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An analysis is given of the stochastic dynamics of time-summating binary neural networks. Such net-
works have a memory or trace of their previous output activity reaching back to some initial time. Par-
ticular attention is given to a class of networks based on a discrete time version of leaky-integrator
shunting networks. The stochastic dynamics is formulated as a linear Markov process describing the
evolution of densities on the infinite-dimensional space of neuronal activation states. Using certain re-
sults from the theory of linear Markov operators, due to Lasota and Mackey [Probabilistic Properties of
Deterministic Systems (Oxford University, Oxford, 1986); Physica D 28, 143 (1987)], conditions are de-
rived for asymptotic stability in which the network converges to a unique limiting density. Moreover,
the limiting density is shown to be a di6'erentiable function of the parameters of the network such as the
weights and decay factors. Finally, dynamical mean-field equations are derived that have periodic and
chaotic solutions, implying a breaking of asymptotic stability in the thermodynamic limit.

I. INTRODUCTION

The formal neuron of Hopfield-Little [1,2] attractor
networks is based on the McCullogh-Pitts [3] model of a
real neuron. In this model (i) the neuron is viewed as a
binary-threshold element whose output is either on or off
depending on whether or not its membrane potential (lo-
cal field) exceeds some threshold and (ii) the membrane
potential at any given time is equal to the linear sum of
inputs to the neuron at the previous time step. [We shall
refer to a network of neurons with output function (i) as
binary and use the term standard if they satisfy (ii).] One
of the most successful analytic tools in the study of stan-
dard binary networks has been the use of statistical-
mechanical techniques. For example, both linear Mar-
kov chain theory [4,5] and, in the case of large networks,
spin-glass mean-field theory [6] have been applied to the
analysis of the stochastic dynamics of such networks.
Moreover, Gardner [7] has extended spin-glass methods
to evaluate the space of interactions between the neurons
and thus determine quantities such as the maximum
capacity for the storage of static patterns in a Hopfield
network.

However, there is growing interest in discrete-time net-
works that have some memory of previous input-output
activity which extends beyond a single time step [8—19].
One way to achieve this is to modify (ii) so that the mem-
brane potential is a slowly decaying function of time with
decay rate y & 1, say. Each neuron then maintains an ac-
tivity trace of all previous inputs to that neuron. (We
shall use the term time summating to denote a network of
such neurons. ) In this paper we use statistical-
mechanical techniques to analyze the stochastic dynam-
ics of a time-summating binary network. The application
of Gardner's approach to temporal sequence storage in
these networks has been developed elsewhere [17].

There are a number of reasons why time-surnmating
networks are of interest. First, from a biological
viewpoint, standard binary networks neglect the tem-

poral aspects of the process by which real neurons in-
tegrate their inputs. For example, recent neurophysio-
logical evidence [20] suggests that the persistence of ac-
tivity on the cell membrane of certain neurons in the cor-
tex occurs over hundreds of milliseconds. Since a single
time step is of the order 1 ms, this suggests that y could
be close to unity in such cases. The dynamics of the
membrane potential of a neuron can be described in some
detail by so-called leaky-integrator shunting equations
[21]. (More correctly, these difFerential equations de-
scribe the behavior of a local patch of a neuron's cell
membrane [22]; however, it is possible to take account of
the spatial structure of the neuron using compartmental
models [23].) Bressloff and Taylor [10] have constructed
a model of a time-summating binary network based upon
a discrete-time approximation of these equations. An ad-
ditional feature of this particular model is that the decay-
ing membrane potential is a nonlinear function of the in-
puts to the neuron. This nonlinearity, which is distinct
from the one associated with thresholding, is a conse-
quence of shunting terms in the leaky-integrator
di6'erential equations. These terms incorporate changes
of the membrane potential induced by an input from
another neuron which depends on the size of the devia-
tion of the membrane potential from some local, fixed
resting potential.

Second, from a dynamical systems viewpoint, time-
summating networks can display a wide range of behav-
ior, even at the single-neuron level. (This is also true of
real neurons [24].) For example, the response charac-
teristics of a single neuron of the form considered in Ref.
[10] exhibits both frequency locking and chaos [11];the
source of the chaotic behavior is the membrane
potential's nonlinear dependence on inputs, which for a
certain range of parameter values leads to a positive
Liapunov exponent. Chaos is also observed in the
single-neuron model of Aihara, Takabe, and Toyoda [12]
in which the binary-threshold output function is replaced
by a sigmoid function. Both of these models provide the
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basis for developing discrete-time versions of coupled os-
cillator networks [25]. The dynamics of time-summating
networks with continuous-valued outputs has also been
studied by Marcus and Westervelt [19].

Finally, from a computational viewpoint, time-
summating networks have certain advantages over stan-
dard ones in the processing of temporal sequences. For
example, the deterministic dynamics of a fully connected
standard binary network with parallel update is charac-
terized by a unique, single time step, state transition ma-
trix [8]. Consequently, it can only store simple sequences
in which a succession of states is unambiguously defined.
On the other hand, the ambiguities arising from repeated
patterns can be resolved by time-summating networks,
provided incoming activity is held over a long enough
period [13,14]. Moreover, it can be shown that the max-
imum storage capacity can be enhanced in certain cases
[17]. (We note that an alternative approach to temporal
sequence storage has been developed in Hopfield-like net-
works [26—28]. This involves the introduction of addi-
tional couplings between the neurons which have signal
transmission delays associated with them. In the case of
parallel dynamics, such neurons have a memory of previ-
ous inputs which extends over a time period equal to the
number of delay lines between neuron pairs [28].) Time-
summating networks have also been used in feedforward
networks and allow simple on-line learning algorithms to
be developed [14—16]. These deal with temporal se-
quences directly in the time domain so avoiding the need
for mapping the temporal sequences into spatial patterns
of much higher dimension.

