

Eventually, laminar circuitry should be included in
both the local and global models. Previous papers have
detailed how this can be realized, but more numerical
study is needed to determine the degree to which this can
be accomplished. As reported here, the solutions are be-
ing tested by their goodness of fit to existing EEG data
using methods of very fast simulated reannealing [58].

III. SMNI MODEL

A. Rationale

We begin our ‘“‘bottom-up” approach by taking the
viewpoint that, since there has been much progress made
in mathematically describing the physics at finer spatial-
temporal scales, we should use these descriptions to
derive a development of the coarser EEG macroscopic
scale described above. SMNI has reasonably detailed a
consistent physics which at least parallels, with striking
numerical specificity, short-term memory (STM) and
EEG phenomena at the macrocolumnar scale of hun-
dreds of thousands of neuroms, in terms of aggregated
physics transpiring at the single-neuronal level. The de-
tails of this SMNI development of STM and EEG will be
used to support the “top-down” development described
above.

A major contribution of this work is the analytic treat-
ment of minicolumns [59]. Minicolumns are observed to
span  approximately 7X10%2 um?  Mesocolumnar
domains are defined here as physiological (functional)
units, with input converging from an anatomical
(structural) macrocolumn extent of approximately 1000
minicolumns, and output diverging from an anatomical
minicolumn out to a macrocolumnar extent. Calcula-
tions support observations of periodically alternating
firings of columnar structures [60—64]. As pictured in
Fig. 1, this microscopic scale is orders of magnitude

larger than the molecular scale of membrane biophysics.
Also note that ‘“macrocolumns” spanning roughly
7X10° um? have been defined as another physiological
entity observed in the neocortex [59], but the macroscop-
ic regions considered here are orders of magnitude larger
than these. Mesocolumnar domains are sufficiently close
to the scale of microscopic neurons to allow direct depen-
dence of this theory on neuronal chemical and electrical
properties. The proper stochastic treatment of their in-
teraction permits their development into macroscopic re-
gions responsible for global neocortical information pro-
cessing. ‘“Thermodynamic” entities corresponding to the
“free-energy” potential, ‘“‘temperature,” and order pa-
rameters of these macroscopic regions are derived by a
statistical-mechanics paradigm [65].

Relative to other biological entities, the intrinsic
synaptic activity of the most highly evolved mammalian
human neocortex functions via the most degenerate and
the shortest-ranged neuronal interactions (on the order of
micrometers). Here, ‘“degenerate” reflects the mesoscop-
ic state of approximate redundancy of connectivity
among microscopic neurons, for purposes of describing
this coarser scale. This suggests that many collective as-
pects of this system may be fruitfully studied similarly to
other collective systems, e.g., including magnetic systems,
lasers, and more general information-theoretic systems
[8,66]. Collective effects, from clustering [67,68] or from
statistical interactions [69], are proposed to be mecha-
nisms of information processing, in addition to the
“hard-wiring” mechanisms also possessed by other more
ordered cortical entities [70,71].

Reasonable criteria for any physical approach to the
neocortex should include the following three basic
features. These also serve to illustrate the appropriate
analogies between the neocortex and other collective
physical systems.

(i) Interactions. Short-ranged neuronal interactions
over time periods of several milliseconds should be de-
rived from even more microscopic synaptic activities
[72]. [See Fig. 1(a).] Long-ranged spatial interactions
from specific neuronal pathways, primarily composed of
the relatively low population of long excitatory fibers
from ipsilateral association, contralateral commissural,
and thalamocortical processes must be consistently treat-
ed. These long-ranged interactions are also important for
collective activity in the mammalian cortex [45], and they
are included in this study. Longer-time, weaker and
modulatory nonsynaptic influences arising from humoral
and electrotonic interactions [73-75] are included, only
as their averaged properties affect synaptic parameters.

(ii) Statistics. Neurons separated by large distances,
across 10° to 10® neurons, can be statistically coupled via
their short-ranged interactions. [See Fig. 1(c).] Order pa-
rameters, the underlying independent variables at the ap-
propriate scale of the theory, must be identified, and in-
trinsic fluctuations from the microscopic synaptic and
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neuronal systems, diffusion effects, must be included.
There also are fluctuations of the mesoscopic system due
to their aggregated neuronal interactions, derived here as
gradient couplings between neighboring mesoscopic cells.
These spatially ordered mesoscopic domains respect the
observed anatomy and physiology of the neocortex
[67,68], complementing earlier theories hypothesizing
random neural networks [76,77].

(iii) Dynamics. A viable formalism must be adopted to
describe the statistical time evolution of the macroscopic
nonequilibrium system over scales of 10? to 10* msec.

Although cooperativity between distant neurons is typ-
ically quite low [78], except perhaps in homologous re-
gions of separate hemispheres, macroscopic regions
reflect cooperative behavior, proposed here to best be un-
derstood as initiated at the mesoscopic level of interac-
tion. The existence of collective spatial-temporal activi-
ty, embedded in a spontaneous noisy background, is sup-
ported by statistical analyses of electroencephalographic
and magnetoencephalographic recordings [79,80]. As
long as collective mechanisms arising in a physical sys-
tem characterized by the above three features are con-
sidered to be viable sources of collective neocortical phe-
nomena, then these features must be correctly formulat-
ed.
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There is a large body of literature dealing with neuron-
al mechanisms that intuits phenomenological differential
equations from rates of change of average excitatory and
inhibitory neuronal firings, and then proceeds to search
for collective behavior, limit cycles, and oscillatory be-
havior [81-86]. Mechanisms are sought to explain
varied phenomena such as hysteresis in perception [84],
perception and learning [87,88], and ontogenesis of
columnar formation [88,89]. Comparisons with applica-
tions of these techniques to those used in other physical
systems [1], illustrates that the pioneering application of
these appropriate formalisms to the neocortical system
still has much to offer. Much inspiration for these appli-
cations has come from work in nonequilibrium thermo-
dynamics, which has been applied to specific systems,
e.g., chemical reactions, lasers, magnetic systems, fluids,
spin glasses, etc., as well as to the general formulation of
complex nonlinear systems [1,2,9,69,90].

This study also distinguishes between neuronal mecha-
nisms the neocortex uses to process information and the
structures of information the neocortex processes. A La-
grangian is derived that operates on firings of the system.
When integrated over a time period, this yields the non-
equilibrium equivalent of a “thermodynamic potential.”

FIG. 1. Illustrated are three biophysical scales of neocortical interactions: (a), (a*), and (a’) microscopic neurons; (b) and (b’) meso-
columnar domains; (c) and (c’) macroscopic regions. In (a*) synaptic interneuronal interactions, averaged over by mesocolumns, are
phenomenologically described by the mean and variance of a distribution W. Similarly, in (a) intraneuronal transmissions are phe-
nomenologically described by the mean and variance of I'. Mesocolumnar averaged excitatory ( E) and inhibitory ( I) neuronal
firings are represented in (a’). In (b) the vertical organization of minicolumns is sketched together with their horizontal stratification,
yielding a physiological entity, the mesocolumn. In (b’) the overlap of interacting mesocolumns is sketched. In (c) macroscopic re-
gions of the neocortex are depicted as arising from many mesocolumnar domains. These are the regions designated for study here.
(c’) sketches how regions may be coupled by long-ranged interactions.
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This Lagrangian is derived, not conveniently defined or
hypothesized, from the short-time evolution of the proba-
bility distribution of columnar firing states. The ex-
ponential of minus the Lagrangian, essentially this short-
time distribution up to an important normalization fac-
tor, operates as a weighting factor on all possible states,
filtering or transforming (patterns of) input firings into
output firings. “Information” is a concept well defined in
terms of the probability eigenfunctions of electrical-
chemical activity of this Lagrangian. The path-integral
formulation presents an accurate intuitive picture of an
initial probability distribution of patterns of firings being
filtered by the (exponential of the) Lagrangian, resulting
in a final probability distribution of patterns of firing.

B. Microscopic neurons

1. General description

Figure 1(a) illustrates the microscopic neuronal in-
teraction scale, on the order of several micrometers Neo-
cortical neurons typically have many dendrites that re-
ceive quanta of chemical-postsynaptic stimulation from
many other neurons. The distribution of quanta
transmitted across synapses takes place on the scale of
1072 um, as illustrated in the inset of Fig. 1(a*). Each
quantum has thousands of molecules of chemical neuro-
transmitters that affect the chemically gated postsynaptic
membrane. Chemical transmissions in the neocortex are
believed to be either excitatory (E), such as glutamic
acid, or inhibitory (I), such as y-aminobutyric acid.
There exist many transmitters as well as other chemicals
that modulate their effects, but it is assumed that, after
millions of synapses between hundreds of neurons are
averaged over, then it is reasonable to ascribe a distribu-
tion function ¥ with a mean and variance for E and I in-
terneuronal interactions.

While some neuroscientists do not accept the assump-
tion that simple algebraic summation of excitatory depo-
larizations and inhibitory hyperpolarizations at the base
of the inner axonal membrane determines the firing depo-
larization response of a neuron within its absolute and
relative refractory periods [72], still many other neuros-
cientists agree that this assumption is reasonable when
describing the activity of large ensembles of neocortical
neurons, each one typically having many thousands of
synaptic interactions.

This same averaging procedure makes it reasonable to
ascribe a distribution function I with a mean and vari-
ance for E and [ intraneuronal interactions. A Gaussian
T is taken to describe the distribution of electrical polar-
izations caused by chemical quanta impinging on the
postsynaptic membrane. These polarizations give a resul-
tant polarization at the base of the neuron, the axon [ex-
tension in Fig. 1(a) cut by the double broken line]. The
base of the axon of a large fiber may be myelinated.
However, smaller neurons typically lack these distin-
guishing features. Experimental techniques are not yet
sufficiently advanced to attempt the explicit averaging
procedure necessary to establish the means and variances
of ¥ and T, and their parameters, in vivo. Differential at-
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tenuations of polarizations from synapses to the base of
an axon are here only phenomenologically accounted for
by including these geometric and physiological effects
into I'.

With a sufficient depolarization of approximately 10 to
20 mV at the soma, within an absolute and relative re-
fractory period of approximately 5 msec, an action poten-
tial is pulsed down the axon and its many collaterals,
affecting voltage-gated presynaptic membranes to release
quanta of neurotransmitters. Not detailed here is the
biophysics of membranes, of thickness ~ 5X10~% um,
composed of biomolecular leaflets of phospholipid mole-
cules [91-93]. At present, ¥ and I' are taken to approxi-
mate this biophysics for use in macroscopic studies. The
formalism adopted in this study is capable of using new
microscopic functional dependences, gleaned from other
experimental or theoretical investigations, and cranking
them through to obtain similar macroscopic descriptions.
Chemical independences of excitatory depolarizations
and inhibitory hyperpolarizations are well established in
the neocortex, and this independence is retained
throughout this study.

It should be noted that experimental studies initially
used to infer ¥ and I'(e.g., at neuromuscular junctions)
were made possible by deliberately reducing the number
of quanta by lowering external calcium concentrations
[94,95]. ¥ was found to be Poissonian, but in that sys-
tem, where hundreds of quanta are transmitted in vivo, ¥
may well be otherwise; for example, Gaussian with in-
dependent mean and variance. Current research suggests
a binomial distribution, having a Poisson limit [14,96,97].
Note that some investigators have shown a Bernoulli dis-
tribution to be more accurate in some cases [14,97,98],
and that the very concept of quantal transmission, albeit
that good fits to experimental data are achieved with this
concept, is under review. In the neocortex, probably
small numbers of quanta are transmitted at synapses, but
other effects, such as nonuniformity and nonstationarity
of presynaptic release sites, and nonlinear summation of
postsynaptic potentials, may detract from a simple phe-
nomenological Poisson description [72]. This short
description serves to point out possible differences in ¥
resulting from many sources. However, the derivation of
synaptic interactions given here makes it plausible that
for reasonable neuronal parameters, the statistical folding
of ¥ and T is essentially independent of the functional
form assumed for W, just requiring specification of its nu-
merical mean and variance.

The result of this analysis is to calculate the transition
probability of the firing of neuron j, p, , given its in-

teraction with its neighbors that also may fire or not fire.
The result is given as the tabulated error function.
Within the range where the total influences of excitatory
and inhibitory firings match and exceed the average
threshold potential of a given neuron, the probability of
that neuron firing receives its major contribution to in-
crease from O towards 1. A step function derived as
tanhF € is defined by the “threshold factor” F;. That is,

for F® >>1, tanhF¢ —1, while for F% << 1,
tanhF¢ — —1, and so the threshold region of
—1 < F% < 1 sensitively controls this important
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tanhF ¢ contribution to the drifts, the driving terms, in
the Lagrangian. The mesoscopic development discussed
below retains this sensitivity.

This is similar to the mathematical result obtained by
others [99-101] who have modeled the neocortex after
magnetic systems [35]. However, the following is derived
more generally, and has the neural parameters more
specifically denoted with different statistical significances
given to W and T, as described above.

2. Conditional probability

Consider 102 < N < 103 neurons, labeled by k, interact-
ing with a given neuron j. Each neuron may contribute
many synaptic interactions to many other neurons. A
neuron may have as many as 10*—10° synaptic interac-
tions. Within time 7, = 5 msec, ¥ is the distribution of
g quanta of chemical transmitters released from neuron k
to neuron j (k) with mean aj, where

A is the conductivity weighting transmission of polar-

ization, dependent on £ firing,

|1, k fires 1)
9k~ | =1, k does not fire

and By is a background including some nonsynaptic and
long-range activity. Of course, 4 and B are highly com-
plicated functions of jk. This definition of o, permits a

Si=[ - [ aw,---awy s,

The conditional probability p, ; of neuron j firing if
W; > V;, the threshold of j, is

pﬂszdejsj . (26)

At this stage it is possible to include the probability of
not firing by defining

. p+j’ Uj:+1

Po; ™ p—j 0;=—1

S Sy le—gwjk ] :
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decomposition of @, into two different physical contribu-
tions. At this point there is a reasonable analogy to make
with magnetic systems, where o, might represent a unit
spin. However, the details of the interactions between
neurons differ from those between magnetic spins, and
this greatly affects such comparisons.

Within the scope of the assumption that postsynaptic
potential responses from numbers of presynaptic released
quanta add algebraically, a Gaussian process is taken to
represent this response for each quantum released. Ap-
plication of the central limit theorem [102] then yields,
for any g quanta, a Gaussian process I' for imparting a
potential W to neuron j:

r:(zﬂ'q¢§k )~ 2exp[ —( Wi —qu )2]/(2‘]¢§k )

IimIl = 8(W,,.),
qlg'(l) ( _]k)

where the polarization v, can be positive (excitatory E)
or negative (inhibitory I), and the Dirac § function,

8Z)=02m " [ © dQ exp(iQZ), (23)

represents a well-behaved, strongly peaked distribution.
The probability S, of developing W, from k is

Sx=3STV. 4)
q =0

The probability S; of developing potential W; from all N
neurons is

(25)
[
by replacing
V, — o; Vj,
0 —o0,0. (28)

Poissonian V. For aj; small, take ¥ as a Poisson with

mean and variance a

V=exp(—ayNay)/q!. (29)

The above yields

pgj=ijde(Z'rr)ﬂfjowdQexp(iQWj)exp —%ajk[l—exp(_inQujk—chi)?k/Z)] . (30)
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An extremum approximation is now valid: The main
contribution to p, comes from nonoscillatory contribu-
J

tions from the second exponential above, where its argu-
ment has a minimum, rendering it Gaussian. Using

i < logl < V; =W, (31)

P, may be calculated as

_ ©
T 172

— dz exp(—2z?)
(Gij\/TT/Z) P

Po, =
= 1/2[1 — erflo;F;V7/2)),
Vim 2505

F.= .
j [Wzajk'(vjzk' +¢%) ]1/2
o

(32)

“erf” is the tabulated error function, simply related to the
“normal probability function” [102]. FJ-G is a “threshold
factor,” as Po, increases from O to 1 between
© > o ;F; > — o sharply within the range of F; =~ 0.

Gaussian V. The mean of a Poisson distribution of g
successes is

ajk=¢-e— > (33)

€ is the large number of repetitions of an ‘“‘experiment,”
likely correlated with the number of synaptic knobs
[14,96], and v is the small probability of success, the
average probability of release of one quantum. For large
ajx, a Gaussian V' representing W is defined with mean
aj; and variance a; (1—1) [102],

v [2a; (1—9)] " 2exp{ — (g —a; )*/[2a; (1—9)]}
*® 2
)

dzexp(—z
—lay /20— P

(34)

For a large number of closely spaced values of g, we can
replace the sum by an integral,

> — [Tdg. (35)
q 0

Similar to the above derivation using the Poissonian V¥,
we derive

vh — =i . (36)

Arbitrary V. Examination of this derivation shows that
we get the same result from the folding of I and V¥, for a
wide range of reasonable W peaked near ¢ = aj,. If

IJij[<1, (37)
then an asymptotic expression for Po, is
Po;™ expF;+(exp—F;)

(38)

This form of Po, eXposes the linear dependence of the ar-

gument on o; and F;. Note that tanh(2z /V/7) is quite a
good approximation to erf(z). Using the notation
(z,tanh(2z /V' 7r),erf(z)], we obtain [0.0, 0.0, 0.0], [0.01,

LESTER INGBER

4“4

0.0113, 0.0113], [0.1, 0.1124, 0.1125], [0.5, 0.5111,
0.5205], [1.0, 0.8105, 0.8427], [2.0, 0.9783, 0.9953], [2.5,
0.9929, 0.9996], and [, 1.0, 1.0]. For small z we obtain

tanh(2z /V'7) =(2/V7)z —2%/2.36+2°/4.63
—2z7/8.98 £ ---),

_ (39)
erf(z)=02/Vu)z—2z3/3 +z°/10—2z7/42 +---).

C. Mesoscopic domains

1. General description

As is found for most nonequilibrium systems, e.g., for
lasers, chemical systems, fluids, and ecological systems
[1,8], a mesoscopic scale is required to formulate the sta-
tistical mechanics of the microscopic system, from which
the macroscopic scale can be developed [1]. The neocor-
tex is particularly interesting in this context in that a
clear scale for the mesoscopic system exists, both ana-
tomically (structurally) and physiologically (functionally).
“Minicolumns” of about N =~110 neurons (about 220 in
the visual cortex) comprise modular units vertically
oriented relative to the warped and convoluted neocorti-
cal surface throughout most, if not all, regions of the neo-
cortex [59,61,62,64,103,104]. Clusters of about 100 neu-
rons have been deduced to be reasonable from other con-
siderations as well [43]. Since the short-ranged interac-
tions between neurons take place within ~1 mm, which
is the extent of a “macrocolumn” comprising ~ 10° min-
icolumns of N*=10° neurons, and since macrocolumns

also exhibit rather specific information-processing
features, this theory has retained the divergence-
convergence of macrocolumn-minicolumn, efferent-

afferent interactions by considering domains of min-
icolumns as having similar synaptic interactions within
the extent of a macrocolumn. This macrocolumnar-
averaged minicolumn is designated in this theory as a
“mesocolumn.”