Having indicated the importance of time-summating
networks, we turn to the contents of this paper. We shall
restrict our discussion of stochastic dynamics to the
leaky-integrator model of Bressloff and Taylor [10], al-
though the analysis can also be applied to related models
such as the chaotic networks of Aihara, Takabe, and
Toyoda [12] and the iterated-map networks of Marcus
and Westervelt [19]. Moreover, we shall consider the
aAects of additive white noise. For zero decay rate
(y =0), the stochastic dynamics is formulated in terms of
a homogeneous Markov chain defined on the discrete
space of binary outputs [0,1],where N is the number of
neurons in the network, and shown to include the Little
model [1] as a special case. If the Markov chain is irre-
ducible then, for finite X, the long-term behavior of the
network may be analyzed in terms of the Perron-
Frobenius theorem [29,5]. That is, in the absence of any
periodicity constraints, the system converges to a unique
probability distribution on [0,1],which in the case of
the Little model is a Cxibbs distribution [4]. On the other
hand, for nonzero decay rate (y )0), the dynamics is ex-
pressed in terms of a Markov process on the space of ac-
tivation states R; the corresponding dynamics on the
space of binary outputs is now non-Markovian. The
Markov process is generated by a linear Markov operator
[30] acting on the space of probability densities on R
and is analyzed using the results of Lasota and Mackey
[31]. In particular, we derive conditions under which the
Markov process converges to a unique limiting probabili-
ty density on R (asymptotic stability). Moreover, we

show that this density is a differentiable function of the
network's parameters such as the decay rates and connec-
tion weights.

Asymptotic stability implies ergodicity in the sense
that time averages are independent of initial conditions
and may be reexpressed as ensemble averages over the
limiting density. In the spin-glass approach to binary
networks [6] input patterns are presented to a network by
specifying the initial configuration of the neurons for
fixed external inputs. Therefore, for applications such as
associative memory, it is necessary to formally break
asymptotic stability by taking the thermodynamic limit
N~0C in such a way that ergodicity no longer holds.
Otherwise, all input patterns would generate the same
average long-term behavior. In the thermodynamic limit
state space decomposes into disjoint invariant subsets
each characterized by its own limiting density; within
each disjoint region the stochastic dynamics is still
asymptotically stable. The particular subset over which
ensemble averages are calculated is then determined by
the initial configuration. At the macroscopic level the
network converges to a fixed-point solution of dynamical
mean-field equations. In the last part of this paper we
discuss the thermodynamic limit for a time-summating
network. In particular, we derive a dynamical mean-field
equation for a homogeneous network with a noise distri-
bution identical to that of the Little model. The mean-
field equation determines the evolution of the mean out-
put activity of the network and in the low-temperature
regime exhibits periodic and chaotic solutions, implying a
breaking of asymptotic stability in the thermodynamic
limit.

The organization of the paper is as follows. In Sec. II
we discuss standard binary networks and the Little mod-
el, emphasizing features relevant to the more general
case. In Secs. III and IV, respectively, we consider the
deterministic and stochastic dynamics of time-summating
binary networks, based on the leaky-integrator model. In
Sec. V we analyze the parameter dependence of the lirnit-
ing density for asymptotically stable networks. Finally,
in Sec. VI we develop the dynamical mean-Geld theory.

II. STANDARD BINARY NETWORKS

Consider a network of X McCullogh-Pitts binary
threshold neurons [3] and denote the output of the ith
neuron at each discrete time step m =0, 1,2, . . . by
a;(m ) E [0, 1]. The binary output indicates whether the
neuron has, or has not, fired an electrochemical potential
( action potentiaI ). The state of the network is specified
by the binary vector a(m)=(a&(m), . . . , a&(m)). The
neurons are connected by synaptic junctions of weight
w;, which determine the size of the input to neuron i
arising from an action potential fired by neuron j. In this
simple model the membrane potential V;(m) of neuron i
at time m is equal to the sum of all the inputs received at
the previous time step,
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Each neuron fires whenever its membrane potential
exceeds a threshold value h;,

a, (m)=e(V;(m) —h, ), i =I, .. . , N (2)

(3)

P +i(b)= y Qb. P (a)

where Qb, is the time-independent transition probability
of going from state a to state b in one time step, and
which satisfies

Qb. = Q Ib;p(ila)+(I —b;)[1—p(i la)]I .

Since the Markov chain generated by Eqs. (3) and (5) is
irreducible (every state may be reached, after a finite
number of time steps, from every other state) and assum-
ing that X is finite, we may apply the Perron-Frobenius
theorem [29].

If Q is the transition matrix of a finite irreducible Mar-

where e(x)=1 if x )0 and e(x)=0 if x &0. Equations
(1) and (2) determine the dynamics on the discrete space
of binary outputs [0, 1] . We shall assume throughout
that the neurons are updated synchronously, since this is
simpler from the dynamical systems viewpoint.

The number of possible states of a binary network is
finite (equal to 2 ). Therefore, in the case of synchronous
dynamics, for which there is a unique transition from one
state to the next (in the absence of noise), the long-term
behavior is cyclic. This follows from the fact that a
finite-state system must return to a state previously visit-
ed after a finite number of time steps ( ~ 2 ). A conse-
quence of this is that standard binary networks can only
be used to store temporal sequences of patterns, corre-
sponding to particular cycles, provided a given pattern
only occurs once per cycle, e.g. , the two-cycle AB AB. . .
consisting of the alternating patterns A =(a„.. . ,a~),
B=(bi, . . . ,bz). For in order to generate a sequence of
p difFerent patterns one needs only to learn the p transi-
tions from one pattern to its successor in the sequence.
On the other hand, if a pattern occurs twice per cycle,
say, then there is an ambiguity as to which is the succes-
sor of this pattern, e.g. , pattern A in the sequence
AABAAB. . . . One approach to storing these more
complex sequences involves keeping a memory of the out-
put state of the network over a number of previous time
steps [13], that is, incorporating some form of extended
time summation.

Noise is usually introduced into binary networks in
terms of the conditional firing probability p(i a), which
determines the likelihood of neuron i firing given that the
state of the network at the previous time step is a. In the
Little model [1] this probability has the explicit form

1
p(i la)=

1+exp —
/3 g w,"a —h,

j=1
where P ' is a temperature parameter. Introducing the
probability P (a ) that the state of the network at time m
is a, we may describe the dynamical evolution of the net-
work in terms of the homogeneous Markov chain

lim P (a)=P (a),
m —+ oo

(6)

independently of the initial distribution, where P (a) is
the unique eigenvector of Q corresponding to the eigen-
value A, , [5]. Equation (6) implies that time averages are
independent of initial conditions and may be replaced by
ensemble averages over the limiting distribution P (a).
In other words, for any well-behaved state variable X, we
have the ergodicity condition

lim g = Q P„(a) X(a) .X(a(m))
M —+oo

O
M

Another consequence of Eq. (6) is that the network can-
not display any long-range order in time since any injec-
tion of new information only produces Auctuations about
the limiting distribution and eventually disappears.
Therefore, to operate the network as an associative
memory it is necessary to take either the low noise limit
P—+ ~, so as to include the many attractors of the deter-
ministic system, or the thermodynamic limit N~~.
The latter leads to a breaking of the ergodicity condition
(6) and is the basis of the spin-glass approach to pattern
storage in Hopfield-Little networks [6) (see Sec. VI).

It is useful to reformulate the Little model in terms of a
binary network with additive noise [32]. That is, we re-
place Eqs. (1) and (3) by the stochastic equation

N
V;(m)= g w;~aj(m —I)+i);(m —1),

j=1
where g, is an additive white-noise term. In particular,
the sequence I ri; (m ), m & 0] is an independent random
process with a time-independent probability density p; on
R. Each density p, is an L' function on 1R such that
p;(i))) 0 and lip;ll= 1 where, as usual, lip;ll denotes the
I. ' norm of the function p, [33],

lip; II
= f Ip;(x)ldx (9)

Given a density p, , then the p, measure p ( A ) of the sub-
[

set A in R is defined by

p (3)= f p;(x)dx (10)

and may be interpreted as the probability that, at any
time step n, i);(m) H A. Equation (8) generates the condi-
tional firing probability

kov chain with period d then (i) the d complex roots of
unity A, 1=1,A,2=&, . . . , A,d

=~" ', ~here M=e2"'/d are
eigenvalues of Q and (ii) the remaining eigenvalues
~d+„. . . , ~~ satisfy I~JI &1.

A Markov chain is said to have period d if, for each
state a, the probability of returning to a after m time
steps is zero unless m is an integer multiple of d. If
P ') 0 then the Markov chain (4) has d =1 (aperiodic )

so that there is a nondegenerate eigenvalue of Q satisfy-
ing A, 1= 1 while all others lie inside the unit circle. By ex-
panding the solution of Eq. (4) in terms of the generalized
eigenvectors of Q, it then follows that there is a unique
limiting distribution P„(a ) such that
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( )
d 1

PS li d P~9i 1+e
(12)

However, we are free to choose any density p, . For fixed
weights and thresholds, properties of the transition ma-
trix Q such as its period and whether or not it is irreduc-
ible, then depend on the nature of p;. For example, the
transition matrix generated by Eq. (12) is irreducible be-
cause the nonzero support of each p,. is the whole real
line, i.e., there is a nonzero probability of g, taking an ar-
bitrarily large value. However, if the support of p, is re-
stricted to the interval [ c,e],—e & 0, say, then for
su%ciently sma11 e the transition matrix will be reducible
and will have nontrivial period. This should be contrast-
ed with the low-noise case, P »1, for a density satisfying
Eq. (12), in which the Markov chain (4) is irreducible and
aperiodic, but the relaxation times are large. Conse-
quently, cyclic solutions of the underlying deterministic
system may persist for long observation time [5].