This being the observed situation, it is interesting that
N =107 is just the right order of magnitude to permit a
formal analysis using methods of mathematical physics
just developed for statistical systems in the late 1970s
[27,30]. N is small enough to permit nearest-neighbor in-
teractions to be formulated, such that interactions be-
tween mesocolumns are small enough to be considered
gradient perturbations on otherwise independent meso-
columnar firing states. This is consistent with rather con-
tinuous spatial gradient interactions observed among
columns [105], and with the basic hypothesis that non-
random differentiation of properties among broadly
tuned individual neurons coexists with functional colum-
nar averages representing superpositions of patterned in-
formation [106]. This is a definite mathematical conveni-
ence; otherwise, a macrocolumn of ~ 10> minicolumns
would have to be described by a system of minicolumns
with up to 16th-order next-nearest neighbors. (Consider
1000 minicolumns spread out in a two-dimensional grid
of about 33 by 33 minicolumns, and focus attention on
the center minicolumn.) Also, N is large enough to permit
the derived binomial distribution of afferent minicolum-
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nar firing states to be well approximated by a Gaussian
distribution, a luxury not afforded an “average” neuron,
even in this otherwise similar physical context. Finally,
mesocolumnar interactions are observed to take place via
one to several relays of neuronal interactions, so that
their time scales are similarly 7 ~ 5— 10 msec.

Even after statistically shaping the microscopic system,
the parameters of the mesoscopic system are still
macrocolumnar-averaged synaptic parameters, i.e.,
reflecting the statistics of millions of synapses with regard
to their chemical and electrical properties. Explicit lami-
nar circuitry, and more complicated synaptic interac-
tions, e.g., dependent on all combinations of presynaptic
and postsynaptic firings, can be included without loss of
detailed analysis [15].

P= I POIMC(r;t+7)MC(r;1)]
G
35

J

JjEE jerI

=11 (ZﬂTgGG)_l/zexp( —N7L°),
G

where the final form is derived using the fact that
N > 100. G represents contributions from both E and I
sources.  This defines the Lagrangian, in terms of its
first-moment drifts g, its second-moment diffusion ma-
trix gGG', and its potential ¥’, all of which depend sensi-
tively on threshold factors FC,

P2(27r‘r)“1/2g1/zexp( —N7tL),

L=02N) " M—g%gse(M%—g¥%)
+MCJ;/2NT)—V',

Y'=3V"¢(pvMY),

G
gé=—7""(M°+NCanhF° , (
: : 41)
g9 =(gg) ' =8F 7N %ech’F ¢
g =det(ggg) »

V6 —allolGING — 1 4)61u/9 0@
(L (F)2 () alfNC + 1 4lfm )12

G _1 G G
aG' _7AG' +BG' >

G_—

where A& and BE are macrocolumnar-averaged inter-
neuronal synaptic efficacies, v and ¢$. are averaged
means and variances of contributions to neuronal electric
polarizations, and nearest-neighbor interactions ¥’ are
detailed in other SMNI papers [14,16]. M and N¢ in
F6S are afferent macrocolumnar firings, scaled to efferent
minicolumnar firings by N/N*~10"3, where N* is the

4027

The mathematical development of mesocolumns estab-
lishes a mesoscopic Lagrangian L, which may be con-
sidered as a “cost function” with variables M ¢, M G, and
VMC® and with parameters defined by the
macrocolumnar-averaged chemical-electrical entities
developed below. (See Fig. 2.)

The Einstein summation convention is used for com-
pactness, whereby any index appearing more than once
among factors in any term is assumed to be summed
over, unless otherwise indicated by vertical bars, e.g.,
|G|. The mesoscopic probability distribution P is given
by the product of microscopic probability distributions
Po;s constrained such that the aggregate mesoscopic exci-

tatory firings ME=3 jeE O j, and the aggregate mesos-
s . a1 e . T .
copic inhibitory firings M'=3% ;c, 0 ;:

N

j

S o, —MEr;t+1) ]8 [ S o, —Mir;t+71) I1»,,

(40)

r

number of neurons in a macrocolumn. Similarly, AGG'
and B§ have been scaled by N* /N ~10° to keep F€ in-
variant. This scaling is for convenience only. This
mathematical description defines the mesocolumn con-

(-125,-25)

(-125,25)

(125,-25)

(125,25)

FIG. 2. Examination of the minima structure of the spatially
averaged and temporally averaged Lagrangian provides some
quick intuitive details about the most likely states of the system.
This is supported by further analysis detailing the actual
spatial-temporal minima structure. Illustrated is the surface of
the static (time-independent) mesoscopic neocortical Lagrang-
ian L over the excitatory-inhibitory firing plane (M M 1), for a
specific set of synaptic parameters. All points on the surface
higher than 5X1073/7 have been deleted to expose this fine
structure.
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cept introduced previously.

At this stage, severe approximation in modeling is typi-
cally required in order to proceed towards solutions.
However, advantage can be taken of experimentally ob-
served columnar structure to first attempt to analytically
scale the neuronal system into mesoscopic domains that
are still relatively microscopic compared to the macro-
scopic regions to be described [59-61,63,64,88]. For pur-
poses of macroscopic description, the minicolumnar
structure effectively spatially averages the neuronal in-
teractions within one to several firing periods.

The following development is proposed, which (1)
reasonably includes and averages over millions of synap-
tic interactions that exist between groups of hundreds of
neurons, (2) analytically establishes the integrity of
columnar domains and specifies their interactions, and (3)
prepares the formulation of (1) and (2) to foresee their an-
alytic inclusion into studies of macroscopic regions.

For purposes of detailing anatomical or physiological
properties of neurons, it is simply incorrect to postulate
an “average” neuron. However, for the purpose of mac-
roscopic brain function, when considering millions of
neurons, we repeat that it is reasonable to at least respect
the incredibly similar modular structure present in all re-
gions of the neocortex [59,61,62,64,103,104], still allow-
ing for the differentiation among the laminar structure of
individual modules and among neurons active at different
temporal and spatial scales.

The neocortex has about 5X 10'° neurons distributed
rather  uniformly over  approximately 5% 108
minicolumns. (The visual cortex has double this density.)
Within these minicolumns, a ‘‘vertical” structure is
defined perpendicular to six highly convoluted laminae of
total thickness ~ 2.5X10° um, principally by the
efferent pyramidal cells. They exhibit vertical apical bun-
dling of their dendrites in the upper laminae, and some of
their recurrent axonal collaterals also ascend to upper
laminae. A number of other fusiform, Martinotti, and
stellate cells (granule cells in the sensory cortex and bas-
ket cells in the motor cortex) also contribute to this verti-
cal organization. In general, laminae I to IV are afferent
and laminae V and VI are efferent [70].

However, ‘“horizontal” dendritic basal arborizations
(treelike structures) of the pyramidal cells, tangential to
the laminae, horizontal axonal collaterals of the pyrami-
dal cells, and horizontal processes of stellate, Martinotti,
and neonatal horizontal cells, all impart horizontal
stratification to columnar interactions. Therefore, al-
though the columnar concept has anatomical and physio-
logical support, the minicolumnar boundaries are not so
clearly defined [107]. If this stratification and other
long-ranged afferent input to groups of minicolumns are
incorporated, then it is possible that future work may
have to define a physiological unit that encompasses a
mesocolumn consisting of one to perhaps several min-
icolumns outputting to a macrocolumar extent. This
study formalizes these circumstances by defining a meso-
column with extent greater than 10% um, as an intermedi-
ate integral physiological unit encompassing one min-
icolumn. [See Fig. 1(b).] Dynamic nearest-neighbor in-
teractions between mesocolumns are analytically defined
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by their overlapping neuronal interactions, in accordance
with the observed horizontal columnar stratifications out-
lined above. [See Fig. 1(b').] This approach permits fu-
ture analytic modifications, as differences between inter-
and intra-minicolumnar interactions and circuitries be-
come experimentally clarified.

The resulting picture of columnar interactions is rela-
tively simpler than a mass of interacting neurons, but not
so simple to the point of uselessness. A collection of
average excitatory and inhibitory neuronal firings, as de-
picted in Fig. 1(a’), now define a continuum of meso-
columnar firings. A zero order binomial distribution is
easily intuited: Let G denote E or [ firings. Using the
magnetic analogy, consider E as a spin-up and I as a
spin-down magnet. A column of N ¢ neurons can have a
total firing of Nn®, within time , where n € is the frac-
tion firing, ranging by 2’s between —N¢ < Nn% < NOC.
(Count firing as + 1, nonfiring as —1.) For convenience,
assume Nn% > 0, which arises from Nn€ firings plus
1/2(N¢—Nn©) cancelling pairs of firings and nonfirings.
This gives a total of 1/2(N°—Nn%)+NnC=1/2(N¢
+Nn) firings and N°—1/2(N°+ Nn ) nonfirings. The
degeneracy factor, as a function of the firing rate Nn S, is
the number of ways N° neurons can produce a given
firing pattern, i.e., the binomial distribution. Note that
the binomial coefficient is unity for states of all firing or
all nonfiring, and peaks as NCO/[(N9/2)N]?
~2NOH12(NC)=1/2 for Np€=0. In the range Nn©
=~ 0, there is maximal degeneracy of information encod-
ed by mesocolumnar firings. This argument analytically
articulates the meaning of ‘“‘neuronal degeneracy” and
also of the ubiquitous, often ambiguous “‘average neu-
ron.” However, reasonable properties of mesocolumns,
not of average neurons, are developed here for macro-
scopic study.

The properly calculated distribution contains nearest-
neighbor mesocolumnar interactions expressed as
spatial-derivative correction terms. This verifies that in
macroscopic activity, where patterns of mesocolumnar
firing vary smoothly over neighboring mesocolumns, it is
consistent to approximate mesocolumnar interactions by
including only second-order gradient correction terms.
We calculate macroscopic states of mesocolumnar firings,
which are subject to these constraints. Excitatory and in-
hibitory sensitivity to the neuronal parameters survives,
similar to the sensitivity encountered by single neurons.

Nearest-neighbor interactions are “induced” between
minicolumns in the following way. The bulk of short-
ranged interactions engaging the neurons in a min-
icolumn do not take place within the minicolumn, but
rather within a spatial extent the size of a macrocolumn,
comprising roughly 1000 minicolumns. If we consider
the area of influence of a minicolumn as extending out to
a macrocolumn’s reach, then the area of interactions en-
gaged by nearest-neighbor minicolumns has an offset cir-
cle of influence [16]. (See Fig. 3.) Therefore, within one
or two epochs spanning the refractory periods of a typi-
cal neuron, i.e., including the absolute refractory time
after a firing during which no new spikes can be generat-
ed, and the relative refractory period during which spikes
can be produced only at a decreased sensitivity [71], in-
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FIG. 3. Nearest-neighbor interactions between mesocolumns
are illustrated. Afferent minicolumns of ~10? neurons are
represented by the inner circles, and efferent macrocolumns of
~ 10° neurons by the outer circles. Illustrated are the nearest-
neighbor interactions between a mesocolumn, represented by
the thick circles, and its nearest neighbors, represented by thin
circles. The area outside the outer thick circle represents the
effective number of efferent macrocolumnar nearest-neighbor
neurons. L.e., these neurons outside the macrocolumnar area of
influence of the central minicolumn are contacted through in-
teractions with neurons in the central macrocolumn.
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teractions engaged by a given minicolumn can be extend-
ed out to areas of influence engaged by their nearest
neighbors. This is what physically is being calculated by
a careful mathematical treatment of overlapping interac-
tions. In this manner, microscopic degrees of freedom of
many types of neurons (many of which are only crudely
classified by the above definitions), synapses, neuro-
transmitters, cellular architecture, and circuitries, may be
practically weighted and averaged for macroscopic con-
siderations.

In the steps described above, the mesocolumnar condi-
tional probability that a given mesocolumn will fire is cal-
culated, given its direct interactions with other meso-
columns just previously fired. Thus a transition rate from
one state of mesocolumnar firing to another state closely
following the first state is obtained. A string, or path of
these conditional probabilities connects the mesocolum-
nar firings at one time to the firing at any time after-
wards. Many paths may link the same initial and final

I;;IPG[MG(r;t+'r)|M6(r';t)]= S 53 o,—Nnf
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state. In this way the long-time conditional probability
of all possible mesocolumnar firings at any given time is
obtained. A Lagrangian is thereby derived which explic-
itly describes the time evolution of the neocortical region
in terms of its initial distribution of firings, and expressed
in terms of its mesoscopic order parameters, which retain
a functional form derived from microscopic neuronal in-
teractions. A major benefit derived from this formalism
is a variational principle that permits extrema equations
to be developed. This also makes it possible to draw
analogies to the “orienting field” and “temperature” of
other collective systems.

2. Mesocolumns

Define a mesocolumn as a domain with N neurons,
with stochastic memory 7 approximately equal to 1 to
several 7,, the total refractory period of a typical neuron.
Denote by indices E and I two chemically and anatomi-
cally independent firing fields; G denotes either field. For
this study we do not consider dynamic synaptic
modifications, which typically take place as a result of
one to many epochs of macroscopic temporal activity
effecting such plastic changes [87]. Therefore, take as in-
dependent of space time,

]vjkly i — v§, &
Vi, Ay, By — VS, 4§, B , (42)
148 + B§=a§ .

The greater importance of I synapses (circuitry, proximi-

ty to soma) increases effective inhibitory vy and aj.
Take

Sopdn = 3 vE AN,
k G’

vE=—vf>0, (43)
N=NE+N'.

Define Nn%r), a mesocolumn centered at the two-
dimensional point 7, as the mesocolumnar average of 0.
[See Figs. 1(b) and 1(b’).] Derive the conditional probabil-
ity PC{MC(r;t+7)|MC(r';t)] for the firing transition to
mesocolumn M %(r;t+7)=Nn%r) at time ¢+, from all
contributing mesocolumns M %(r’;t)=Nm %(r') associat-
ed with neurons o, at time t. MY represents contribu-
tions from both M ¥ and M’ in FF:

N
S[EUJ.—NnI]Hpaj . (44)
JEI J

For r = r’, the result of the mesoscopic averaging of independent E and I fields is easily intuited, as explained above:
The contribution of N ¢ averaging + 1 firings to establish a firing Nn © has degeneracy

NG
LNC+nCN)

_ N
[LNC+nCN)NLNC—nCN)]!

’

—NC < Nn6 = M% <NC¢. (45)

A binomial distribution of Nn ¢ is therefore anticipated, weighted by the averaged firing probability, with
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G ; G
F7? — typical F . (46)
However, the nearest-neighbor interactions must be calculated more precisely. Calculate
_ w NC
POIMC(r;t+7)\MC(r';t )]=(277')_1f dQCexp(iNn°Q ) [1 C]-G R
— 0 .=1
G( G A G - Gy :nG G — ’ @7
Co{F[M®(r +€)]} =cosh(F”+iQ%)sechF;, r+e=r".
Expand C jG about Nn %(r), using directional derivatives D é’z
CF =~ [1+|elDL+1lelD2ICor), e=e/lel=(r'—r/lr'—r], 48)

retaining only first- and second-order derivatives of M ¥ and M, and obtain

NG

PO MC(r;t +7)|M%(r;t)] = (277)*1f_wwdQGexp(iNnGQG)[cosh(FG+iQG)sechFG]NG I1(1+dFfK,+dFSK,),

K, = sinh(iQ %)sech(F®+iQ%)sechF? ,

(49)
K,= —2K, tanhF?,

where dF ﬁ and dF jg are more involved algebraic expres-
sions given in the SMNI literature [14].

To zero order, neglect K; and K, terms, express
cosh™’ as a sum of exponentials, expand as a binomial,
carry out the [ dQ¢, and obtain
(fO,

PSIMS(t+7)|MS(t)]=(14f6)~N°® 1{5

fC=exp(—2F9), (50)
AC=[[LNnCS+N%]],

where A% is the greatest integer in the double brackets on
the right-hand side (RHS). This is the anticipated bino-
mial distribution with mean

<A%> o=N %exp( —FG)/[(exp(FG)+exp( —F9)],

(51)
<Nn%>,=—N6StanhF¢ ,
and variance
<AOLAG' > — <AG><AY > ;=188 N%ech®’FC .  (52)

Thus n¢ and m ¢ are defined as mesocolumnar averaged
neurons, with their anticipated zero-order statistical
firing weights. This explicitly demonstrates how sensitive
<Nn®> s to changes in sign of the threshold factor F¢
in the step function tanhF% tanh(4-o0)= 41,
tanh(4-1) = 4-0.76, tanh(0) = 0. As expected, in the
absence of interactions, setting BS =0 and with
Nm©%= —N¢ then <NnG>0 = —NY% no firing occurs.
As <Nn%>, = 0 maintains <Nn%>, > —NF for all
NmS BE may be taken to simulate nonsynaptic
influences on Nn©.

Consistency of the above scheme requires a definition
of this long-wavelength scale. The conditions placed on

j=1

the above calculation are evaluated to be essentially
1 > (pVMO)?/(24N), (53)

where p is the spatial extent of a minicolumn, which is
consistent with this macroscopic development [16]. That
is, we can consistently define a nearest-neighbor meso-
columnar potential to take into account interactions
across thousands of minicolumns since the spatial
changes in firings across minicolumns are effectively
small enough to permit this perturbative procedure. Cal-
culations confirm the consistency of this derivation of in-
tercolumnar interactions with experimental observations.

The prototypical diffusion system describes Brownian
motion, wherein the stochastic memory of the macro-
scopic system depends only on the immediate past history
of the system at one specified unit of earlier time, and in a
linearly functional manner [1,2]. Here, the G-space
diffusion is expressed by a nonlinear dependence on this
past firing state, and the stochastic memory must be care-
fully defined. Real-space diffusion is represented by the
gradient couplings. These fluctuations are physically im-
portant for various excitations and possible critical be-
havior of second-order phase transitions between ordered
and disordered states, e.g., as in magnetic systems
[4,108].

Figures 1(c) and 1(c’) illustrate how the mesocolumnar
structure is a substrate for activity persisting for hun-
dreds of milliseconds over a spatial region containing
A = 5X10° mesocolumns, spanning ~ 1072 of a total
cortical area of 4X10'! um?. Extended regional activity
is possible, whereby conglomerates of 10 to 30 regions
may interact [59].