The additive noise term g, may be interpreted as a ran-
dom fluctuation of the threshold h, or, equivalently, as a
random external input. Note that in real neurons a
significant source of noise is associated with the quantal
release of chemical transmitters at synapses [34]. This
may be incorporated into Eq. (8) in the form of multipli-
cative white noise, by replacing each fixed weight m; by
the random process I w;. (n), n & 0] with associated proba-
bility density p;. . The corresponding conditional firing

probability is then

p I
}=f +p;, (iU;, )p;(ri;)

N N
Xe g w;.a —h;+g, +dia, dg, .

(13)
The statistical dynamics of networks with random
weights has been discussed elsewhere [32]. For simplicity
we shall only consider additive white noise in this paper.

III. TIME-SUMMATING BINARY NETWORKS

p(i~a)= f p,.(rj, )e g w,,a, —h;+q; dry; (11)
j=1

and a corresponding Markov chain according to Eqs. (4)
and (5). Equation (11) is equivalent to Eq. (3) on taking

the absence of any inputs, the membrane potential decays
to zero at the rate ~,. '. The inputs A; are taken to be
positive, so that the efFect of each shunting term
A,"(S,"—V, ) is for V, to tend toward S, . Thus positive
and negative 5;. correspond, respectively, to excitatory
and inhibitory inputs. The input A;.(t) is usually of the
form g, f (V (.t)}, where g;1 &0 is fixed and f cor. re-
sponds to a short-term average firing rate which is as-
sumed to be a smooth monotonic function of the mem-
brane potential. However, this neglects the pulse-coding
feature of neuronal signals. Such a feature may be incor-
porated into Eq. (14}by assuming that neuron i receives
an impulse of size g; each time neuron j fires so that [10]

A,,(r+r, )=g,, g 5(r T,"), — .
n=1

(15)

TJ"=i fnIt
~

VJ.(t) & h~;t & T~" '+tz], j=1,. . . ,N,
(16)

where tz is the absolute refractory period. Equation (16)
may be understood as follows. Suppose that neuron j last
fired at time T. Then for T~t & T+t~ the neuron is in-
capable of firing again, although V (t) continues to evolve
according to Eq. (14); for t &

T+ tlat the neuron fires as
soon as VJ(t) is above the threshold h .J

Imposing the initial condition that the first firing times
TJ' are multiples of the delay td, and setting t~ = t„, it can
be shown using the threshold condition (16) that Eq. (15)
may be written in the simpler form [10]

A,,(t+ r~) =g,, g 5(t mtd )a, (mtd —), (17)
m=0

where aj.(mt„)=e(V~(mtd) h). In—other words,
a (mtd)=1 .if T"=mtd for some. n &1 and a (mtd)=0
otherwise. Equation (14) then reduces to a discrete time
model of a time-summating binary network. To show
this we first integrate Eq. (14), with V, (0)=0 say, such
that for t ~td,

V, (t)= f 'exp —f '
& A;~(t" rd)dr"—

0 t'

where T" is the time at which neuron j fires for the nth
occasion since t =0. Note that a time delay td has been
included in Eq. (15) to account for the finite time interval
between the arrival of a signal at a synapse and the result-
ing change in membrane potential of the target neuron.
The firing times are then determined by the iterative
threshold condition

The McCullogh-Pitts binary-threshold neuron is based
upon a very simplified model of a real neuron. In partic-
ular, Eq. (1) neglects the temporal aspects of the process
by which real neurons integrate their inputs. A more de-
tailed account of the temporal nature of this process is
given by the leaky-integrator shunting equation [21]

Xexp

N
X g S,„A,„(r' t„) di' . —

k=1
(18)

dV;

dt

V, (t) N
+ g A,,(r)[S,, V, (r)], —

(14)

Here A; .(t) is the input signal from neuron j to neuron i
at time t and S; is fixed membrane reversal potential. In

Substituting Eq. (17) into Eq. (18), it follows that the dy-
namics of the membrane potential V, (t) is determined
completely by solving Eq. (18) at the discrete times
t=mt„, m ~0. In particular, if t satisfies m &t &m+1
for some integer m, then V;(r) =exp[ —(r —m )/r, . ] V~(m)
where
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V;(m)= g g y,
" 'w, „a„(m r—)

k=1 r=1
N r

Xexp —g g w; a.(m —s)
j=l s=1

m = 1,2~. . . (19)
—1T.

and y;=e ', w,. =g;~S;., w; =g; &0. (We have set
td = 1 for simplicity. )

Equations (19) and (2) describe the dynamics of a
binary network in which the membrane potential is a
nonlinear function of the inputs involving an extended
time summation over the previous output activity of the
network. Also note that there are effectively two in-
dependent sets of weights [io; } and I iU; ]. In contrast to
the standard binary-network model, Eqs. (1) and (2), the
dynamics of the network in the space of binary outputs is
no longer described by first-order difference equations for
a ( m ). However, Eq. (19) may be rewritten as a first-order
iterative equation for V( m ) = ( Vi ( m ), . . . , Vz( rn ) ) given
by

[Note that p( V) is equivalent to the rotation number of
the corresponding circle map [11]]. It can be shown that
the average firing rate is independent of the initial point
V, p( V) =P, and that the dynamics is either periodic or
quasiperiodic depending on whether p is a rational or ir-
rational number. Moreover, as a function of the input I,
p forms a "devil' s" staircase in which irrational values
occur for a set of Lesbegue measure zero. Such behavior
was previously studied in the Nagumo-Sato model of a
neuron with relative refractory period [9], which corre-
sponds to the special case w =0.