3. Mesocolumnar short-time propagator

To first order in dF, the distribution function p, of a
given state of firing Nn ¢ occurring given the earlier state
M, can be defined in terms of variables that facilitate
this development. For large N¢ and N °F¢, this binomial
distribution is asymptotically Gaussian [102]:



S

PO[MC(t+7)|M (1)) =(2mrg’' ) exp(—N7LO),
L_'G=N~l[(Nn G__MG)/T — g’G]z/(zg'GG),
g'%=—7"'[M®+NC%1+dF°tanhF9],
g'%C=7"IN%1+dF®)sech®F¢

(54)

where no sum is implied over repeated indices, and we
use L' to denote that we have not yet expanded the dF
terms.

Define time epochs ¢ in units of 7, the total mesocolum-
nar refractory period, in terms of integer s = 0, from an
initial time #:

t,=st+tt, . (55)
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For large time epochs to be considered, a continuum
differential time scale is defined by dt < 7. Within 7, con-
sistent with this long-time development and consistent
with the previous mesocolumnar averaging of neuronal
interactions, define

I_J:GzN*‘I(MG_glG)Z/(zglGG)’

dM

G (56)
— Ay G asG
dar Nn M"© .

™=+

Then the Markovian mesocolumnar short-time propaga-
tor, the conditional probability p, is developed for short
times & = 7 relative to any fixed time

PIM(t+6),t +0]=(270)"" [ dM (1)g'(1)"%exp{ —NS[M (1 +6),M (1)]} p [M(1),1],

dM =dMEdM’

glz(detgr)A]:(gIEEgIII)—l ,

and S is defined by requiring that the system evolve by
the principle of maximal probability:

S=min [ dr LM, M 1)),
t
L::L;E+LII_ (58)

For small 0, relative to the long times considered, with
N >> 1, contributions to p at t + 6 are heavily weighted
within

[AMC| =M%t +0)—MC%1)| < 672, (59)

and therefore the quadratic M terms in L’ must be care-
fully developed.

Finally, L' is expanded about L, treating dF G as per-
turbations. This yields Eq. (41) in terms of V', the
nearest-neighbor potential.

4. Further development of mesocolumn model

As pointed out in this derivation [14,15], this micro-
scopic scale itself represents a high aggregation of submi-
croscopic scales, aggregating effects of tens of thousands
of quanta of chemical transmitters as they influence the
5X 1073 um scale of biomolecular leaflets of phospholi-
pid molecules. This microscopic scale has been aggregat-
ed up to the mesoscopic scale, again using the general
property of probability distributions, that the aggregated
distribution P, of variable q is calculated from the joint

. . q . .
distribution qu 7 of underlying variables g, and g¢,,

Pq(q)= fd‘hdquqlqz(‘h,%)s(q_(%+‘12))- (60)

To summarize up to this point, the mathematical de-
velopment of mesocolumns establishes a mesoscopic La-
grangian L, defining the short-time probability distribu-
tion of firings in a minicolumn, composed of ~ 10? neu-
rons [59,61,62,64,103,104,109], given its just previous in-

(57)

[

teractions with all other neurons in its macrocolumnar
surround.

P=TI POIMC(r;t+7)|MC(r';1)]
G

=33 [zo,-—ME(r;tJrT)]
%

iE
N
X8 [Eaj—MI(r;tJr‘r)]Hpoj
a J
=~ [ (2m7g9¢)~12%exp(—N7L®) ,
G

: (61)
P=~(277)"2g2exp(—N7L) ,

where L is defined in terms of its drift, diffusion, and po-
tential, all of which depend sensitively on the threshold
factor FC,

Ve—alflfING — 1L 48wl MC

(Tl E2+ (B2 1(alfINT + L 4lf M)} 2

FG=

(62)

In the first SMNI papers, long-ranged interactions were
included in L by adding potential terms simulating these
constraints, i.e., adding Jo;M G to L, where Js was numer-
ically adjusted to account for these interactions.

In order to more properly include long-ranged fibers,
so that interactions among macrocolumns may be includ-
ed in the numerical studies, the J; terms are dropped,
and more realistically replaced by a modified threshold
factor FC,
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A}'= Af}F= a}'=B}'=B}*=B}'=0,
ajf=14}*+B}iF .

Here, afferent contributions from N*£ long-ranged excita-
tory fibers, e.g., cortico-cortical neurons, have been add-
ed, where N*¥ might be on the order of 10% of N*:
Nearly every pyramidal cell has an axon branch that
makes a cortico-cortical connection; i.e., the number of
cortico-cortical fibers may be as high as 10'° [45].

At this point, attention is also drawn to the similar
algebraic structure of the threshold factors in Eq. (32)
and (63), illustrating common forms of interactions be-
tween their entities, i.e., neurons and columns of neurons,
respectively The nonlinear threshold factors are defined
in terms of electrical-chemical synaptic and neuronal pa-
rameters all lying within their experimentally observed

F"= n 7 7 ’ )
([l + (SN2 1(alS NG + L A[FIM T +a}lOINIC + L 43IC1p367))1/2

(63)

-

ranges.

The net short-time probability distribution can be fold-
ed over and over (multiplied) in time increments At to
yield a path-integral algorithm for calculating the long-
time probability distribution [27]. This result depends on
the use of the Markov property of our distribution,
wherein the short-time evolution of the system at time
t+7 depends only on the state of the system at time t.
For example, in a very compacted notation, labeling u in-
termediate time epochs by s, i.e., t, =ty +sAt, in the lim-
its u—> o and At—0, and assuming M,0=M(t0) and

M,=M(t=t, ) are fixed,

P[M1|Mzo]: f e f dM, _ndM;_5p; - 'tho+AzP[Mt|M —AI]P[Mt—At|M —aarl 'P[Mt0+At|Mt0] ’

’

P(M,|M, 1= [ -+ [ DMexp

- 2 AtI_‘s
s=0

u
DM =(2mgiAt)" 2 [ 2nglAt)™ %M, .

s=1

Similarly, the short-time probability distribution P can be
folded over and over at each point 7, to give a field-
theoretic Lagrangian, L(r,t). The above “prepoint-
discretization” representation of L derived for the neo-
cortex, e.g., gsG=gG[MG(tO +sAt)], disguises the
Riemannian geometry induced by the nonconstant metric
gce» discussed further below.

D. Macroscopic development

1. General description

Inclusion of all the above microscopic and mesoscopic
features of the neocortex permits a true nonphenomeno-
logical Gaussian-Markovian formal development for
macroscopic regions encompassing ~ 5X10° macro-
columns of spatial extent ~ 5X 10° ,u,mz, albeit one that
is still highly nonlinear and nonequilibrium. The devel-
opment of mesocolumnar domains presents conditional
probability distributions for mesocolumnar firings with
spatially coupled nearest-neighbor interactions. The
macroscopic spatial folding of these mesoscopic domains
and their macroscopic temporal folding of tens to hun-
dreds of 7, with a resolution of at least 7/N [16], yields a
true path-integral formulation, in terms of a macroscopic

(64)

f

Lagrangian possessing a variational principle for most-
probable firing states. At this point in formal develop-
ment, no continuous-time approximation has yet been
made; this is done, with clear justification, only for some
applications discussed below. Much of this algebra is
greatly facilitated by, but does not require, the use of
Riemannian geometry to develop the nonlinear means,
variances, and ‘“potential” contributions to the Lagrang-
ian [27].

This formalism can also be recast in several other rep-
resentations [27], perhaps more familiar to other investi-
gators, and sometimes more useful for particular calcula-
tions. For example, a Hamiltonian formulation can be
obtained, one that does not permit simple “energy”’-type
conservation approximations, but one that does permit
the usual time-evolution picture. The time-dependent
differential macroscopic probability distribution, or
“propagator,” is found to satisfy a true Fokker-Planck
second-order partial-differential equation, expressing the
rate of change of the distribution as the sum of contribu-
tions from nonlinear drifts and diffusion in the space of E
and I firings. With respect to a reference stationary state,
a well-defined information, or ‘“entropy,” can be formu-
lated. Also, a set of Langevin rate equations for E and 1
firings can be obtained, expressing the rate of change of
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firings as the sum of drifts and multiplicative noise. The
most-probable firing states derived variationally from the
path-integral Lagrangian represent a reasonable average
over the noise in the Langevin system; the noise cannot
be indiscriminately neglected. Because of the presence of
multiplicative noise, the Langevin system differs in its It6
(prepoint) and Stratonovich (midpoint) discretizations.
Furthermore, there exists a midpoint-discretized covari-
ant description, in terms of the Feynman Lagrangian L,
which is defined such that (arbitrary) fluctuations occur
about solutions to the Euler-Lagrange variational equa-
tions. In contrast, the usual It6 and corresponding Stra-
tonovich discretizations are defined such that the path in-
tegral reduces to the Fokker-Planck equation in the
weak-noise limit. These points are discussed further
below, and more explicitly derived in Appendix A.

2. Regional short-time propagator
Define the A-dimensional spatial vector M, at time ¢,

Msz{MsV=Ms(rv)§ v=1, -
M}={MF"; G=E,I}.

’A} ’
(65)

For macroscopic space-time considerations, mesoscopic
p(spatial extent of a minicolumn) and 7 scales are mea-
sured by dr and dt. In the continuum limits of r and ¢,

dM©
dt ’

(MG,v+1_MGV)/(rv+l_rV) s V,MG .

MSY — MS%r,t), MS —

s

(66)

The previous development of mesocolumnar interactions
via nearest-neighbor derivative couplings permits the re-
gional short-time propagator P to be developed in terms
of the Lagrangian L [110]:

P(M)=(270)""* [ di g*"*exp[ —NS(31)1P(51),

S=min [ ""drL[ M), M(1)), 67)
t

where () is the area of the region considered, and

A
AQ7! [dr=A0""! [dxdy=lim 3 . (68)

A— o v=1

p—0

The Euler-Lagrange (EL) equations, giving the extrema
<<M%>>, are obtained from 8S = 0 [111]. The Einstein
convention is used to designate summation over repeated
indices, and the following notation for derivatives is used:
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—daC-)
( ).z 0z {x,y},
CGRED
(e = Ty
a( PR )
(ver) =) (69)
6 3(dMC/dt)
(eeey, =00 1)
%2 3(dMS/dz)’
Xo(--+) ~ O(+-*)
P = + .
2 hve = SiamSran) Y 3 dy)
The EL equations are
8L =0,
gL = L,G—V'L,vc “L,G':,z(),
(70)

V-Lys=Lg, .= (L,GzyG')M5'+”—~,G=,,G’.z M,
_ o e
L= (LM +(Lg M.

This exhibits the extremum condition as a set of 12 first-
order differential equations in the 12 variables
(MO, M M°,MSMS,} in r—t = (x,y,t) space, with
coefficients nonlinear in M ©.

3. Regional long-time propagator

With P properly defined by this space-time mesh, a
path-integral formulation for the regional long-time
propagator at time ¢t = (u +1)0+¢, is developed:

BM(e))dM()= [ - fl.)ﬂexp(—th;dt'L),

P[M(1,)]=8(M —M,), (71)
_ u+l A EI
DM=TI II II276)""Xg)/*aME".
s=1v=1 G

Note that, even for N7L = 1, Nfﬁodt’L is very large

for macroscopically large time (¢t —t,) and macroscopic
size A, demonstrating how extrema of L define peaked
maximum probability states. This derivation can be
viewed as containing the dynamics of macroscopic causal
irreversibility, whereby P is an unstable fixed point about
which deviations from the extremum are greatly
amplified [112].

4. Riemannian geometry

A series of papers has recognized that a few of the
most popular Riemannian-geometric transformation
properties possessed by physics systems might be advan-
tageous for a theory of cortical interactions, i.e., most
specifically in the cerebellum, and they have gone further
to postulate this geometry as the essential component of
their theory [113-115].

As developed most notably by Einstein [116], Rieman-
nian geometry has been firmly established as a necessary
component of the foundations of physics. There are still
two viable camps of opinions, considering this geometry
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itself as a basic foundation [117], or considering the phys-
ical entities on which its transformations operate as the
basic foundation [118]. However, there is unanimous
agreement that Riemannian geometry is an essential
theoretical construct to explain some observed physical
phenomena. The existence of Riemannian geometry also
is a natural mathematical consequence of properties pos-
sessed by quite general stochastic systems, including
those models of neural systems assumed or endorsed by
most investigators [119]. These properties have been
stressed in the SMINI series of papers.

It is the purpose here to stress these general properties,
and to make the short but important observation that
there is indeed mathematical support on which to conjec-
ture possible neural mechanisms that might exist as a re-
sult of invariance under Riemannian-geometric transfor-
mations. This observation then leads us back to the spir-
it, if not the essence, of other neuroscience investigators.
However, whereas they hypothesize a Riemannian metric
between cortical regions, SMNI derives a Riemannian
metric within each cortical region, quite a physical dis-
tinction.

Corresponding to the differential-operator ordering
problem in the Fokker-Plank equation is the discretiza-
tion problem in the path integral and in the Langevin
rate equations, both of which are equivalent mathemati-
cal representations of the Fokker-Plank equation [27,29-
31,120,121]. An overview of these equations is required
to at least note where the Riemannian geometry enters.
Appendix A provides a brief derivation.

Consider a multivariate system with variance a general
nonlinear function of the variables. The Einstein summa-
tion convention helps to compact the equations, whereby
repeated indices in factors are to be summed over.

The Ito (prepoint) discretization for a system of sto-
chastic differential equations is defined by

t_se[ts’ts'*—At]E[ts:ts—kl] ’
M(E)=M(t,) , (72)

dM(T,)

S =Mt ) M)

The stochastic equations are then written as

dM ¢
dt

G=1,...,0,

where E and © are the (arbitrary) ranges of i and G, re-
spectively.
These equations might be used to describe the stochastic
firing of mesocolumns, or if scaled by N ~!, they could be
used to describe ““average” neurons. Once parameters
are fit to data, as we report here using the integral proba-
bility distribution representation below, these equations
can be used to construct a brain simulation, e.g., to study
the influence of changing contexts that cannot be so well
incorporated into these equations.

The operator ordering (of the 3/0M ¢ operators) in the
Fokker-Planck equation corresponding to this discretiza-
tion is

=fO+gby, i=1,...,E,

(73)
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where a “potential” V is present in some systems, e.g.,
sometimes used to explicitly include boundary condi-
tions. Above, a potential term was derived to describe
nearest-neighbor interactions. As described below, this
partial-differential representation is very useful in deter-
mining the stability and duration of STM.

The Feynman Lagrangian corresponding to this
Fokker-Planck and set of Langevin equations may be
written in the midpoint discretization, corresponding to

M(T)=1[M(t, . )+M()] . (75)

This discretization defines a covariant Lagrangian L
that possesses a variational principle for arbitrary noise,
and that explicitly portrays the underlying Riemannian
geometry induced by the metric tensor gGG 5 calculated to
be the inverse of the covariance matrix g

P=f---f]_.)_Mexp ,

- E AtLFs

DM =gy/?(2wAL) =07 Hg;/2 H (2wAt) " V2dMC |

s=1

[ dmMS— EAM”, M§=MC, M =MF,

=1

dM©® dM© .
Lp=7 T_ha 866" |~ 4; —h¢
+% +R/6—V ,
R
(" )g=——7%5,
G aM©
hG:g g 1/2(g1/2gGG’)’G ,
_ (76)
gGG':(gGG) ,
gs[MG(t_s),?s]zdet(gGG')s ’g$+=gs[MsG+1’Ts] ’

hG __h +I"FFhG=g 1/2( 1/2hG) ,
i =gflJK,L]=g~
R:gJLRJL

Flex+8ke,s—8m1) >

=8 JLg KRFJKL >

1 —_— —
Rk =5(8rk, g0 — 8k, F. —8FL,JK

+8&i,rx )"‘gMN(F%(FIJVL F%L F.IIVK ),

where R is the Riemannian curvature, and we also have
explicitly noted the discretization in the mesh of M G by
t. If M is a field, e.g., also dependent on a spatial variable
x discretized by v, then the variable MSG is increased to
MPE, e.g., as we have prescribed for the macroscopic neo-
cortex. The term R /6 in Ly includes a contribution of
R /12 from the WKB approximation to the same order of
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(At)32 [27].
A prepoint discretization for the same probability dis-
tribution P gives a much simpler algebraic form,

(77)
aMm° ¢ &
da ¢

dt —8

L= g66' -V,

1
2

but the Lagrangian L so specified does not satisfy a varia-
tional principle useful for moderate to large noise; its as-
sociated variational principle only provides information
useful in the weak-noise limit [122]. The neocortex
presents us with a system of moderate noise. Still, this
prepoint-discretized form has been quite useful in all sys-
tems examined thus far, simply requiring a somewhat
finer numerical mesh. Note that although integrations
are indicated over a huge number of independent vari-
ables, i.e., as denoted by dMS”, the physical interpreta-
tion afforded by statistical mechanics makes these sys-
tems mathematically and physically manageable.

It must be emphasized that the output need not be
confined to complex algebraic forms or tables of numbers.
Because L possesses a variational principle, sets of con-
tour graphs, at different long-time epochs of the path-
integral of P, integrated over all its variables at all inter-
mediate times, give a visually intuitive and accurate de-
cision aid to view the dynamic evolution of the scenario.
For example, this Lagrangian approach permits a quanti-
tative assessment of concepts usually only loosely defined.

Concept Lagrangian equivalent
oL
Momentum HG=—_GF———
d(aM " /at)
M OLy
ass = ;
866" 3(amC /ar)a(aM S /at)
oL
Force _FG
o oL oL
LF d L
F=ma SL,=0= -
=F dMCG 3t 3(dMC/dt)

(78)

These physical entities provide another form of intuitive,
but quantitatively precise, presentation of these analyses
[38].

Using the Lagrangian formulation, a systematic nu-
merical procedure has been developed for fitting parame-
ters in such stochastic nonlinear systems to data using
methods of very fast simulated reannealing [58], and then
integrating the path integral using a non-Monte Carlo
technique especially suited for nonlinear systems [123-
125]. This methodology has been applied with success to
military modeling [36,126] and to financial markets
[41,42], and we will be using it in this neocortical system
to correlate EEG to behavioral states [24].

The key issue is that Riemannian geometry is not re-
quired to derive the mathematics of multiplicative
Gaussian-Markovian systems. More interestingly, after
this derivation, it can be demonstrated that the space of
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random variables actually induces a Riemannian
geometry, obtained explicitly by simply (in hindsight)
reorganizing terms in their defining equations. Then, the
differential and path-integral representations can be
rewritten only in terms of functions f(M) of random
variables M that are tensor invariant under quite general-
ly nonlinear point transformations, i.e., M'=M'(M).

The derived probability distribution also is invariant
under an equivalence class of discretizations or “look
both ways” interpretations, or any shade in between.
This is not the same as incorporating bona fide physical
delays, e.g., those that can give rise to EEG wave propa-
gation, in local circuits as emphasized in SMNI, or in
long-ranged circuits [46].