One of the interesting features of the single-neuron
model described by Eq. (21) is that if the allowed range of
8 is extended from IR+ to R, with m & 0 and 0 &I & w as
before, then chaotic dynamics on X can occur [11]. To
indicate how this arises, consider the Liapunov exponent
of Eq. (21) defined by

A,(v)= lim ln+ [F"(V)]
m oo M o dV

M
=lny —w lim g 6(F"(V))

M ~M„
V, (m) =F,( V(m —1)) =lny —wp( V) . (23)

N

y, V, (rn —1)+ g w;kak(m —1)+I;
k=1

N

Xexp —g w,ja, (m —1) (20)

= [y V(m —1)—we( V(m —1))+I]e

(21)

where y & 1, w &0. The map F is piecewise linear with a
single discontinuity at V=O, and has been analyzed in
detail elsewhere using discontinuous circle maps [11]. In
particular, if m)0 and 0&I &u, then all trajectories
converge to the interval X= [ V, V+ ], where
V =(I—w)e, V+ =I. (Other choices for I and w

give trivial dynamics. ) To describe the behavior on g it
is useful to introduce the average firing rate

V) 1 y 6(F (V))
(22)

(assuming the limit exists), where 6(F"(V)) is the neu-
ronal output a(n) at time n given the initial state V.

where a;(m) =6( V, (m) —h,. ) and an external input I; has
been included. Note that the membrane potential of a
standard binary network is discrete valued since it is
given by the linear sum of binary-valued variables, Eq.
(1). This implies that the dynamics is recurrent. On the
other hand, the membrane potential of a time-summating
network is continuous valued and generally leads to non-
recurrent behavior.

To illustrate the complex behavior of time-summating
networks we briefly consider the case of a single neuron
(N = 1) with an external input I satisfying

V(m) =F( V(m —1) )

If S & 0, then A, ( V) =X, independently of V, where
A, =lny —Sp &0 and the dynamics is not chaotic. There-
fore, suppose S &0 with e y) 1. Then the dynamics
on X is determined by the value of the quantity
b, =F(v ) —F(V+) [11]. If b, &0, which implies that
I &I,=w(1 —y)/(1 —e ), the behavior of the neuron is
similar to the case iI) )0. In particular, p is well defined
and increases monotonically from zero at I=O to the
critical value p, =

~
lny /w, corresponding to zero

Liapunov exponent, at I=I, . On the other hand, when
6, (0 or I &I„ the limit in Eq. (22) does not exist and
p(v) is defined to be the set of limit points of the se-
quence [g~ 06(F"(V))/M ]. Moreover, it can be shown
that the union of such sets over V&+ is given by a
closed interval [a,b] where [35]

a = inf lim inf
e(F"(v))

VER M +co M

b = sup lim sup
e(F"(v))

ve M ~ M

The values of a and b increase monotonically with I such
that a )p, for I &I,. It follows that the Liapunov ex-
ponent A, is replaced by the interval [A,„A,b ] where
A,, =lny+

~
w ~a & 0 and similarly for A,b. Since A,, & 0, the

dynamics on X is chaotic, in the strong sense of sensitivi-
ty to initial conditions, when I)I, . From the discussion
of the dynamics of a single neuron, it follows that a
necessary condition for Eq. (20) to have chaotic solutions
when N & 1 is that exp( —g w, )y; & 1 for at least one i
Then for certain mean output configurations there exists
a positive Liapunov exponent. One such configuration is
a;=1 for all i =1,. . . ,N. The same inequality will also
arise in our analysis of asymptotic stability in stochastic
networks; see Sec. IV.
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IV. NOISE, ASYMPTOTIC PERIODICITY,
AND STABILITY

u +, ( V') =(K„u )( V')

= f 5(V' —F(V)—il)u (V)dV .
8

(25)

The Dirac 5 function in Eq. (25) restricts the integral on
the right-hand side to points V which satisfy
F( V)+ri= V'. On the other hand, when ri is a random
variable, the density of the corresponding stochastic sys-
tern evolves according to the modified linear operator
equation u +, =Au where

u +i( V') =Ku ( V')

= f p(g)(K„u )( V')dpi

= f p(V' —F(V))u (V)dV (26)

and p(ri)=g, .p;(71;). Note that K is a linear Markov
operator from the space of L ' functions on E+, L '(E ),
into itself. In particular, for any density u, Ku ~0 and
[~Ku ~~

=
~~u ~~

so that Ku is also a density. We shall denote
the space of densities on lR by D.