The possibility of rewriting any theory or model of
neural systems, which can be described by multiplicative
Gaussian-Markovian dynamics, into an algebraic form
invariant under Riemannian-geometric transformations,
does not require that neural systems develop or elect
mechanisms to take advantage of these transformations.
However, the most obvious candidate for a physical
consequence of invariance under such transformations is
the information Y, developed in SMNI, sometimes loose-
ly referred to as the “entropy” of the system. The invari-
ance of Y implies that, although different cortical regions
may have different anatomical features and superficially
appear to have quite different sets of firing states, they
may indeed share, encode, or decode the same informa-
tion using their own specific anatomy and physiology to
develop their own sets of firing states, related to each oth-
er by (nonlinear) transformations.

This possibility is in the original spirit of other authors,
who were attracted to the use of Riemannian geometry to
explain how information in sensory regions might be
transmitted to motor regions, albeit that their neural
properties differ in many respects. SMNI develops
columnar interactions, and here too it has been tempting
to conjecture that local and global processing of colum-
nar firing patterns is enhanced, if not primarily effected,
by transmitting blocks of information that are invariant
under nonlinear transformations of firing states.

Ultimately, these issues must be decided by experi-
ment. There is presently no evidence, pro or con, to bear
on the issue of the explicit Riemannian-geometric nature
of information processing of neural firings. In principle,
this could be accomplished by numerically fitting neuron-
al firing data to Lagrangians describing regions
behaviorally proven to be processing similar information,
similar to fits to data proposed for other artificial intelli-
gence systems [127].

5. Information, potential, and long-ranged interactions

There have been attempts to use information as an in-
dex of EEG activity [128,129]. However, these attempts
have focused on the concept of “mutual information” to
find correlations of EEG activity under different elec-
trodes. The SMNI approach at the outset recognizes
that, for most brain states of late latency, at least a subset
of regions being measured by several electrodes is indeed
to be considered as one system, and their interactions are
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to be explicated by mathematical or physical modeling of
the underlying neuronal processes. Then, it is not
relevant to compare joint distributions over a set of elec-
trodes with marginal distributions over individual elec-
trodes. The concept of information, as expressed below,
may yet prove to be a useful valid measure to compare
different subjects within certain categories.

With reference to a steady state P(M ), when it exists,

an analytic definition of the information gain Y in state
P(M) is defined by [1,130]
T(P)=[ --- [ DM Pin(P/P), (79)

where again a path integral is defined such that all
intermediate-time values of M appearing in the folded
short-time distributions P are integrated over. This is
quite general for any system that can be described as
Gaussian-Markovian [66], even if only in the short-time
limit, e.g., the SMNI theory. (As time evolves, the distri-
bution likely no longer behaves in a Gaussian manner,
and the apparent simplicity of the short-time distribution
must be supplanted by numerical calculations.) Although
¥ is well defined and useful for discussing macroscopic
neocortical activity, it may not be as useful for all appli-
cations. Certainly many important local changes of in-
formation effected by the neocortical system are a func-
tion of the microscopic degrees of freedom already aver-
aged over for the purposes of this study. However, it
should also be noted that the path integral represents an
enormous number of spatial-temporal degrees of freedom
of the mesoscopic system. For example, even neglecting
specific coding of presynaptic and postsynaptic mem-
branes, detailed neuronal circuitry, and the dynamics of
temporal evolution, in a hypothetical region of 10° neu-
rons with 10'® synapses: considering each synapse as only
conducting or not conducting, there are ~exp(7X 10'?)
possible synaptic combinations; considering only each
neuron as firing or not firing, there are ~exp(7X 10%)
neuronal combinations; considering only each meso-
column as having integral firings between — 100 and 100,
there are ~exp(5X 10’) mesocolumnar combinations.
The minimization of ¥ with respect to P, with M con-
strained to its (possibly multivalued) mean trajectory
<M >, is formalized by the use of Lagrange parameters
Jg- This results in the Legendre transform of InP [131],
and is equivalent to the generating functional Y defined
in the presence of extrinsic sources Jg [121,130]. In the
neocortex, some of these J; sources were used to specify
firing constraints imposed on a given region of meso-
columns from long-ranged extrinsic or inter-regional
afferents, e.g., from ipsilateral association, contralateral
commissural, and thalamocortical processes:

L[min{P[ <M >;1}] =Y[ <M >,]
= —InP(J)
+ [ar [d* <m%> 0, ,
(80)
where P(J) is calculated by replacing L by L7:

L’=L + MC%J;/(2NT). (81)

LESTER INGBER 4“4

If J is distributed, then DJ measures effects on L) A
Hamiltonian representation, including JGM interac-
tions, is also readily derived [132]. This may be useful for
describing long-ranged constraints that directly affect
rates of change of columnar firings. As noted above,
more recent work proposes that the long-ranged fibers be
incorporated directly into the F¢ threshold factors, by in-
cluding them initially in the microscopic derivation
[23,24].

Y;_o is a proper potential, i.e., it possesses free-
energy-like properties, having a true minimum about
(<M >;— <<M>>), where <<M >> is the extremum
of L obtained by maximizing P(#) [133]. Its lowest or-
der approximate Y'© gives the mean-field approximation:

YO=5(<M>). (82)

T, defined as the “kinetic-energy” dF-independent part
of L, is scale independent of N. Therefore, the small scale
of the neocortical system, about which the system fluctu-
ates, is derived to be N ™1, the inverse of the number of
neurons in a mesocolumn. This is interpreted as the
effective “temperature” or inherent noise of the system.
Thus, STM defines a rather “hot” and volatile system,
wherein the relevant activity takes place on the same or-
der as N !. By contrast, some long-term-memory calcu-
lations described below [15] are consistent with the inter-
pretation of transpiring at a much lower temperature tak-
ing place in a locally more stable environment.

E. Relevance of chaos

Given the context of current studies in complex non-
linear systems [134], the question can be asked: What if
EEG has chaotic mechanisms that overshadow the above
stochastic considerations? The real issue is whether the
scatter in data can be distinguished between being due to
noise or chaos. In this regard, we note that several stud-
ies have been proposed with regard to comparing chaos
to simple filtered (colored) noise [134,135]. Since we have
previously derived the existence of multiplicative noise in
neocortical interactions, then the previous references
must be generalized, such that we must investigate
whether EEG scatter can be distinguished from multipli-
cative noise.

A simple, coarse criteria used to determine whether
chaos occurs in a dynamical system is to examine the na-
ture of propagation of uncertainty, i.e., the variance. As
an example of applying the above framework, in our
analysis of military exercise data [36], we were able to fit
the short-time attrition epochs (determined to be about
five minutes from mesh considerations determined by the
nature of the Lagrangian) with short-time nonlinear
Gaussian-Markovian probability distributions with a
resolution comparable to the spread in data. When we
performed the long-time path-integral numerical calcula-
tions from some point (spread) at the beginning of the
battle, we found that we could readily find a form of the
Lagrangian that made physical sense and that also fit the
multivariate variances as well as the means at each point
in time of the rest of the exercise interval. IL.e., there was
not any degree of hypersensitivity to initial conditions
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that prevented us from “predicting” the long-time means
and variances of the system. Of course, since the system
is dissipative, there is a strong tendency for all moments
to diminish in time, but in fact this exercise was of
sufficiently modest duration (typically 1 to 2 h) that vari-
ances did increase somewhat during the middle of the
battle.

In summary, this battalion-regiment scale of battle
does not seem to possess chaos. Similar to serious work
undertaken in several fields [135,136], here too, the im-
pulse to identify “chaos” in a complex system has been
premature. It is not supported by the facts, tentative as
they are because of sparse data. Of course, some other
combat conditions might show some elements of chaos in
some spatial-temporal domain, and then the resolution of
the analysis would determine the influence of that chaos
in that scenario.

Similar caution should be exercised regarding neocorti-
cal interactions. A more purposeful project is to compare
stochastic with deterministic models of data. Today
much attention is turning to the use of deterministic
chaotic models for short-time predictions of systems. For
example, if only short-time predictions are required, and
if a deterministic chaotic model could well describe sto-
chastic data within these epochs, then this model might
be more computationally efficient instead of a more
“correct” stochastic model, which would be necessary for
long-time predictions. The scales of time involved are of
course system dependent, and the deterministic chaotic
modeling of data is still in its infancy [137].

Similarly, the above SMNI-derived distributions can be
used to help determine if chaos is a viable mechanism in
EEG. While these studies are concerned with neocortical
interactions, it is of interest to note a series of experimen-
tal and theoretical studies of nonlinear dynamics of the
olfactory bulb in small mammals, in which distinctive
EEG patterns on the bulb surface are shown to be associ-
ated with specific odors [138—140]. These studies demon-
strating chaos are very much model dependent, and as
such it is only fair to present the models as possessing
chaos, not necessarily the actual physical system.

For example, it has been widely noted that the correla-
tion dimension of data is difficult to calculate; perhaps it
is often not even a well-founded concept, e.g., since the
EEG of event-related potentials is likely nonstationary
and very much context and subject dependent [141]. Its
calculation, e.g., using the popular Grassberger-
Procaccia algorithm [142], even when supplemented with
finer statistical tests [143] and noise-reduction techniques
[144], may prove fruitful, but likely only as a sensitivity
index relative to shifting contexts and complementary to
other models of EEG data.

IV. VERIFICATION OF SMNI

A. Short-term memory

1. General description

The most detailed and dramatic application of the
theory outlined here is to predict stochastic bounds for
the phenomena of human STM capacity during focused
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selective attention [16,18,145-147], transpiring on the or-
der of tenths of a second to seconds, limited to the reten-
tion of 7x2 items [148]. This is true even for apparently
exceptional memory performers who, while they may be
capable of more efficient encoding and retrieval of STM,
and while they may be more efficient in ‘“chunking”
larger patterns of information into single items, neverthe-
less they also are limited to a STM capacity of 712 items
[149]. This “rule” is verified for acoustical STM, but for
visual or semantic STM, which typically require longer
times for rehearsal in an hypothesized articulatory loop
of individual items, STM capacity appears to be limited
to two to four [150]. This STM capacity-limited chunk-
ing phenomenon also has been noted with items requiring
varying depths and breadths of processing [145-
147,151,152]. Another interesting phenomenon of STM
capacity explained by this theory is the primacy versus
recency effect in STM serial processing, wherein first-
learned items are recalled most error-free, with last-
learned items still more error-free than those in the mid-
dle [153].

The basic assumption being made is that a pattern of
neuronal firing that persists for many  cycles is a candi-
date to store the “memory” of activity that gave rise to
this pattern. If several firing patterns can simultaneously
exist, then there is the capability of storing several
memories. The short-time probability distribution de-
rived for the neocortex is the primary tool to seek such
firing patterns. Since this distribution is exponentially
sensitive to (minus) the Lagrangian function L, it is more
convenient to deal directly with L, whereby its minima
specify the most likely states that can be sustained at a
given time. Then, several important features of these pat-
terned states can be investigated, as is done for other
physical systems [1], e.g., the evolution of these states,
the ‘“time of first passage” to jump from one state to
another state, hysteresis between states that have
different depths (values of the Lagrangian at these local
minima), the stability of each state under external forces,
etc.

We define the ‘“‘stationary” (sometimes referred to as
the “uniform”) Lagrangian, L, by setting to zero all tem-
poral and spatial derivatives of M, e.g., as appearing in
Eq. (61). Contour plots of the stationary Lagrangian, L,
for typical synaptic parameters balanced between
predominately inhibitory and predominately excitatory
firing states are examined at many scales when the back-
ground synaptic noise is only modestly shifted to cause
both efferent and afferent mesocolumnar firing states to
have a common most-probable firing, centered at
M*®=M%=0 [16]. Within the range of synaptic param-
eters considered, for values of 7L ~ 102, this “centering”
mechanism causes the appearance of from 5 to 10 or 11
extrema for values of 7L on the order of ~ 10”2, The
centering mechanism is achieved by modestly shifting BS,
to cause (VG—a(I;q‘vlcq‘NG') to go to zero, thereby driving
the threshold factor F€ to zero. (Note that at F¢=0, the
mesoscopic derivation of Gaussian L breaks down, so
that we can only consider a finite region, heavily weight-
ed by N, about this point.) In the absence of external con-
straints and this centering mechanism, no stable minima
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are found; i.e., the system either shuts down, with no
firings, or it becomes epileptic, with maximal firings at
the upper limits of excitatory or of excitatory and inhibi-
tory firings. The appearance of these extrema due to the
centering mechanism is clearly dependent on the non-
linearities present in the derived Lagrangian, stressing
competition and cooperation among excitatory and inhi-
bitory interactions at columnar as well as at neuronal
scales. (See Fig. 4.)

It must be stressed that these numbers of minima are
determined when the resolution of the contours is com-
mensurate with the resolution of columnar firings, i.e., on
the order of five to ten neuronal firings per columnar
mesh point. If the resolution is forced to go down to one
neuronal firing per columnar mesh point, then typically
only about half these minima are found. The coarser
resolution, in fact, is the one appropriate for numerical
solution of the derived time-dependent path integral:
Most important contributions to the probability distribu-
tion P come from ranges of the time slice 6 and the ‘“ac-

LESTER INGBER

44

tion” NL, such that 6NL <1. By considering the contri-
butions to the first and second moments of AMC for
small time slices 6, conditions on the time and variable
meshes can be derived [123]. The time slice is determined
by 6<(NL)™! throughout the ranges of M¢ giving the
most important contributions to the probability distribu-
tion P. The variable mesh, a function of M9, is optimally
chosen such that AMC is measured by the covariance
2% (diagonal in the neocortex due to the independence
of E and I chemical interactions) or AM ¢~ (g¢90)'/? in
the notation of the SMNI papers. For N ~10? and
L ~1072%/7, it is reasonable to pick 6 ~7. Then it is cal-
culated that optimal meshes are AM®~7 and AM/~4,
essentially the resolutions used in the coarse contour
plots.

Since the extrema of the Lagrangian appear to lie fairly
well along a line in the two-dimensional M ¢ space, and
since coefficients of slowly varying dM ®/dt terms in the
nonstationary L are noted to be small perturbations on L
[15], a solution to the stationary probability distribution

(a) 7L pc<0.04

0.01—-0.04

0.01—-0.04 0.01-0.04

() 7Lppc<0.04

-
+

0.0—0.04

FIG. 4. Contours of the Lagrangian illustrate “valleys” that trap firing-states of mesocolumns. ( 7Lyc can be as large as 10°)
These valleys are candidates for short-term memories. Detailed calculations support the identification of the inner valleys with stable
short-term-memory states having durations on the order of tenths of a second. (a) Contours for values less than 0.04 are drawn for
TLyc, where BC designates the balanced case of firing states being at a moderate level of excitatory and inhibitory firings. The M
axis increases to the right, from —Nf=—80to N¥=80. The M axis increases to the right, from —N’=—30 to N'=30. In each
cluster, the smaller values are closer to the center. Note the absence of any closed contours in the interior space. (b) Contours for
values less than 0.04 are drawn for 7L, where BC’ designates that the “centering mechanism” has been turned on. A right brace }
signifies enclosure of other nested closed contours above and to the left of this brace.
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was hypothesized to be proportional to exp(—<®/D),
where ®=CN2L, the diffusion D=N /7, and C is a con-
stant. Surprisingly, at least until more recent research
has shown the generality of such results [154], along the
line of the extrema, for C ~ 1, this is determined to be an
accurate solution to the full two-dimensional Fokker-
Planck equation [18]. A weak-noise high-barrier regime
defined by A®/D > 1, where A® is the difference in &
from minima to maxima, can be assumed for further
analyses [155]. This is extremely useful, as a linear stabil-
ity analysis shows that stability with respect to meso-
columnar fluctuations induced by several neurons chang-
ing their firings is determined by the second derivatives of
—® [156]; here this just measures the parabolic curva-
ture of L at the extrema. Thus, all the extrema of the sta-
tionary Lagrangian are determined to be stable minima of
the time-dependent dynamic system. Note, however, that
it is unlikely that a true potential exists over all M ¢ space
[122,157].

This stationary solution is also useful for calculating
the time of first passage, f,,, to fluctuate out of a valley in
one minimum over a peak to another minimum [156]. It
turns out that the values of 7L ~ 1072 for which the mini-
ma exist are just right to give 7,, on the order of tenths a
second for about nine of the minima when the maximum
of 10 to 11 are present. The other minima give ¢,, on the
order of many seconds, which is large enough to cause
hysteresis to dominate single jumps between other mini-
ma [16]. Thus, 712 is the capacity of STM, for memories
or new patterns can be accessed in any order during
tenths of a second, all as observed experimentally [149].
When the number of neurons per minicolumn is taken to
be ~220, modeling the visual neocortex [16], then the
minima become deeper and sharper, consistent with
sharper depth of processing, but several minima become
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isolated from the main group. This effect might be re-
sponsible for the lowering of STM capacity for visual
processing, as mentioned above. I.e., the statistical time
of passage between clusters becomes many hours, longer
than STM, while the time between minima within a clus-
ter, now with only 2 to 4 minima per cluster, is on the or-
der of tenths of a second, as observed. This effect also
serves to illustrate that the “practical” number of emer-
gent mesoscopic stable states does not necessarily in-
crease with an increasing number of microscopic units.
(See Fig. 5.)

This estimate of the number of minima involves a very
sensitive calculation. That is, if N were a factor of 10
larger, or if 7L ~0.1 at the minima, then Lyp is on the or-
der of hours instead of seconds, becoming unrealistic for
STM durations. Alternatively, if t,, were much smaller,
i.e., less than ~ 57, this case would be inconsistent with
observed time scales necessary for formation of any
memory trace [158]. In this context, it is noted that the
threshold factor of the probability distribution scales as
(N*N)'2, demanding that both the macrocolumnar
divergence and minicolumnar convergence of meso-
columnar firings be tested by these calculations.

These results pose serious problems for other models,
such as ‘“mean-field” theories or reductionist doctrines.
The mean-field approach essentially sets N =1, and N* is
effectively taken by some investigators to be ~ 10° the
size of a macrocolumn, but others even consider it to be
as large as ~ 10'°, the total number of neurons in the
neocortex. The reductionist doctrine claims that only
circuitries among a few to several neurons are responsible
for a specific pattern of neocortical function, and this
effectively sets N=N*, on the order of a few neurons. It
is hard to understand how both the capacity and duration
of STM can be explained by these other models, even as-

N=220,7Lpc<0.04

——
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FIG. 5. When N =220, modeling the number of neurons per minicolumn in the visual neocortex, then only clusters containing 2—4
up to 5-6 minima are found, consistent with visual STM. These minima are narrower, consistent with the sharpness required to store
visual patterns.
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suming they were or could be derived with realistic
synaptic interactions and correct statistical dynamics.

The statistical nature of this storage and processing
also explains the primacy versus recency effect: The
deepest minima of the Lagrangian are more likely ac-
cessed than the others of this probability distribution,
and these valleys are sharper than the others. IL.e., they
are more readily accessed and sustain their patterns
against fluctuations more accurately than the relatively
more shallow minima. The more recent memories or
newer patterns may be presumed to be those having
synaptic parameters more recently tuned and/or more
actively rehearsed. Thus, both the nonlinearities and the
statistical nature of this theory are tested by STM capaci-
ty. These insights have helped to correct the notions of
some experimentalists who claimed they could not find
this effect in the visual cortex: Their experimental para-
digms were testing the visual cortex using rules of audito-
ry capacity ( 7£2), and therefore they were washing out
this effect.

These calculations give experimental support to the
derivation of the mesoscopic probability distribution,
yielding similar algebraic structures of the threshold fac-
tors in Egs. (32) and (63), illustrating common forms of
interactions between their entities, i.e., neurons and
columns of neurons, respectively. The nonlinear thresh-
old factors are defined in terms of electrical-chemical
synaptic and neuronal parameters all lying within their
experimentally observed ranges.

2. STM calculation

Three cases of neuronal firings were considered [16].
Since STM duration is still long relative to 7, stationary
solutions of L, derived from L in Eq. (61), were investi-
gated to determine how many stable minima, <<M MO>>,
may simultaneously exist within this duration. Also, in-
dividual mesocolumns were studied. IL.e., ta}(% the uni-
form limit of M =0=VM®. Although the M =0 limit
should only be taken for the midpoint-discretized La-
grangian Ly, this is a small difference here [16].

A model of dominant inhibition describes how min-
icolumnar firings are suppressed by their neighboring
minicolumns. For example, this could be effected by
developing  nearest-neighbor (NN) mesocolumnar
interactions [15], but here the averaged effect is esta-
blished by inhibitory mesocolumns (IC) by setting
AL=Af =24E=0.01N */N. Since there appears to be

relatively little 7-I connectivity, set A}=0.0001N */N.
The background synaptic noise is taken to be
BF=B}=2BF=10B{=0.002N"/N. As minicolumns

are observed to have ~ 110 neurons (the visual cortex ap-
pears to have approximately twice this density) [59], and
as there appear to be a predominance of E over I neurons
[46], here take NE=80 and N'=30. Use N'/N=10°,
JG—O(absence of long-ranged interactions), and V% v,
and ¢% as estimated previously, ie., V9=10 mV,
]vG |=0.1 mV, $2=0.1 mV. The “threshold factors”
F for this IC model are then
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E_ 0.5M'—0.25M5+3.0
I 200 1M +0.05M%+9.80)!2 7 -
Pl 0.005M7—0.5M*—45.8
IcC ™

7/2(0.001M +0. 1ME+11.2)17%

In the prepoint-discretized deterministic limit, the
threshold factors determine when and how smoothly the

step functions” tanhF$% in g%(t) change MS(t) to
MS(t+0). Fi. will cause afferent M/ to fire for most of
its values, as MI —NItanhFIC will be positive for most
values of MY in F{., which is already weighted heavily
with a term -45.8. Looking at Fi, it is seen that the rela-
tively high positive values of efferent M require at least
moderate values of positive efferent ME to cause firings of
afferent M.

The calculations presented here support the contention
that the neocortex functions at multiple hierarchies.
While specific long-term memory (LTM) information is
most likely coded at the microscopic neuronal level, the
mesoscopic scale most likely provides the context for
multiple most-probable firing patterns, which process
STM and which facilitate plastic synaptic encoding of
LTM [15]. E.g., 7L can range from O to values greater
than 10° [14,15]. However, realistic constraints on STM
duration dictate that only values of 7L <0.04 are of in-
terest here. Detailed mesoscalar calculations demon-
strate that only this range exhibits sufficient nonlinear
structure to support STM phenomena.

It is discovered that more minima of L are created, or
“restored,” if the numerator of F¢ contains terms only in
MO, tending to center L about M“=0. Of course, any
mechanism producing more as well as deeper minima is
statistically favored. However, this particular ‘“center-
ing” mechanism has plausible support: M%t+7)=0 is
the state of afferent firing with highest statistical weight.
Ie., there are more combinations of neuronal ﬂrings,
o; —+l yleldmg this state than any other M%(¢t+7);
e. g . ~2Ne “/2(17NG)_1/2 relative to the states
MC%=+NC. Similarly, M %(¢) is the state of efferent
firing with highest statistical weight. Therefore, it is nat-
ural to explore mechanisms that favor common highly
weighted efferent and afferent firings in ranges consistent
with favorable firing threshold factors F¢~0. Another
effect of this gentermg mechanism apparently is to shift
minima of L closer together, permitting them to often
cooperate instead of compete.

Detailed calculations demonstrate that either L or L
separately typically give rise to more multiple minima,
~10, than permltted by their sum L at this resolution.
This ““loss” of minima apparently is an interesting conse-
quence of E-I competition at the mesoscopic scale. On
one hapd, since L scales as N°/N for relatively large
MC, L dominates due to the larger ME in 1ts mean g%
On the other hand, for relatively small M€, g€ %plcally
is small if there are several multiple minima in L , since
most of the mipima are found to cluster about the origin.
Therefore, L _scales as (N%)™! from the variances
(g96)"!,and L dominates for small M °.

The centering effect of the IC model of dominant inhi-
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bition, labeled here as the IC' model, is quite easy for the
neocortex to accommodate. For example, this can be ac-
complished simply by readjusting the synaptic back-
ground noise from Bf to B;C,
Ve—(LAF+BFWwENI—L AZvENE
v ,?N ¢

for both G=E and G=1I. This is modified straightfor-
wardly when regional influences from M*F are included,
as in in Eq. (63). In general, BS and Bf(and possibly Ag
and AF due to actions of neuromodulators, and Jg or
M*E constraints from long-ranged fibers) are available to
force the constant in the numerator to zero, giving the
constant in the numerator to zero, giving an extra
degree(s) of freedom to this mechanism. (If B;® would be
negative, this leads to unphysical results in the square-
root denominator of F¢. Here, in all examples where this
occurs, it is possible to instead find positive B,’G to ap-
propriately shift the numerator of F©.) In this context, it
is experimentally observed that the synaptic sensitivity of
neurons engaged in selective attention is altered, presum-
ably by the influence of chemical neuromodulators on
postsynaptic neurons [159].

By this centering mechanism, B J'EE =1.38 and
B'1=15.3, and F{ is transformed to F{,

Bif= (84)

0.5M'—0.25M%
71720 1M +0.05ME+10.4)172 ’

0.005M'—0.5ME
7172(0.001M+0. 1ME+20.4)! 2

Note that, aside from the enforced vanishing of the con-
stant terms in the numerators of F{, the only other
change in F{. relative to F{ is to moderately affect the
constant terms in the denominators. This increases the
number of minima of 7L;c to 4. The two minima
clustered close to the origin are no longer discernible for
rL1c >0.03.

The other “extreme” of normal neocortical firings is a
model of dominant excitation, effected by establishing ex-
citatory mesocolumns (EC) by using the same parameters
{BE,v&,08.,A4}} as in the IC model, but setting
Af=2A4%=24F=0.01N"/N. This yields

F{EC' =
(85)

) g
FIC'_

FE — 0.25M"'—0.5M"—24.5
BC 71720.05M7+0.10ME+12.3)1/2 €6
. 0.005M7—0.25M%—25.8

FL.= . ~ .
BC 172(0.001 M +0.05M E+7.24)1 72

The negative constant in the numerator of Fi inhibits
afferent M7 firings. Although there is also a negative
constant in the numerator of FE£. the increased
coefficient of M% (relative to its corresponding value in
F%), and the fact that M* can range up to N¥=80,
readily permits excitatory firings throughout most of the
range of M®. This permits three minima.

Applying the centering mechanism to EC, B;£=10.2
and B;/=8.62. The net effect in FZ., in addition to re-
moving the constant terms in the numerators of Fg, is to
change the constant terms in the denominators: 12.3 in
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FEc is changed to 17.2 in FEc, and 7.24 in Fk¢ is
changed to 12.4 in F£.. Now six prominent minima are
possible along a line through M %=0, and two others are
at M®=+NC. Each pair of minima above and below the
M'=0 axis merge into single minima for TLge >0.02,
and these lose resolution for 7L > 0.03.

Now it is natural to examine a balanced case inter-
mediate between IC and EC, labeled BC. This is accom-
plished by changing Af=AL= AF=0.005N"/N. This
yields

E _ 0.25M"'—0.25M%—4.50
BC 7172(0.050M £ +0.050M ' +8.30)1/2

0.005M7—0.25M%—25.8
7172(0.001M 74 0.050M E+7.24)172 ~

(87)

) -
Fpe=

Three minima are possible, on the boundaries of M¢
space.

Applying the centering mechanism to BC, B;¥=0.438
and B;'=8.62. The net effect in F§., in addition to re-
moving the constant terms in the numerators of F§, is to
change the constant terms in the denominators: 8.30 in
FE. is changed to 7.40 in FE., and 7.24 in Fie is
changed to 12.4 in Fi.. Now ten minima are possible.
The nine minima along the diagonal line lose resolution
for L >0.01 above M'=0 and for rLy > 0.02 below
M'=o.

The effects of using the full Feynman Lagrangian Ly
were considered, including all the Riemannian and other
nonlinear corrections, discussed below. The net effect is
to slightly raise the threshold at which minima dissipate,
to about 7Lpc >0.03, which is relevant for the duration
of STM, discussed subsequently. However, note that the
minima structure is essentially the same. (See Fig. 4.)

To demonstrate that multiple minima are not an effect
of nonlinearities induced by the denominators of F¢, the
net effect in Ly by dropping the M¢ terms in the
denominators of F§c is such that the valleys of minima
are only slightly increased. However, these denominators
are still important contributions derived from synaptic
interactions. E.g., even with the M terms dropped, the
denominators contribute factors of ~1/5 to F§c.

If N " is scaled larger or smaller, this effectively scales
A& =AG°N’/N and BE =Bj°N /N, disturbing the rel-
atively sensitive balance that permits a few percent of
efferent firings to affect their afferents. Then, the number
of possible minima is typically reduced to one or two. If
N is scaled larger or smaller, the number of minima is al-
tered and the duration of STM is affected, as discussed
subsequently. However, for N still in the range of a few
hundred, the number of possible minima is not severely
reduced. The case N =220, e.g., the visual cortex was
considered: For model BC’, the number of prominent
minima found is 11, but they form clusters, with higher
peaks between clusters than between minima within a
cluster. Note that the larger N sharpens the minima and
therefore the resolution of visual information processing.
(See Fig. 5.)

Note that the sharpness of the tanhF¢ step-function
contribution to the mean firing is sensitive to a factor of
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N2 in FC.
tween mesocolumns scales as N3/2. Thus the neuronal
size of mesocolumns directly affects the breadth and
depth of the information processing capability of the neo-
cortex. It is interesting to note that the human visual
cortex, which may be assumed to require the finest tuning
in the neocortex, is unique in having twice the number of
neurons per minicolumn than other regions of the neo-
cortex [59].

These results are unchanged qualitatively for modest
changes of any neocortical parameters. However, it is
reasonable to conjecture that more drastic abnormal
changes in the neocortical parameters might severely
reduce the number of minima. This conjecture is based
on calculations wherein F do not possess the relatively
sensitive balances allowing a few percent of efferent neu-
rons to control firings in their afferent neurons. In calcu-
lations using these unrealistic or abnormal parameters
only one or two minima survive.

Additionally, the strength of coupling be-

3. STM stability and duration

The calculation of stability and time of duration in
most likely states of firing starts by using the differential-
equation Hamiltonian formulation of the path-integral
Lagrangian, called the Fokker-Planck equation. For fu-
ture reference, when EEG’s are discussed below in the
context of considering a given local minimum, note that
the time-dependent differential macroscopic probability
distribution ﬁ=HrP, or “propagator,” is found to satis-
fy a true Fokker-Planck equation, but one with nonlinear
drifts and diffusions in the space of E and I firings. The
Fokker-Planck equation for the region € is

—NQ_lder[ GGP __(gG'P)’ NL//I’_‘-,‘] ,
() :_8(_"___) (88)
YT aM©

The true Fokker-Planck equation is actually more gen-
eral, e.g., if long-ranged spatial structures are included,
where the independent variables M are fields, which
themselves may depend on space and time coordinates.
The above equation is derived in the nearest-neighbor ap-
proximation from the general equation using functional
derivatives [16],

a(...) 8(...)

—

MG G
8? ) oM (89)
W=( . ),G“Vi( .. ),V,.G+sz( . ),VfG ,

where we have used the compacted notation introduced
previously [16].

An estimate of a stationary solution P, to the
Fokker-Planck differential equation for the probability
distribution P of M© firings for an uncoupled meso-
column, i.e., ¥'=0, is given by the stationary limit of the
short-time propagator,
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where N, and C are constant factors. An estimate of
the approximation made is estimated by seeking values of
constants C, such that the stationary Fokker-Planck
equatlon is satisfied exactly. Contour plots of C versus
M€ demonstrate that there exists real positive C which
may only range from ~ 107! to ~1, for which there ex-
ists unbroken contours of C which pass through or at
least border the line of minima [18]. At each point MC,
this leaves a quadratic equation for C to be solved. Drop-
ping the g ! factor results in C not being real throughout
the domain of M ©.

Thus we have defined a solution with potential
N’L= [ A dM, drift A, and diffusion N /7. Stability of
transient solutions, defined for 8M ¢ about a stationary
state by

MO~ — A ;8MS=—N’L ;:8MFC, 91)

is therefore equivalent to <<M >> being a minimum of
L.

Since the minima of the Lagrangian lie deep in a valley
along a line, the time for first passage, t,,, is estimated in
analogy to a one-dimensional system as [156]

tyy=TN *[|L g( <<M>>,)| L g6:( <M >> )] 12

Xexp{CNT[L(<<M>>,)—L(<<M>> )1}, (92)

where <<M >>, is the minimum at the valley of L in
question, and <<M >> p is the maximum at a peak
separating two minima. These equations are reasonable
but crude estimates, and future numerical work must be
done to detail the extent of their validity.

The exponential factor can be quite large in some in-
stances, and quite small in others. As noted previously
[15], differences in L from valleys to peaks are still large
relative to the Riemannian correction terms and relative
to differential spatial-temporal contributions, thereby
permitting this simpler analysis. However, values of 7L
at maxima separating the far minima may be greater than
1, thereby yielding a very large ¢,,, typical of many physi-
cal systems undergoing hysteresis [15]. Relaxation times
t, about this stationary state are estimated by |g Gi_‘
[156] and are on the order of 7.

For changes AZ in synaptic parameters
Z={ A;;(,Bj’;(, Vj,vjk,qﬁjk,N*G} that transpire within a At
of several tenths of a second to seconds, e.g., during typi-
cal attention spans, hysteresis is more probable than sim-
ple jumps between minima if the following inequalities
are satisfied. These estimates necessarily require more
details of the system in addition to ¢, and ¢,, [156]:

- -1
t, At N*°AL ¢

93
AZ (93)

_1 —
N AZ N'rtUpAL
2 7 A ‘ AZ

For AZ approximately corresponding to a significant in-
crease in the synaptic efficacy of one neuron per min-
icolumn, this typically leads to
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where the last inequality may or may not hold, depending
on the value of 7,,.

Therefore, it is possible for hysteresis to be highly more
probable than simple jump behavior to another firing
state. This provides a mechanism whereby an extended
temporal firing pattern of information can be processed
beyond the time scale of relaxation periods, e.g., rever-
beration among several local minima. It is to be expected
that the effects of J;(r;¢) on AZ(r;t) create more com-
plex examples of spatial-temporal hysteresis. These sus-
taining mechanisms may serve to permit other biochemi-
cal processes to store information for longer time periods
as stable synaptic modifications, e.g., LTM. As detailed
previously [15], changes in synaptic parameters AZ may
duplicate the effects of J;, providing a mechanism where-
by columnar firings encode long-range firing constraints.
If this encoding of firing patterns can establish itself on
short enough time scales, then columnar coding of long-
range firings could be a precursor mechanism initiating
the centering mechanism above, especially across large
regions of the neocortex. Then, there would be a more
uniform gradation of mechanism(s) establishing STM and
LTM.

However, to address the issue of limited capacity of
STM, it is reasonable to require that within time spans of
tenths of a second to tens of seconds, simple jumps
among minima are more probable than hysteresis. This
permits all minima to be readily accessible during STM
duration, in any ordering [149], at least more so than if
hysteresis were more probable. In agreement with this
empirical requirement, as detailed in the previous studies,
it is found that +[L(<<M >>p)—I;( <M >> )]
~0.01—0.03 for these models using empirical values for
synaptic parameters.  Then for ITI_:GG, [~1073,
ty, ~ 107—1007, on the order of several tenths of a second
to a second. Use of the full Feynman Lagrangian L in-
creases t,, slightly. For these relatively short ¢,, the
second inequality above is violated, and simple jumps are
more probable than hysteresis, as required for STM.

Under conditions of serial processing, the deeper val-
leys of L representing the more likely firing states will be
occupied first. In all cases considered here, some valleys
are deeper than the others. This implies that the last
several items in STM should be harder to encode (learn)
and retain, with the possible exception of the last one or
two items, which represent the most recent shifting of
firing patterns M€ to these minima <<M >>, of L.
These conclusions are consistent with empirical observa-
tions, and are obtained independent of any other rehear-
sal mechanisms that may exist.

Calculations in these models establish that the prefac-
tor most often is ~ 7. However, points close to the
corners 1\7IG=i(NE,NI) have much more rapid varia-
tions. Therefore, minima at these corners, even when
TL(<<M >>,)~0.01—0.03, because of their sharp
peaks, typically have ¢,, on the order of tens of seconds
to jump to minima clustered on the diagonal. This is
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within the range where hysteresis is more probable for
these minima. Therefore, minima at the corners of M ¢
space most likely do not contribute to STM, bringing the
number of available minima down to 7%2 as empirically
observed.

B. EEG dispersion relations

1. General description

Linear expansions about specific extrema, specified by
the Euler-Lagrange variational equations, permit the de-
velopment of stability analyses and dispersion relations in
frequency-wave-number space [14,15,17]. Of course,
such linear expansions are justified only after the non-
linear problem, e.g., such as that encountered for STM, is
solved for locations of minima. It is noted in this regard
that the corresponding wave propagation velocities pace
interactions over several minicolumns, in order to be of
magnitude sufficient to permit simultaneous information
processing within ~ 10~ ! sec with interactions mediated
by long-ranged fibers possessing much greater propaga-
tion velocities ~600-900 cm/sec [17]. E.g., detailed au-
ditory and visual processing can feed information to the
association cortex where it can be processed simultane-
ously, possibly giving feedback to the primary sensory re-
gions. The propagation velocities calculated by SMNI,
~1 cm/sec, also are consistent with observed movements
of attention [160] and of hallucinations [161] across the
visual field. This strongly suggests that nearest-neighbor
mesocolumnar interactions as developed here are an im-
portant mechanism in these movements. These velocities
scale strongly with the values of M % minima, increasing
with their distance from M%~0, the range of maximal
firing combinations. This effect remains to be further in-
vestigated; the appropriate calculations should test the
nearest-neighbor spatial dependence of the SMNTI theory.