To analyze the asymptotic behavior of the sequence

[u; m ~ 0} we shall use the results of Lasota and Mack-
ey [31]. We begin by defining a class of linear Markov
operators that satisfy a spectral decomposition theorem
analogous to the Perron-Frebenius theorem for irreduc-
ible Markov chains (see Sec. II). A set VC:L'(E ) is
called weakly precompact if every sequence of functions
If„},f„H 7, contains a weakly convergent subsequence,

Ig„} say, that converges to some fHL'(E+). In other

We now turn to the study of noise in the time-
summating binary network constructed in the preceding
section. The simplest way to incorporate noise into such
networks is to replace Eq. (20) by the stochastic equation

V;(m ) =F, ( V(m —1))+ri;(m —1),
where g, is an additive white-noise term, with density p, ,
corresponding to a random fluctuation of the membrane
potential V~. (See also Sec. VI). Deterministic dynamical
systems with applied stochastic perturbations have been
considered by Kifer [36], Lasota and Mackey [30], and in
the physical context by Feigenbaum and Hashler [37] (see
also the discussion of the structural stability of maps by
Zeeman [38] and MacKay [39]). More specifically, a use-
ful way of studying such systems is to consider the time
evolution or flow of probability densities in state space.
This flow is generated by picking a large number of initial
states of the system and following the ensemble of trajec-
tories associated with these states. The probability densi-
ty at a particular point in state space and at a time m
determines the likelihood of a trajectory of the ensemble
passing through an infinitesimal neighborhood of that
point at time m. Let u denote the probability density
on the space of membrane potentials V(m). For a fixed
vector g = (ii„.. . , g~ ), the density of the (deterministic)
system (24) evolves according to the linear operator equa-
tion u + &

=K„u where

Moreover, an operator K on L'(IR ) is defined to be
weakly constrictive if there exists a weakly precompact set
VCL'(Ez) such that

lim d(K"f, V)=0 for fHD,
g —+ QO

(28)

where d (f, V) denotes the distance between f and the set
V with respect to the L' norm [30,31]. The importance
of an operator being weakly constrictive is that it then
satisfies the following spectral decomposition theorem
due to Komornik [40], as described in [31].

Spectral decomposition theorem. Let K be a weakly
constrictive Markov operator on E . Then there is an in-
teger r, two sequences of non-negative functions g; ED
and k; EL, i =1,. . . , r, and an operator R: L' —+L'
such that for all fEL ', Kf may be written as

T

Kf(x)= g A,;(f)g;(x)+Rf(x),
i=1

where

A,;(f)= f g(x)k;(x)dx .

(29)

(30)

The functions g,. and the operator R have the following
properties.

(i) g, (x)g (x)=0 for all iWj, so that the densities g;
have disjoint supports.

(ii) For each integer i there exists a unique integer co(i)
such that Kg; =g„~;~. Moreover, co(i)Ace(j) for j Wi and
thus the operator E simply permutes the functions g;.

(iii) ~~K "Rf
~~
~0 as n ~ oo for every fHL '(E ). It

follows from Eq. (29) that K"fmay be rewritten as [31]

r
K"f(x)= g A, „,.~(f)g;(x)+K" 'Rf(x),

i=1
(31)

where ~~K" 'Rf ~~~0 as n~ao and co "(i) is the nth in-
verse permutation of i. As the densities g; all have dis-
joint support, the operation of X may be viewed as per-
muting the set of coefficients [ A, ,j= 1, . . . , r }. Hence
the summation in Eq. (31) has period less than r!. More-
over, since ~~K" 'Rf

~~
~~0 as n —+ ~, the sequence

[K"f} is said to be asymptotically periodic One of th.e
interesting features of such periodicity, as demonstrated
by Lasota and Mackey [31], is that for certain systems,
whose limiting behavior is aperiodic in the absence of
noise, the addition of noise induces asymptotic periodici-
ty.

Consider the mapping F=(Fi, . . . ,F& ): IR —+E
defined by Eq. (20), which may be written in the form

F( V) = A ( V)+B( V)

with

(32)

words,

lim f g„(x)h(x)dx= f f(x)h(x)dx
n ~ 8" ~n

for all h EL '(E") . (27)
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~, (V)=r, (V)y, V, , &, (V)=r, (V) y w,„e(V„—h„),
k

(33)
I;(V) =exp —g w;~ 6( VJ

—
h~ )

J

Furthermore, assume that (i) the density p generating the
additive noise has finite first moment, i.e.,

f „lrilp(iy}dpi& m, (34)

where
I I is the norm of R and (ii) I, ( V)y; & 1 for all

VH R and i = 1, . . . ,N. Then the operator K of Eq. (26)
is weakly constrictive. For condition (ii) implies that

P (a)= f „u (V)8, (V)dV,
R

where

N

O, (V)= + Ia;e(V, —h;)+(1—a, )[1—e(V, —h;)]j .

(39)

(40)

IF( V) I I
~ ( V) I+ I a( v) I

& y I
v +

I pl, (35)

where y=max; i, fr;(V)y;j &1 and g;=ygkwk. The
result then follows from theorem 1 of Ref. [31], which
effectively states that K is weakly constrictive if p satisfies
Eq. (33) and IF( V}

I

& al VI+0 for some a & 1, P) 0. The
latter condition is satisfied for a=y, P= Igl. Therefore,
from the spectral decomposition theorem we deduce that
the sequence of densities I u„j in Eq. (26) is asymptotical-
ly periodic. Note that condition (ii) is automatically
satisfied if w;. EIR+. However, it no longer holds when
the allowed range of w; is extended from IR+ to IR such
that exp( —g w; )y; ) 1 for at least one i; the latter is a
necessary condition for the occurrence of chaotic behav-
ior in the noiseless case, as explained in Sec. III.