These mesoscopic dispersion relations also are con-
sistent with global macroscopic dispersion relations de-
rived and fitted to EEG data [46], yielding oscillatory
solutions consistent with the a rhythm, ie., o=10?
sec” !, equivalent to v=w/(27)=16 cps (Hz). This sug-
gests that these complementary local and global theories
may be confluent, considered as a joint set of dispersion
relations evolving from the deterministic limit of a joint
Lagrangian, referred to as the “equations of motion,” but
linearly simplified in neighborhoods of minima of the sta-
tionary Lagrangian.

Other researchers have developed quite different ap-
proaches to investigating macroscopic neocortical activi-
ty, e.g., stressing that systematics of rhythmic EEG (a
rhythm, sleep 8, etc.) can be modeled by resonant modes
of macroscopic dipole-layered firing patterns of the neo-
cortex [46,48,49,52]. These resonances, in linearized cou-
pled excitatory-inhibitory spatial-temporal integral equa-
tions describing dipole-layered sources, give rise to a
macroscopic dispersion relation relating firing frequen-
cies to spatial wave vectors, consistent with experimental
observations. While many other investigators also accept
dipole layers to model EEG activity, at least to the extent
of recognizing activity perpendicular to laminae, they
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also demonstrate that there are respectable candidates for
mechanisms that might fundamentally be responsible for
macroscopic activity, other than those proposed here
which detail synaptic dynamics of mesocolumnar interac-
tions [162, 163,11,164—-167]. For example, given the
present lack of experimental knowledge, it is possible to
formulate macroscopic neocortical activity in terms of
statistics of either membrane or synaptic microscopic
neuronal activities, albeit that these two are obviously
dependent on each other [168]. Therefore, the results of
this statistical theory derived earlier [17] might be inter-
preted either as suggesting that mesocolumnar activity
instigates macroscopic activity, or rather as suggesting
that mesocolumnar activity strongly interacts with ongo-
ing macroscopic activity that is instigated or sustained by
other mechanisms.

The two approaches outlined above, i.e., local meso-
columnar versus global nonmesocolumnar, give rise to
the important alternative conjectures suggested previous-
ly in this paper. Other studies also have proposed that
EEG may be due to a combination of short-ranged and
long-ranged interactions, which combine to form a single
dispersion relation with multiple branches [44].

It is plausible that studies of the origin of rhythmic
EEG will give direct insight into related mechanisms un-
derlying evoked potentials. However, in contrast to the a
rhythm and other gross EEG phenomena being gauges of
general alertness to process information, the time-locked
averaged evoked potentials appear to be a gauge of more
selective attention to information being processed.
Therefore, to derive a plausible picture of the nature of
evoked potentials, it is more likely that more details of lo-
cal interaction among columnar interactions must be in-
cluded, such as those given below.

The first SMNI approach to scalp EEG assumed that
the Euler-Lagrange variational limit of the stochastic La-
grangian was a suitable averaging procedure over masses
of neurons contributing to this relatively coarse spatial
phenomenon [17].

It should be noted that at this point in the development
of our ‘bottom-up” description we have overlapped with
our initial “top-down” description as described in Sec. II,
and therefore have provided a relatively first-principles
approach to better understand these issues. We also
show that most likely trajectories of the meso-
scopic probability distribution, representing averages
over columnar domains, give a description of the sys-
tematics of macroscopic EEG in accordance with experi-
mental observations.

2. Euler-Lagrange variational equations

This calculation begins by considering the Lagrangian
L, the Feynman midpoint-discretized Lagrangian. The
Euler-Lagrange variational equation associated with L
leads to a set of 12 coupled first-order differential equa-
tions, with coefficients nonlinear in M, in the 12 vari-
ables (MO M% MC® VMC® V*MC®) in (r;t) space. In the
neighborhood of extrema <<M 9> L F can be expanded
as a Ginzburg-Landau polynomial, i.e., in powers of ME
and M!. To investigate first-order linear oscillatory
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states, only powers up to 2 in each variable are kept, and
from this the variational principle leads to a relatively
simple set of coupled linear differential equations with
constant coefficients:

0=8Lp=Lyp 3, —8cLp
.. |G| oo
~—filoM +feM° —gig VM
+higM'¥+b M, GT#G

(o) =) gaME+ () oM, (95)

MO=M%— <«<M®> , fi=—fl=f.

These equations are then Fourier transformed and the
resulting dispersion relation is examined to determine for
which values of the synaptic parameters and of the nor-
malized wave number &, the conjugate variable to 7, can
oscillatory states, w(£), persist. E.g., solutions are sought
of the form B

A_lG———Rerscexp[——i(gr——wt)] ,
(96)

MS (r,)= [ d%do Mg, (&o)expli(g-r—ot)] .

For instance, a typical example is specified by extrinsic
sources Jp;=—2.63 and J;=4.94, NE=125, N'=25,
Ve=10 mV, Ag=1.75, Af=1.25, BE =0.25, and
Ugr = g,=0.1 mV. The synaptic parameters are within
observed ranges [72], and the J;’s are just those values
required to solve the Euler-Lagrange equations at the
selected values of M® The global minimum is at
M¥E=25 and M"=5. This set of conditions yields (disper-
sive) dispersion relations

or=%{—1.86+2.38(£p)% —1.25i +1.51i(€p)?} , (97

where £=|£[. The propagation velocity defined by
dw/d§ is ~1 cm/sec, taking typical wave numbers & to
correspond to macrocolumnar distances ~ 30p. Calcu-
lated frequencies w are on the order of EEG frequencies
~ 10% sec™!, equivalent to v=w/(27)= 16 cps (Hz).
These mesoscopic propagation velocities permit process-
ing over several minicolumns ~ 10~! cm, simultaneous
with the processing of mesoscopic interactions over tens
of centimeters via association fibers with propagation ve-
locities ~600-900 cm/sec. lL.e., both intraregional and
interregional information processing can occur within ~
107! sec. Note that this propagation velocity is not
“slow”: Visual selective attention moves at ~8 msec/deg
[160], which is ~1 mm/sec, if a macrocolumn of ~mm?
is assumed to span 180°. This suggests that nearest-
neighbor interactions play some part in disengaging and
orienting selective attention.

C. Calculating synaptic modifications

Perturbations of the synaptic and neuronal parameters
used in SMNI present an approach to the discussion of
plastic synaptic modifications. These changes are associ-
ated with new firing minima and their associated sets of
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eigenfunctions, related to learning new sets of informa-
tion. This is especially true during development of
synaptic formation, at a rate determined by successive
small increments of these perturbations. Changes in the
coefficients of gradient couplings also represent shifts in
oscillatory states and in the degree of interaction between
columnar firings.

To further clarify this methodology, an explicit calcu-
lation is given, demonstrating how a small increment of
extrinsically imposed firing activity can be learned and
stored as plastic synaptic modifications. Moderate
changes in efficacies of even one neuron per mesocolumn
give rise to moderate changes in macroscopic activity;
therefore, macroscopic measurements can, in this theory,
be sensitive to some microscopic details of neocortical in-
teractions. Although most researchers believe that long-
term potentiation (LTP) at synaptic sites is responsible
for long-term memory (LTM) phenomena, they still are
not as certain whether these changes take place predom-
inantly at the presynaptic or postsynaptic sites [169].
Therefore, the SMNI study described below [15], looking
at induced mesocolumnar effects from these alternative
mechanisms, is still relevant.

Consider the change in probability of firing of neuron
J» Po associated with modifications of the neuronal pa-

rameters. Changes can occur in some parameters Z,
where

ZE{ A}, Bj,vpdu ) (98)
which lead to

AZE{AA;,AB], vy, Ady ) . (99)

Now consider changes AZ in these parameters Z that
can be independent or proportional to the (repeated)
firing of neuron(s) postsynaptically (j) or presynaptically
(k).

AZZAZI+O'kAZZ+O'kO'JAZ3+U]AZ4 . (100)

AL=AFSQ2NC°N7)" Y [(N9?+(+M®+M°)?1sinh(2F %)+ 2N % (+M  + M ®)cosh(2F®)} —A A &, a-A
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All these AZ effects collect to modify the threshold factor
F; derived for unit microscopic neuronal firing,

oF
9Zj1,2,3,4

(101)
AFjy534= AZj1 53,4 -
To order AF; ; 3 4, so that the normalization of probabil-
ity p, +p_ =11is preserved, Po, is modified as

’

_ exp(o ;F;")
po’j'—)paj eprjlr:+exp(_Fjlll) ’

F;"=F;+AF; +AF,,+(AF;+ AF;,)tanhF,
F,"'=F;+AF;,+AF,,+AF;;+AF,, .

(102)

(This form of p. corrects that given in a previous paper
J

[15], changing the sign of the tanh term and removing
this factor in F;"”, thereby insuring that probability is
conserved to order AZ.)

Thus, the change in response of a single neuron associ-
ated with its synaptic modifications is a highly nonlinear
function of the synaptic parameters {Z,AZ}. Nonlinear-
ities persist even after mesocolumnar averaging, but then,
because of the derived variational principle, explicit cal-
culations can be performed to portray most-probable
changes in patterns of columnar firings associated with
changes in the Lagrangian:

oL
Ly—Lp+ALp~Lp+ S, z. (103)

—FA
S oZ
To emphasize the point that linear-response models of
neuronal activity should be scrutinized with respect to
the underlying biophysics and mathematics, which they
are assuming to be linear, the following equation is shown
to represent the first-order change in L associated with
modifications of only the columnar averaged efficacies
A, where sums are to taken only over G’ terms:

AFC=—QF$) 'AA& 0§ M+ N +m(v8*+¢E MY +N)FO/(2F])] ,

FS=[m(w&*+ ¢S AEM /2+alNCS)])' 2,
AAS=AA8 +AA8,+(AAE;+A A8, )tanhFC .

Examining A A&, it is clear that even after mesocolum-
nar averaging, groups of synaptic modifications depen-
dent on postsynaptic firings can be discerned from groups
of modifications independent of this activity, by the addi-

tional tanhF € factor. However, since
o (1+o,)=1+0, , (105)

mesocolumnar averaging washes out discrimination of

"G
G’ '
§— (pPVM )2,
4
(104)

AA§, ; from AAE, , unless these possess additional dis-
tinguishing functional features. Similar calculations are
proposed to further investigate phenomena as encoun-
tered in habituation [170].

For instance, a system considered was N E=125,
N'=25, ¥6=10 mV, A4§=1.25, Af=1.75, B =0.25,
v& =¢% =0.1 mV, and J; =0(no long-ranged connectivi-
ty) [15]. This system was synaptically modified about its
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most probable firing state by A 4 £, = —0.01tanhFS, e.g.,
numerically equivalent to a substantial change in A4 of
one E neuron per mesocolumn in a region. Then, the
change in the uniform Lagrangian was

TAL ~—4.87X1074+3.99X 10 9 ME— < ME>>)
(106)

The shifts in the most-probable firing state <<M ¢>> as-
sociated with this synaptic modification are observed to
be algebraically equivalent, within a constant increment
to L, to those that could also have been caused by extrin-
sic stimulations measured by Jg /(27N )=3.99 X 10~ ° and
J;/(2rN)=—9.80X 1075, This shifts <<M%>> and L,
(<ME>>, <<M!'>,L)

—9.80X 103 (MI— <M'>>) .

(89.02,23.14;1.59X 1073)

—(89.20,23.19; —3.25X107%) . (107
Changes in the coefficients of spatial derivatives
(VME?||(VMT)?] are
[—5.33X1075||9.65X 10™4]
—[—5.72X107°%|9.65X107*] . (108)

Changes in the coefficients of temporal derivatives
[(ME2(MT)2:MEMT] are

[4.81X107°:1.09 X 1073::5.38 X 10" % —6.14 X 10~ %]
—[4.82X107%:1.10X 1073::5.43X 10" % —5.28 X 10 4] .
(109)
From the Euler-Lagrange equations, wr is shifted,
+{0.392i —1.68i(£p)%1.01i —0.541i(£p)?)
— £{0.396/ —1.79i(£p)*1.01i —0.550i(£p)?} .
(110)

These numerical estimates suggest that the sensitivity of
mesocolumnar statistics to microscopic dynamics barely
might be within the present range of experimental deter-
mination, e.g., to changes induced by small clusters of
neurons. This calculation also represents an explicit
demonstration of how extrinsic constraints on firing pat-
terns can be learned and coded by plastic synaptic
modifications. In general, there exist (a set of) synaptic
modifications AZ(r;¢') that reproduce the most probable
firing states <<M(¢')>> induced by J;(r;t').

Given the above, a precise scenario of neocortical in-
formation processing is thereby detailed, from coding of
long-ranged firings from stimuli external to a macro-
column by short-ranged mesocolumnar firings, to STM
storage via hysteresis, and to LTM storage via plastic de-
formation [15]. This scenario enables SMNI to place
some statistical bounds on such mechanisms. For exam-
ple, as calculated in detail, some STM items can be held
for long enough epochs via hysteresis [15,16], from which
plastic synaptic changes can be used to store these in
LTM [15]. In contrast to the appearance of multiple
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minima in the interior of M ¢ space under conditions of
realistic but sensitive adjustment of synaptic interactions,
which are candidates for multiple STM [16], typically one
or at most a few minima appear at the corners of M¢
space. This typically occurs when the system likely has
minima outside the physical boundary. These boundary
states correspond to all G neurons collectively firing or
not firing [15]. When these corner minima are present,
they are typically much deeper than those found for the
interior minima, corresponding to longer-lived states
with properties of hysteresis rather than simple jumps.
These corner minima are therefore candidates for LTM
phenomena. Similar properties of corner minima in
simpler models of the neocortex have been shown to
satisfy properties desirable for multistable perception and
for collective computational properties [171].

V. DIRECT FIT OF SMNI TO EEG
A. Data collection

The project uses the collection of EEG spontaneous
and averaged evoked potential (AEP) data from a mul-
tielectrode array under a variety of conditions. We are
fitting data being collected at several centers in the Unit-
ed States, sponsored by the National Institute on Alcohol
Abuse and Alcoholism (NIAAA) project [172,173].
Another paper to appear in the neuroscience literature
will address issues of neuroscientific and clinical import.
These experiments, performed on carefully selected sets
of subjects, suggest a genetic predisposition to alcoholism
that is strongly correlated to EEG AEP responses to pat-
terned targets.

For the purposes of this paper, it suffices to explain
that we fit data obtained from 19 electrode sites on each
of 49 subjects, of which 25 are considered to be high risk
with respect to a propensity to alcoholism, and 24 are
considered to be low risk. Each subject participated in
EEG-monitored pattern-matching tasks. The time epoch
during which the P300 EP exists was extracted (the P300
EP is named for its appearance over 300 msec after an
appropriate stimulus), yielding 191 time epochs of 5.2
msec for each of the above circumstances. Each set of
192 pieces of data is obtained by having the subject per-
form similar pattern-matching tasks, e.g., about 100 such
tasks, time-locking the EEG responses to the initiation of
the task, and averaging over the set of tasks for each time
epoch.

B. Algebraic development

We take Eq. (10) as the basic probability distribution to
fit this data. This can be developed straightforwardly us-
ing 8(Z), given in Eq. (23), and P[MC%(t+7)|M%1)],
given in Eq. (41).

Alternately, advantage can be taken of the prepoint
discretization. We also take advantage of and extend the
results gained for the STM analysis discussed previously.
Accordingly, we assume a linear relationship (about mini-
ma to be fit to data) between the M € firing states and the
measured scalp potential ®,, at a given electrode site v
representing a macroscopic region of neuronal activity:
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&, —p=aME+bM! (111)
where {¢,a,b} are constants determined for each elec-
trode site. In the prepoint discretization, the postpoint
M %(t + At) moments are given by

m=<®,—¢>=a<ME>+b<M'>
=ag®+bg’,

112
ol=<(®,—¢)> — <D, —p>2=a%gFE+p2gl a2
where the M %space drifts g€ and diffusions g% have
been derived above. Note that the macroscopic drifts
and diffusions of the ®’s are simply linearly related to the
mesoscopic drifts and diffusions of the M ®s. For the
prepoint M Y(t) firings, we assume the same linear rela-
tionship in terms of {¢,a,b}.

The data we are fitting are consistent with invoking the
“centering” mechanism discussed above. Therefore, for
the prepoint M%(t) firings, we also take advantage of the
parabolic trough derived for the STM Lagrangian, and
take

Mit)=cM¥E) , (113)

where the slope c is determined for each electrode site.
This permits a complete transformation from M vari-
ables to ¢ variables.

Similarly, as appearing in the modified threshold factor
F¢ given in Eq. (63), each regional influence from elec-
trode site p acting at electrode site v, given by afferent
firings M*£, is taken as

MIE

w—v

(114)

=dMi(t—T, ),
where d,, are constants to be fitted at each electrode site,
and T, _,, is the delay time estimated for interelectrode
signal propagation, based on current anatomical
knowledge of the neocortex and of velocities of propaga-
tion of action potentials of long-ranged fibers, typically
on the order of one to several multiples of 7= 5 msec.
Some terms in which d directly affects the shifts of synap-
tic parameters BJ when calculating the centering mecha-
nism also contain long-ranged efficacies (inverse conduc-
tivities) B~ Therefore, the latter were kept fixed with
the other electrical-chemical synaptic parameters during
these fits. In future fits, we will experiment taking the T°s
as parameters.

This defines the conditional probability distribution for
the measured scalp potential @,

P[D(t+A)|D(2)]= exp(—L At),

(2mro’Ar)'?
(115)

L(<'I>V*m)2 ,

L =
202

v
where m and o have been derived just above. As dis-
cussed above in defining macroscopic regions, the proba-
bility distribution for all electrodes is taken to be the
product of all these distributions:

P=I[|P,, L=3L,. (116)
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Note that we are also strongly invoking the current be-
lief in the dipole or nonlinear-string model. The model
SMNI, as derived for P[M%t+Az)|M%()], is for a
macrocolumnar-averaged minicolumn; hence we expect it
to be a reasonable approximation to represent a macro-
column, scaled to its contribution to ®,. Hence we use L
to represent this macroscopic regional Lagrangian, scaled
from its mesoscopic mesocolumnar counterpart L. How-
ever, the above expression for P, uses the dipole assump-
tion to also use this expression to represent several to
many macrocolumns present in a region under an elec-
trode: A macrocolumn has a spatial extent of about a mil-
limeter. A scalp electrode has been shown just recently,
under extremely favorable circumstances, to have a reso-
lution as small as several millimeters, directly competing
with the spatial resolution attributed to magnetoen-
cephalography; often most data represent a resolution
more on the order of up to several centimeters, many ma-
crocolumns. Still, it is often argued that typically only
several macrocolumns firing coherently account for the
electric potentials measured by one scalp electrode [51].
Then, we are testing this model to see if the potential will
scale to a representative macrocolumn. The results
presented here seem to confirm that this approximation is
in fact quite reasonable.