A special case of the spectral decomposition theorem
occurs when r =1, so that the summation in Eq. (29)
reduces to a single term. Then the sequence I K

"fj con-
verges to a unique limit as n ~ oo independently of f, and
the operator K is said to be asymptotically stable. As-
sume that the density p satisfies the inequality (34) and,
moreover, that it has sufficiently large nonzero support.
More precisely, suppose that there exists a point goEIR
and a number ro)(my+ gl)/(I —y), integer m )0,
such that

p(i)))0 almost everywhere for li) —
i)ol &ro . (36)

It can then be shown that the Markov operator X defined
by Eq. (26) is asymptotically stable (see theorem 2 of Ref.
[31]). Denoting the unique limit of the sequence I u„j by
u, we have

lim Ilu„—u„II=0
pf —+ oo

independently of the initial density uo. Equation (37) im-

plies the ergodicity condition

lim g ™= f „f(V)u„(V)dV,M R~
(38)

where f is any integrable function [cf. Eq. (7) of Sec. II].
Note that the density used in the Little model, Eq. (12),
satisfies the conditions (34) and (36).

We end this section by briefly discussing the dynamics
of the network in the space of binary outputs [0, 1 j . As
in Sec. II, let P~(a ) be the probability that the output of
the network at times m is a. Then P (a) may be ob-
tained from the density u by the projection

Hence the sequence of densities t u j on R induces, via
Eq. (39), the sequence of probabilities [P j on I0, 1 j
Furthermore, asymptotic stability of the Markov opera-
tor K implies that the latter sequence converges to a
unique distribution P with

P = lim P (a)= f „u (V)8, (V)dV .
m~oo R

(41)

However, the sequence IP j does not, in general, satisfy
a Markov chain of the form of Eq. (4), but is described,
instead, by a non-Markovian process. This reflects the
lack of a unique transition from a(m) to a(m +1) in the
deterministic limit (see Sec. III). An exception is the case
y;=0, i =1,. . . , N, in which the projection of Eq. (26)
using Eq. (39) reduces to Eq. (4), with the transition ma-
trix Q satisfying

N

Q, = f + p;(V; 8;(a—))O (V}dV, (42)

where

8;(a ) = I;(a ) g w;kak,
k

I;(a )=exp —g w,"a
J

(43)

If w;1 =0, i,j =1,. . . , N, then Eq. (42} is identical to Eqs.
(5) and (11).

V. PARAMETER DEPENDENCE
OF LIMITING DISTRIBUTION

In the absence of noise, the dynamics of a time-
summating binary network (Sec. III) differs greatly from
that of a standard binary network (Sec. II), the latter cor-
responding to the limiting case y,-~0, i =1,. . . ,N. On
the other hand, if additive white noise is introduced ac-
cording to Eq. (24), with the density p having finite first
moment and sufficiently large nonzero support [Eq. (36)],
then the operator K of Eq. (26) is asymptotically stable
and the limiting behavior of the system is described by
convergence to a unique limiting distribution u, ir-
respective of the values of y; (Sec. IV). In this section we
consider the explicit parameter dependence of the limit-
ing distribution u „, Eq. (37), and show that it is
differentiable with respect to the connection weights
w;. , ur;. and decay factors y;. This is then used to obtain
a linearized expression for P about the point in parame-
ter space given by y;=0, i =1,. . . ,1V, for fixed weights.
The fact that the limiting distribution u is a
differentiable function of the weights suggests that u

could, in principle, be determined by some form of gra-
dient descent learning algorithm.
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Before proceeding, it is useful to rewrite the spectral
decomposition theorem of Sec. IV in the following form:
If K is any weakly constrictive, asymptotically stable
operator on R", then there exists a positive real eigenval-
ue A, = 1 of maximum modulus, and the space L'(E )

may be decomposed into K-invariant subspaces

L '(E~) =E+H, (44)

where the parameter dependence has been made explicit,
with e denoting the connection weights w;-, w; and de-

cay factors y;. Note that 0 may be considered as a
differentiable mapping from 0 XL '(E )~L '(E ) where
A is the parameter space of the a' s. In particular

=5( V —V') —( V F( V', a))—
5u( V')

(46)

and

p ( V F( V', —) )
BF

( V')d V' .
5o, - BV Ba

where (i) F. is the eigenspace of the eigenvalue A, and has
dimension 1 and (ii) H has codimension 1 and K~H has
spectral radius less than A, . In other words, E contains a
unique element f (modulo scalar multiplication), such
that K(f)=f and K(h)EH for all h EH with
lim„K "(h ) =0. The above is analogous to the
Perron-Frobenius theorem for irreducible, aperiodic
Markov chains (Sec. II).

To prove differentiability of the unique limiting density
u „we follow an argument due to MacKay [39]. First,
note that the density u satisfies the fixed point equation
K(u„)=u„, where K satisfies Eq. (26). This may be
written in the form (dropping the subscript ~ for con-
venience)

Q(u, a)(V)=u(V) —fp(V F'(V—', a))u(V')dV'=0,

where y = ( y i, . . . , y& ). Multiplying both sides of Eq.
(50) by Ob(V) and integrating over V we obtain, using
Eq. (41),

P(b, y)=P(b, O)+ g (b, O)y; .
7l

(51)

—:g 'Qp, ( V,
' —I;(a )y; V,

—B;(a )) 0, ( V),
a i

(52)

we have

59(u 0)( V) y Bp
( V. av—

X fO, (V') (V', 0)u(V', 0)dV',, aI'

Vl

(53)

where BF/By; = V; and I, and B; are defined in Eq. (43).
Moreover, from Eqs. (45) and (52),

u ( V, O) = g p( V B(a ) )P(a—, O) . (54)

Finally, combining Eqs. (49), (53), and (54) we obtain

(b, O) = g g (1 —
Q ) 'M"M" '

P(a, O),
~l ba

(55)

where Q is the transition matrix (42), and

The derivative BP/By, may be calculated directly from
the limiting probability distribution P(b, O). For using
Eq. (47) and the identity

p( V' F(V—, y))

(47)
Equations (46) and (47) may be written in the symbolic
form

M,".= f P (V—B(a))O, (V)dV,Bp

l

(56)

59 =1-
6u

5Q
5a (48)

Mb", = f p( V B(a ) ) V, Ob( V)d V—.