As noted in a previous SMNI paper [16], the structure
of STM survives an approximation setting M =0 in the
denominator of FY after applying the “centering” mech-
anism. To speed up the fitting of data in this first study,
this approximation was used here as well.

The resolution of this model is certainly consistent
with the resolution of the data. For example, for the non-
visual neocortex, taking the extreme of permitting only
unit changes in M ¢ firings, it seems reasonable to always
be able to map the observed electric potential values ¢
from a given electrode onto a mesh a fraction of
4NENT=~10%

C. Numerical methodology

Coarse statistical fits first identify major correlated
electrode sites within each class of behavioral activity.
Then, the macrocolumnar-averaged synaptic parameters
in the nonlinear string model, including long-ranged in-
teractions between these electrode locations, are fit to the
EEG data within in each class using methods of simulat-
ed annealing [58]. Recently, two major computer codes
have been developed, which are key tools for the use of
this approach.

The first code, very fast simulated reannealing (VFSR)
[58], fits short-time probability distributions to observed
data, using a maximum likelihood technique on the
“effective” Lagrangian (including the exponential prefac-
tor). This algorithm has been developed to fit observed
data to a large class of theoretical cost functions over a
D-dimensional parameter space [58], adapting for varying
sensitivities of parameters during the fit. The annealing
schedule for the “temperatures” (artificial fluctuation pa-
rameters) T; decrease exponentially in “time” (cycle
number of iterative process) k, i.e., T; = T;pexp( —c;k 1/P).

Heuristic arguments have been developed to demon-
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strate that this algorithm is faster than the fast Cauchy
annealing [174], T;=T,/k, and much faster than
Boltzmann annealing [175], T;,=T,/Ink. To be more
specific, the k th estimate of parameter o/,

a,€[A4,,B,], (117)

is used with the random variable x’ to get the (k +1)th
estimate,

ay 1 =ak+xi(B,—4;), x'e[—1,1]. (118)
The generating function is defined as
=11 !
x)= -
&r ,-I=Il 2Wn(1+1/T)(|x|+T;)
D . .
=11Is&r(x"),
i=1
(119)
T;=Texp(—c;k'/P) .
The cost function C, used here, is defined by
C=Ldt+1In(27dt)—1In(g) , (120)

where the Lagrangian L and the determinant of the
metric g have been defined previously.
The second code develops the long-time probability

|

P (t+At)=T,(At)P;(¢),

M, +AM, /2

) M, +AM, /2
_ dM
AM; _+AM, fM,“AMiH/Z

J

T;(An)= M;—AM,;

T;; is a banded matrix representing the Gaussian nature
of the short-time probability centered about the (varying)
drift.

This histogram procedure has been extended to two di-
mensions, i.e., using a matrix Ty, [36]. Explicit depen-
dence of L on time ¢ also can be included without compli-
cations. We have recently extended it to an arbitrary
number of dimensions, but care must be used in develop-
ing the mesh in AMY which is dependent on the
diffusion matrix. Presently, this constrains the depen-
dence of the covariance of each variable to be a (non-
linear) function of that variable, in order to present a
straightforward rectangular underlying mesh.

Since integration is inherently a smoothing process
[42], fitting data with the short-time probability distribu-
tion, effectively using an integral over this epoch, permits
the use of coarser meshes than the corresponding sto-
chastic differential equation. For example, the coarser
resolution is appropriate, typically required, for numeri-
cal solution of the time-dependent path integral. Similar
to the discussion above for STM, by considering the con-
tributions to the first and second moments of A® for
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distribution from the Lagrangian fit by the first code. A
robust and accurate histogram-based (non—Monte Carlo)
path-integral algorithm to calculate the long-time proba-
bility distribution has been developed to handle nonlinear
Lagrangians [123-125], which was extended to two-
dimensional problems [36].

The histogram procedure recognizes that the distribu-
tion can be numerically approximated to a high degree of
accuracy as sum of rectangles at points M; of height P,
and width AM;. For convenience, just consider a one-
dimensional system. The above path-integral representa-
tion can be rewritten, for each of its intermediate in-
tegrals, as

P(M;t+At)= [dM'[g}/*(2wAt) ™ %exp(— L At)]
XP(M’;t)

= [ dM'G(M,M";At)P(M';t)

N
P(M;t)=277'(M_M,)P,(t) ’

i=1

(121)

1, (M;—1AM,;_ )<M<(M,+1AM,)

m(M—M,;)= 0, otherwise.

This yields

(122)

/ZdM’G(M,M’;At) .

small time slices 6, conditions on the time and variable
meshes can be derived [123]. The time slice essentially
is determined by 6 =< Ijvfl, where Lv is the uni-
form electric-potential Lagrangian, with d®/dt=0,
throughout the ranges of ® giving the most important
contributions to the probability distribution P. Thus, 0 is
roughly measured by the diffusion divided by the square
of the drift. Here, an upper bound can be calculated by
looking at the averages over all time epochs of the drifts
and diffusions under each electrode, yielding a mean ratio
typically on the order of 1 to 10. The 5.2-msec sampling
rate of our data is certainly less than this 6. This might
seem to be too fine a temporal mesh for purposes of doing
the path integral, but that calculation would have to
weigh heavily the most likely trajectories, not a mean
over observed averaged EP data.

The boundary conditions for the mesocolumnar proba-
bility distribution are reflecting at the four walls
confining —N°<MC®=<NC This methodology readily
permits such inclusion in its numerical implementation
and we have performed such calculations in other sys-
tems using the method of images [12], which has proven
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to be about as accurate as boundary element methods for
the systems investigated [36]. These also can be incor-
porated into the cost function being fit, but since we have
invoked the centering mechanism, favoring interior mini-
ma, and to increase the speed of our runs, we did not put
the boundary conditions into the fits reported below.

D. Present results

For this first study, we used some current knowledge of
the P300 EP phenomena to limit ourselves to just five
electrodes per subject, corresponding to hypothesized fast
and slow components of P300. The first component ap-
pears to be generated along the brain midline, from fron-
tal (Fz) to central (Cz) to parietal (Pz) areas; a delay time
of one 5.2-msec epoch was assumed for each relay. The
slow component appears to be generated from Pz,
branching out to lateral areas P3 and P4; a delay time of
two 5.2-msec epochs was assumed for each branch. Since
P300 has such a quite broad rise, peak, and decay over a
large fraction of a second, regional delays are not expect-
ed to be very important here. Data currently being col-
lected on more stringent time-locked STM tasks are ex-
pected to provide stronger tests of the importance of such
delays. Furthermore, the relative lack of sensitivity of fits
to such delays here suggests that volume conductance
effects are large in these data, and Laplacian techniques
to localize EEG activities are required to get more
electrode-specific sensitivity to such delays. However,
the main emphasis here is to determine whether SMNI is
consistent with EEG data collected under conditions of
selective attention, and these results appear to be quite
strong.

The P300 EP, so named because of its appearance over
300 msec after an appropriate stimulus, has been demon-
strated to be negatively correlated (reduction in ampli-
tude and delay) with a number of psychiatric diseases,
e.g., schizophrenia and depression, and typically is most
active at sites Pz, P3 and P4 [176]. Here, the suggestion
is that there also is some correlation with some precursor
activity at Fz and Cz.

Thus, in this paper we are reporting fits to 46550
pieces of data. As described above in the section
deriving P[®(t+At)|d(t)], we have four parameters
at site Fz, corresponding to coefficients {é,a,b,c};
five parameters at Cz, {¢,a,b,c,dp, ,c,}; five
parameters at Pz, {¢,a,b,c,d, ,p,}; five parameters at
P3, {¢,a,b,c,dp, ,p3}; and five parameters at P4,
{@#,a,b,c,dp, ,ps}. This represents a 24-parameter fit for
950 points of data (each electrode offset by two points to
account for delays) for each of 49 subjects.

The VFSR runs took several CPU hours each on a per-
sonal Sun SPARCstation 2 (28.5 MIPS, 21 SPECmarks)
running under GNU g+ +, a C+ + compiler developed
under the GNU project at the Massachusetts Institute of
Technology, which proved to yield faster runs than using
Sun’s bundled non-ANSI C, depending on how efficiently
the simulated annealing run could sense its way out of lo-
cal minima. Runs were executed for inclusion of delays
between electrodes, as discussed above. All runs reported
here were completed in approximately 400 CPU hours.
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Typically, at least one- to three-significant-figure con-
sistencies between finer resolution runs per parameter
were obtained by exiting the global simulated annealing
runs after either two sets of 100 acceptances or 20 000 tri-
als led to the same best estimate of the global minima.
Each trial typically represented a factor of 3 to 5 other
generated sets of randomly selected parameters, which
did not satisfy the physical constraints on the electrode
sets of {MC}, {M*E} and the centering mechanism
(which required calculation of new synaptic parameters
{B&} for each new set of regional connectivity parame-
ters {d}). Some efficiency was gained by using the means
and extremes of the observed electric potentials as a
guide for the ranges of the sets of intercept parameters
().

Then, several more significant-figure accuracy was ob-
tained by shunting the code to a local fitting procedure,
the Broyden-Fletcher-Goldfarb-Shanno (BFGS) algo-
rithm [177], where it either exited naturally or was force-
fully exited, saving the lowest cost function to date, after
exceeding a limit of 1000 function calls. The local BFGS
runs enforced the above physical constraints by adding
penalties to the cost functions calculated with trial pa-
rameters, proportional to the distance out of range.

These sets of EEG data were obtained from subjects
while they were reacting to pattern-matching tasks re-
quiring varying states of selective attention taxing their
short-term memory. To test the assumptions made in the
model, after each subject’s data set was fitted to its proba-
bility distribution, the data were again filtered through
the fitted Lagrangian, and the mean and mean-square
values of M © were recorded as they were calculated from
® above. The average values from the 49 subjects, each
in turn representing averages over 190 points of collected
EEG data and the standard deviations were calculated
simply from {[(<(M%?>—<M%>2n/(n—1)}'2,
where n =49. Table I gives the means and standard devi-
ations of the effective firings, M °, aggregated from all
subjects under each electrode, and the weight d of the re-
gional (time-delayed) inputs M*£. Also given for the
firings under each electrode are the means and standard
deviations of the standard deviations aggregated from all
time epochs from each subject; these may give some in-
sights into correlations of different states of selective at-
tention with respect to coherency and stability of colum-
nar firings. The weights d, as with the synaptic parame-
ters affected by the centering mechanism, are the same
across time epochs for a given subject, and therefore do
not have any dispersion as reported for the firings.
Indeed, although M ¢ were permitted to roam throughout
their physical ranges of *Nf=180 and £N'=30(in
the nonvisual neocortex as is the case for all these re-
gions), their observed effective (regional- and
macrocolumnar-averaged) minicolumnar firing states
were observed to obey the centering mechanism. IL.e., this
numerical result is consistent with the assumption that
MC=0~M*Ein FC.

Based on psychiatric and family-history evaluations,
these 49 subjects were classified into two groups, as possi-
bly having high-risk and low-risk genetic propensities to
alcoholism. The high-risk group was composed of 25
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TABLE 1. Means and standard deviations of averages over EEG recordings from 49 subjects,
representing 190 points of data per subject, are consistent with the centering mechanism during selec-
tive attention tasks. Under each electrode the means and standard deviations of M are given. Also
given for each electrode are the means and standard deviations of the individual-subject standard devia-
tions, here labeled as o, aggregated from each subject. The physical bounds for all MZ under these
nonvisual regions are +N¥=180. Also given are the weights d of the regional time-delayed contribu-
tions dM*E. The physical bounds for all ME and M *F under these nonvisual regions are
+NE=+N *E=180; the physical bounds for all M’ are +N'=+30.

Standard Standard

Electrode Mean ME deviation ME Mean o(MP deviation o(MF)

Fz 1.13661 3.8754 6.093 39 5.30891

Cz —0.533493 4.83208 6.31146 5.59003

Pz —0.3158 3.87471 5.442 42 5.504 53

P3 —0.121703 10.1069 8.152 7.08701

P4 -0.020827 6 7.478 37 11.0526 7.04522
Standard Standard

Electrode Mean M7 deviation M! Mean o(M? deviation o(MY)

Fz 1.83249 7.113 68 114131 2.716 79

Cz 0.229 446 5.89307 11.5578 2.689 69

Pz —0.255393 6.374 52 12.4699 2.86198

P3 —0.0234756 7.397 36 10.5579 3.2693

P4 —0.027 1411 6.25121 12.0525 2.52846
Standard

Electrode Mean d deviation d

Fz — Cz 0.389 722 0.291677

Cz — Pz 0.377 305 0.266958

Pz — P3 0.536313 0.288 519

Pz — P4 0.485525 0.294 742

TABLE II. The same kind of information is presented as given in Table I; however, here the statis-
tics is developed from a subgroup of 25 subjects who were previously classified as being of high risk
with respect to having a genetic propensity to alcoholism.

Standard Standard

Electrode Mean ME deviation M% Mean o(MP deviation o(M¥)

Fz 0.340677 444151 5.87727 4.73137

Cz —0.0332101 4.4386 5.79371 4.793 31

Pz 0.487081 4.028 93 5.024 83 5.994 25

P3 —0.882276 4.32405 5.817 38 5.596 17

P4 —0.940474 8.48643 10.6133 6.98527
Standard Standard

Electrode Mean M’ deviation M7 Mean o(M?P deviation o(M?)

Fz 0.474 634 7.11011 11.8372 2.278 95

Cz 1.23924 5.45593 11.6565 2.966 15

Pz 0.217 116 6.45096 11.5355 2.966

P3 —1.618 82 7.680 62 10.8889 3.163 14

P4 —0.334122 6.39578 12.2809 2.11318
Standard

Electrode Mean d deviation d

Fz — Cz 0.391 295 0.322 489

Cz — Pz 0.395463 0.254 323

Pz — P3 0.526201 0.286918

Pz — P4 0.543 161 0.282 187

b
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TABLE III. The same kind of information is presented as given in Table I; however, here the statis-
tics is developed from a subgroup of 24 subjects who were previously classified as being of low risk with
respect to having a genetic propensity to alcoholism.

Standard Standard

Electrode Mean ME deviation ME Mean o(MP deviation o(MFE)

Fz 1.9657 3.05825 6.31853 5.946 19

Cz —1.054 62 5.25502 6.85079 6.37529

Pz —1.15213 3.600 52 5.87741 5.03529

P3 0.670561 13.8703 10.5839 7.748 84

P4 0.937138 6.299 79 11.5102 7.2279
Standard Standard

Electrode Mean M? deviation M’ Mean o(M7P deviation o(M?)

Fz 3.24693 6.983 25 109714 3.096

Cz —0.822421 6.257 17 11.4549 2.428 12

Pz —0.747 589 6.39397 13.4433 2.44476

P3 1.638 34 6.85532 10.2132 3.409 17

P4 0.292 631 6.2177 11.8146 2.926 89
Standard

Electrode Mean d deviation d

Fz — Cz 0.388083 0.26272

Cz — Pz 0.358 39 0.283 736

Pz — P3 0.546 846 0.295968

Pz — P4 0.425 487 0.301 391

subjects, and the low-risk group was composed of the
remaining 24 subjects. Tables II and III give the same
statistics as in Table I, for each subgroup.

While neuroscientists are very hopeful that such
discrimination is possible on the basis of EEG, not all
research laboratories have been able to produce such evi-
dence. It seems that the long-time epochs spanning P300,
e.g., the 1-sec epoch fitted in Table I, are just not selective
enough of features occurring within about 1 sec. When
the smaller epoch is examined, occurring at a different
temporal location within the 1-sec epoch for each subject,
some distinguishing P300 patterns appear to emerge be-
tween low-risk and high-risk groups [178]. The SMNI
approach is seen as a viable approach to interpret these
correlations into physical variables reflecting neocortical
activity.

Figure 6 gives one of the 49 sets of data fit here. This
P300 is particularly well synchronized and well defined
with respect to the five electrodes. The first two dips are
known as N100 and N200; the first broad peak after-
wards is the P300. It is believed that the P300 shape may
be an indication of the genetic marker for alcoholism.
Since all genes are not dominant, assuming such genetic
markers for alcoholism exist, even properly classified
low-risk or high-risk subjects need not possess the
discriminating EEG trace. In fact, quite a few of these 49
subjects have such similar patterns of data that they
could well be classified in either group if the only cri-
terion were their EEG. A larger subject sample is re-
quired to discern if P300 can be a correct identifier of
such behavioral traits. Then, it still remains to be proved
that such statistical calculations as presented here can es-
tablish quantitative norms for these two groups.

The results in Tables II and III reflect the lack of
correlation observed between EEG recordings and
behavioral states when the temporal epoch used is too
wide, as was generally done in earlier EEG studies. Here,
this calculation is offered as a control. We are perform-
ing fits on the J-sec epochs containing the selected P300
features that may give tighter correlations, and these will
be reported at a later date.

Based on the plots and numerical calculations per-
formed in this study, it is the opinion of this author, not
necessarily shared by other neuroscientists, that the high
degree of synchrony of almost equal wave forms of AEP,
especially of N100 and N200, at these several electrode
sights is actually due to volume conductance effects [51]
that are swamping the underlying local activity at each
electrode. l.e., each electrode is effectively recording an
average global response, a known circumstance which
can be caused by several effects. If true, then if the
recording of more localized activity is desired, Laplacian
techniques, e.g., derived from clusters of five closely-
spaced electrodes, are required.

Independent of the circumstances of this suggestion,
the conclusions drawn here, regarding the SMNI descrip-
tion of EEG under conditions of selective attention, are
not radically altered since we still are fitting the SMNI
model to valid EEG AEP data. The approach here has
been used to investigate the consistency of SMNI with
previous STM studies using this theory. The 1-sec epoch
does signify a period of relatively intense selective atten-
tion, and it is of interest to see if this is consistent with
the SMNI centering mechanism. This has been accom-
plished independent of the success of finding EEG corre-
lates of genetic predispositions to alcoholism.
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FIG. 6. Illustrated is 1 sec of EEG data, time-locked to a particular stimulus pattern and averaged over about 100 such events,
from 5 electrodes, from a subject previously classified as high-risk with respect to genetic propensity to alcoholism. The abscissa la-
bels the index of each epoch; there are 192 points of data for each electrode, and each time epoch represents 5.2 msec. The ordinate
is the amplitude of the “averaged epoch potential” in mV. The first dip, here at about epoch 18, is classified as N100, occurring at
about 100 msec after a stimulus pattern. The second dip, here at about epoch 30, is classified as N200. The broad peak approximate-

ly centered about epoch 80 is the P300.

In the context of current paradigms of neuroscience,
and in the context of appreciating that SMNI offers sta-
tistical bounds on neocortical interactions, i.e., not neces-
sarily offering specific neuronal mechanisms correlated to
specific brain states, this information addresses ‘‘connec-
tivity” and ‘“‘coherency.” Connectivity is simply ad-
dressed by examining the bottom third set of rows of
numbers in each table, where the coefficients d of regional
influences are given. Coherency is addressed in an ap-
proximate way, by examining the last two rows of num-
bers in each table, where a measure of the variance of the
mean firings and connectivity and the variances among
these means can be obtained. l.e., it might be assumed
that the degree of selective attention is related to the de-
gree of connectivity and to the degree of focus of firing
states.

As just discussed, comparison of the data in Tables 11
and III shows no statistical differences between these
groups in terms of the physical SMNI model. However,
even within these wide statistical margins, it is clear that
the values of the columnar firings, permitted to roam
throughout their physical ranges during the fitting pro-
cedure, do in fact cluster according to the centering
mechanism derived above in the context of STM. While
it is premature to speculate on the relevance of these
differences between these two subgroups, these data are
offered here to demonstrate the kind of information this
approach can offer.

Again, it must be stressed that such nonlinear stochas-

tic modeling may be essential in such noisy systems, to
first fit the functional nature of both the drifts and the
diffusions, in order to then extricate some distinguishing
signatures of subsystems. Further work is in progress
with variations of SMNI and other models, to give some
insights into just what nonlinear stochastic features are
essential to fit such EEG data.

This particular five-electrode circuitry may yet be
amenable to our path-integral algorithm. Each variable
typically requires a mesh size that is a product of a post-
point mesh, A determined by the square root of the (non-
constant) diffusion, times 2A’+ 1, where A’ is the size of
the off-diagonal prepoint taken about the (nonconstant)
drift; A’ is typically 3—-7 to get good numerical accuracy.
For five variables requiring a product of all five A and A’
values, this does not seem a reasonable calculation on
today’s standard computers. However, here we really
have five distributions of only one or two variables each
of which must be simultaneously propagated: P(Fz),
P(Cz|Fz), P(Pz|Cz), P(P2|Pz), and P(P2|Pz). This
work is in progress.

These results, in addition to their importance in
reasonably modeling EEG with SMNI, also have a
deeper theoretical importance with respect to the scaling
of neocortical mechanisms of interaction across disparate
spatial scales and behavioral phenomena: As has been
pointed out previously, SMNI has given experimental
support to the derivation of the mesoscopic probability
distribution, yielding similar algebraic structures of the
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threshold factors in Eqgs. (32) and (63), illustrating com-
mon forms of interactions between their entities, i.e., neu-
rons and columns of neurons, respectively. The nonlinear
threshold factors are defined in terms of electrical-
chemical synaptic and neuronal parameters all lying
within their experimentally observed ranges. It also was
noted that the most likely trajectories of the mesoscopic
probability distribution, representing averages over
columnar domains, give a description of the systematics
of macroscopic EEG in accordance with experimental
observations. In this section, we have demonstrated that
we can derive the macroscopic regional probability distri-
bution, Eq. (115), as having the same functional form as
the mesoscopic Eq. (41), where the macroscopic drifts
and diffusions of the potentials described by the ®’s are
simply linearly related to the (nonlinear) mesoscopic
drifts and diffusions of the columnar firing states given by
the M®s. Then, this macroscopic probability distribu-
tion gives a reasonable description of experimentally ob-
served EEG.

VI. CONCLUSION

We have outlined in some detail a reasonable approach
to extract more ‘“‘signal” out of the “noise” in EEG data,
in terms of physical dynamical variables, than by merely
performing regression statistical analyses on collateral
variables. To learn more about complex systems, we
inevitably must form functional models to represent huge
sets of data. Indeed, modeling phenomena is as much a
cornerstone of 20th century science as is collection of
empirical data [179].

We have been able to fit these sets of EEG data taken
during selective attention tasks, using parameters either
set to experimentally observed values, or being fitted
within experimentally observed values. The ranges of
columnar firings are consistent with a centering mecha-
nism derived for STM in earlier papers.

The ability to fit data to these particular SMNI func-
tional forms goes beyond nonlinear statistical modeling of
data. The plausibility of the SMNI model, as emphasized
in this and previous SMNI papers, as spanning several
important neuroscientific phenomena, suggests that the
fitted functional forms may yet help to explicate some un-
derlying biophysical mechanisms responsible for the nor-
mal and abnormal behavioral states being investigated,
e.g., excitatory and/or inhibitory influences, background
electromagnetic influences from nearby firing states (by
using SMNI synaptic conductivity parameters in the fits).

There is much more work to be done. We have not yet
addressed the “renormalization” issues raised, which are
based on the nature of EEG data collection and which
are amenable to this framework. While the fitting of
these distributions certainly compacts the experimental
data into a reasonable algebraic model, a prime task of
most physical theory, in order to be useful to clinicians
(and therefore to give more feedback to theory) even
more data reduction must be performed. We are experi-
menting with path-integral calculations and some
methods of “scientific visualization” to determine what
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minimal, or at least small, set of “signatures” might
suffice, which would be faithful to the data yet useful to
clinicians. We also are examining the gains that might be
made by putting these codes onto a parallel processor,
which might enable real-time diagnoses based on nonin-
vasive EEG recordings.

In order to detail such a model of EEG phenomena we
found it useful to seek guidance from “top-down” mod-
els; e.g., the nonlinear string model representing non-
linear dipoles of neuronal columnar activity. In order to
construct a more detailed ‘“bottom-up’ model that could
give us reasonable algebraic functions with physical pa-
rameters to be fit by data, we then needed to bring to-
gether a wealth of empirical data and modern techniques
of mathematical physics across multiple scales of neo-
cortical activity. At each of these scales, we had to
derive and establish reasonable procedures and submo-
dels for climbing from scale to scale. Each of these sub-
models could then be tested against some experimental
data to see if we were on the right track. For example, at
the mesoscopic scale we checked the consistency of
SMNI with known aspects of visual and auditory short-
term memory; at the macroscopic scale we checked the
consistency with known aspects of EEG and the propaga-
tion of information across the neocortex. Here, we have
demonstrated that the currently accepted dipole EEG
model can be derived as the Euler-Lagrange equations of
an electric-potential Lagrangian.

The theoretical and experimental importance of
specific scaling of interactions in the neocortex has been
quantitatively demonstrated: We have shown that the ex-
plicit algebraic form of the probability distribution for
mesoscopic columnar interactions is driven by a non-
linear threshold factor of the same form taken to describe
microscopic neuronal interactions, in terms of electrical-
chemical synaptic and neuronal parameters all lying
within their experimentally observed ranges; these
threshold factors largely determine the nature of the
drifts and diffusions of the system. This mesoscopic
probability distribution has successfully described STM
phenomena and, when used as a basis to derive the most
likely trajectories using the Euler-Lagrange variational
equations, it also has described the systematics of EEG
phenomena. In this paper, we have taken the mesoscopic
form of the full probability distribution more seriously
for macroscopic interactions, deriving macroscopic drifts
and diffusions linearly related to sums of their (nonlinear)
mesoscopic counterparts, scaling its variables to describe
interactions among regional interactions correlated with
observed electrical activities measured by electrode
recordings of scalp EEG, with apparent success. These
results give strong quantitative support for an accurate
intuitive picture, portraying neocortical interactions as
having common algebraic or physics mechanisms that
scale across quite disparate spatial scales and functional
or behavioral phenomena, i.e., describing interactions
among neurons, columns of neurons, and regional masses
of neurons.

It seems reasonable to speculate on the evolutionary
desirability of developing Gaussian-Markovian statistics
at the mesoscopic columnar scale from microscopic neu-
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ronal interactions, and maintaining this type of system up
to the macroscopic regional scale. I.e., this permits maxi-
mal processing of information [130]. There is much work
to be done, but we believe that modern methods of sta-
tistical mechanics have helped to point the way to
promising approaches.
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APPENDIX A: DERIVATION OF PATH INTEGRAL

This appendix outlines the derivation of the path-
integral representation of the nonlinear Langevin equa-
tions, via the Fokker-Planck representation. This serves
to point out the importance of properly treating non-
linearities, and to emphasize the deceptive simplicity of
the Langevin and Fokker-Planck representations of sto-
chastic systems. There are a few derivations in the litera-
ture, but the following blend seems to be the most con-
cise. All details may be found in the references given
here [27,180-182].

The Stratonovich (midpoint discretized) Langevin
equations can be analyzed in terms of the Wiener process
dW' which can be rewritten in terms of Gaussian noise

LESTER INGBER

4
n'=dW'/dt if care is taken in the limit [27].
dMC=fO(¢t,M(t))dt +§°(t,M(¢))dW" ,
MECt)=f%t,M(1))+§%(t,M(2))i(t) ,
dWi—Vr]idt ’
M={M%G=1,...,A},
. (A1)
n={n5i=1,...,N} .
. dM S
MC=
dt ’

<yl(t)>,=0,
<o),y (¢)>,=807'8(t—1") ,

7' represents Gaussian white noise, and moments of an
arbitrary function F(7) over this stochastic space are
defined by a path-type integral over 7',

<F(17)>,,=]V“1fD77F(n)exp —%fdt’r]"n" ,
Yo

N=fDnexp —%jdtnini s
‘o

v+1 N )
Dy=lim [T [T (276)"'2awi,,

V=>® g=0j=1

ty,=tyt+ab,

i i 1 i i
%fdtnn—z—egz(wﬁ—wﬁ_l>2,

(A2)

<n'>,=0,
<neml(z')>,=88(t—1') .

Non-Markovian sources 4, and their influence
throughout this development, can be formally treated by
expansions about the Markovian process by defining

<F@)>,=N;' [ DAF exp [~4 [ [ drdrfo)az c—eqa) |

[ dt A7 =)A=t =8t —1")

with £ defined as an interval centered about the argument
of A Letting §—0 is an unambiguous procedure to
define the Stratonovich prescription used below.

In terms of a specific stochastic path 7, a solution to
Eq. (A1), MS(t;M,1,) with M §(25;M,10) =M, the ini-
tial condition on the probability distribution of M, is

P, [M,1|Mo,t0]=8(M —M,(t;Mo,1,)) . (A4)

Using the conservation of probability condition,

(A3)
[
P,,+M°P,) =0,
- -)
- , (A5)
()6 = a0
oy =98 )
( ),t at b

the evolution of P, is written as
P, M, t|My,to]={[—f%t,M)—g(t,M)n'1P,} 5 -
(A6)
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To perform the stochastic average of Eq. (A6), the P,=Lg%P) ;6—(g°P) s+ VP,
“functional integration by parts lemma” [29] is used on P=<pP >
an arbitrary function Z(7n) [181], n7 om0
go=r+18°8% . (A11)
[ Dn2 . (A7) g6 =55C
,r] 1 1 4
® P i ( ) o)
Applied to Z=Z'exp(— 1 [ * dtn'n’), this yields G aM6
0
) ) Note that g ¢ replaces f¢ in Eq. (A1) if the It6 (prepoint
<n'Z'>,=<8Z'/8n'>, (A8) discretized) calculus is used to define that equation.
To derive the path-mtegral representation of Eq. (A1l),
Applying this to F(M,)= f dM P, F(M), define operators M, g, and A,
5 aP(M,) SMS (M55 1=M Do —Po M =125
oP
J.dM,\TIF(M):—ﬂG’qA—;7 MGMG pG:PG])
on' oM. o7 (A12)
pP,=—ifiP,
=—1 [ dM F(M)(EFs'P") g, (A9)

where & designates functional differentiation. The last
equation has used the Stratonovich prescription,

MI()=Mg + fdt'ﬁ(t—t’)l? t—to O+,

SMS(r)
im —— =18 [tM 2818 5 (A10)
t'—>t—0 877‘(;’)
1, z=0
A=y , 0.

Taking the averages <P,,>, and <n'P,>,, the
Fokker-Planck is obtained from Eq. (A9). If some
boundary conditions are added as Lagrange multipliers,
these enter as a ‘“potential” ¥V, creating a Schrodinger-
type equation:

P[MthO]:

u+1

u
DM = lim [] [ dM
u—owo o 0y U—>oo " p=1

fM(t)=M, DM D ftd " MG—l GG
Mity)=M, p expl J, dt'lipg 2PGPG'8

S, Dp=1im ] [ 2m) 'dpg, ,

A=— éﬁcﬁe’g G +pegC+iv,
and define the evolution operator U(tz,t’) in terms of
“bra” and “ket” probability states of M,
MCeIMC>=M%M®> ,
PIMC>=—id/d0MC|MC>
<M'|M>=86M"—M),
<Ml|p>=2m) lexplip-M) , (A13)
PIM,t|My,ty]=<M|U(t,t,)|My> ,
A@Hue,n)=iUu(e',e), ,
U(t,t)=1,

U(t )=1—i0H(t,_,) ,

Lprlp—1
where p indexes units of 6 measuring the time evolution.
This is formally integrated to give the path integral in the
phase space (p, M),

—ipcg®+V)1,
(A14)

t,=tytp0 .

The integral over each dpg, is a Gaussian and simply calculated. This gives the path integral in coordinate space M,

in terms of the prepoint discretized Lagrangian,

P[M,|M,
p=0

LM%M t)=L(M®—gCgse (M —g%)—V,

g =det(ge) , 8o6=89)7", AS=M]

1= [ DM [T (270)"7g(M, 1, %exp{ —

_ G
6 —MC .

16866/ (M ,,1,)[AS/6—g (M ,1,)]

X[AS/60—g% (M, t,)]+6V(M,,1,)} ,

(A15)
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This can be transformed to the Stratonovich representation, in terms of the Feynman Lagrangian L possessing a co-
variant variational principle,

P[MtIM()]:f DM H (27r0)_A/2g(Mp+Ap’tp+6/2)1/2exp
p=0

t +6 .
—min [ " drL(M(e),M(t),1) |, (A16)
P

where “min” specifies that Eq. (A11) is obtained by constraining L to be expanded about that M(¢) which makes the ac-
tion S = f dt'L stationary for M(¢,)=M,and M(t,+60)=M, .
One way of proceeding is to expand Eq. (A15) and compare to Eq. (A16), but it is somewhat easier to expand Eq.

(A16) and compare to Eq. (A15) [182]. It can be shown that expansions to order 6 suffice, and that A2=0(0).
Write L in the general form

L=1gGeM°M% —hcM°+b=L+AL ,
LO=1lgoa(M(t),t ) MM, (A17)
8o\ M(1),1)=ggeAM(1),t')+ g AM(1),t' Nt —1')+0((t—1')?),

where g and b must be determined by comparing expansions of Eq. (A15) and Eq. (A16). Only the L° term is depen-
dent on the actual M(¢) trajectory, and so

t +

6 ’ .
7 dt AL=(1gse, AAY —hA —Lhg g APAT +6b)| . » (A18)
,

where |, ) implies evaluation at (M, ¢).
The determinant g is expanded as

g(M+A,1+6/2)2~g'*(M,1) exp _B_g,t_‘_ 1 AGg,G_’_4_1gAGAG,(g,GG'"‘g_lg,c;g,(;' (A19)

4g 2

(M,t)

f Tlée remaining integral over L° must be performed. This is accomplished using the variational principle applied to
L"[180],

genM= — 386k * 8k, 8ku,G MEMH, M=~ CixM'M*,

(A20)
NP t+6 6 Gt

FfK =g"fJK,L ]=gLF(gJL,K +t8krs—8kL) > (%gGHMGMH),z =0, f, Lodt~ 3gGHMGMH|(M,z+3) :
Differentiating the second equation in Eq. (A20) to obtain M, and expanding M (¢ + ) to third order in 6,

M+0)= | La0— L pg akaLy L (r6 4G 4 )AGALAN (A21)

6 260 60 ’ (M.1)
Now Eq. (A16) can be expanded as
u 1 , u+1 _
P[M,|M,)dM ()= [ DM p1=10 expl =5 86o(M,1)AAY +B] ,DM = ,,I=I1 gl I1 (276) 2dMS (A22)

Expanding expB to O(6) requires keeping terms of order A, A%, A3/0, A*/6, and A®/6%. Under the path integral, eval-
uated at (M,¢), and using [ ] 4., to designate the order of terms obtained from f dA Amexp[ —(1/26)A%],
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[AGAH]order:Gg GH ’
[AGAHAK]o,dE,=9(AGgHK+AHgGH+ AKgGH) ,
[ACAHAAAT o e =0%(g TFig 4P +gg Mo+ g g 4)

(A23)

[A4ABACAPAEAF] 4o, =6%(g “Bg “Pg EF 14 permutations) .

This expansion of expB is to be compared to Eq. (A 15), expanded as

P[M,|M,)dM (1)~ [ DM [[ exp
p=0

1 ,
- EgGG’AGAG

yielding identification of A; and b in Eq. (A17),
hO=gO6h;=gO—1g~1/2(g1/26G")
b=1hChg+1h%s;+R/6—V,
hG;G=h,%+F€ph6=g_1/2(g1/2hc)_6 ,

R=g""R; =g ¢"™ Ry, .

The result is

P[M,|M, JdM(t)= [ --- [ DMexp

u+1
DM = lim [] g'*[] (2m6)~'2dM§ ,
u—»ocp=1 G

[1+g568°AS +6V+0(6°?)], (A24)

(A25)

—min [ dr'L ]S(M(to):Mo)ﬁ(M(t)=M,) ,
0

LMo MO t)=L M —hC)gge(M—h)+LhC ;+R/6—V ,

—1/2( 172 GG’)

hC=gC—1g™1%(g!2g %) (.,

8oc=(g%°)™!
g =det(ggg) »

hG;G:h,GG+r\th G=g—1/2(g1/2h G),G ,

’

ik =g"JK,L1=g" (g x +8k1,s —8,L) »

R=g JLRJL =g'lg JKRFJKL >

(A26)

Rpjxr =%(8FK,JL — 8k, FL —8rL,Jk T 8L, FK )+8MN(F¥K F.II\L _F%L F.IIVK ).

In summary, because of the presence of multiplicative noise, the Langevin system differs in its It0 (prepoint) and Stra-
tonovich (midpoint) discretizations. The midpoint-discretized covariant description, in terms of the Feynman Lagrang-
ian, is defined such that (arbitrary) fluctuations occur about solutions to the Euler-Lagrange variational equations. In
contrast, the usual It0 and corresponding Stratonovich discretizations are defined such that the path integral reduces to
the Fokker-Planck equation in the weak-noise limit. The term R /6 in the Feynman Lagrangian includes a contribution
of R /12 from the WKB approximation to the same order of (At )*/2 [27].
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