Since the operator K satisfies the spectral decomposition
theorem, as described in the preceding paragraph, it fol-
lows that the tangent space to the space of densities D is
H, and 1 —0 is invertible on H. Hence, applying the im-
plicit function theorem [33] we conclude that the limiting
density u locally forms a differentiable graph u(a) such
that

Thus, to first order in y, P(b, y ) may be calculated ex-
plicitly if P(b, O) is known. The latter is particularly sim-
ple when p satisfies Eq. (12) and w,"=w, , w,"=0. For
then P(b, O) is given by the limiting distribution of the
Little-Hopfield model, which is a Gibbs distribution [4].

VI. MEAN-FIELD THEORY

" =(1—6)-'~ .
6a (49)

u(V, y)=u(V, O)+ g (V, O)y;,
6u
'Yl

(50)

Moreover, all its derivatives are bounded [39].
A straightforward corollary of the above result is that

the limiting density is a continuous function of the
weights w; and scaling factors y;. In particular, assum-
ing that the weights are fixed, to a first approximation

So far we have considered stochastic dynamics from
the viewpoint of linear Markov theory. In this section we
turn to the issue of the macroscopic behavior of time-
summating networks in the thermodynamic limit N~ ~.
For simplicity we shall consider a homogeneous network
described by Eqs. (2) and (20) with w; =0, w;, = —w IN,
I; =I, y;=y for all i,j=1,. . . ,%. Moreover, it is con-
venient to introduce the noise term g; via Eq. (2) rather
than Eq. (20), with g,. now interpreted as a random
threshold. That is,
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V, ( m + 1 ) =F,"i( V( m ) )
w=y V;(m) ——g e( V (m )+r/ (m))+I,

j=1 (57)

so that Eq. (26) becomes

1 1M(m)= —g
1+e J™ (63)

Similarly, the mean activity of the network, defined by
M(m) = g+=, a;(m)/N, satisfies

Nu, (V')= f p(q)fi V' — yV ——ye(V, +q;)
R i=1

+I u ( V)d Vdi)

1 V' —F( V)
J RN N~

yy

Xu V — dV,
V' F( V)—

(58)

The mean output activity M(m) determines the degree of
spatial ordering of the network at time m, with M=1,0
corresponding to an ordered macroscopic state and
M =0.5 a disordered one. Since V, (m + 1)—Vz(m +1)=y[V;(m) —V (m)], y (1 for all iWj, it fol-
lows that the long-term macroscopic behavior of the net-
work is efT'ectively governed by the single mean-field
equation

X(m+1)=F&(X(m))=yX(m) —w +I,1

1+e &™
(64)

and

V; =yV; ——g +I1

~j=»+e " (60)

w'
(&v )'=

~2 —Pv.
1

1+e
(61)

where we have used the fact that each g, , i = 1, . . . , N, is
independently distributed. Each term in the summations
of Eqs. (60) and (61) is finite. Therefore, in the thermo-
dynamic limit X~~, Auctuations vanish since
(b.V,')/V, '~0. In other words, in a given trial the proba-
bility that V~'= V~', where V,.

'
satisfies Eq. (60), approaches

unity. Such a result holds if Vis replaced by the dynami-
cal vector V(m) satisfying Eq. (57), since the random
thresholds are independently generated at each time step.
Then V = V, (m+1) and we obtain for large N the
dynamical mean-field equations

w 1
V, (m+1)=y V;(m) ——g p, ,

+I . (62)p, ( )

where as usual p(i))=Q, ,p, (i);). We see that p in Eq.
(58) is equivalent to Eq. (26) provided the densities are
rescaled such that p,

'. (x)=y 'p, (x/y). In the following
we shall assume that the density p, satisfies Eq. (12), in
which case this corresponds to a simple rescaling of the
temperature. [Note that for nonlinear threshold activity,
i.e., w; %0, there is an extra nontrivial Jacobian in Eq.
(58).] Although there is no longer a straightforward
equivalence between random threshold noise and random
Auctuations of the membrane potentials, the similarity
between (58) and (26) suggests that the analysis of the
preceding sections can be extended to the former case.

To derive mean-field equations for a homogeneous net-
work we proceed along the lines of Ref. [32]. That is,
consider a fixed vector V and define the associated ran-
dom variables V =Fbi( V ), with mean and variance

V,'=(FP(V))p,
(59)

(6V,.')'=( [FP(V) V,'][F,~( V) ——V ])
Here ( ) denotes averaging with respect to the random
thresholds. From Eqs. (12) and (57)

m

1+exp —Pg y" '[I—wM(m —y)]
r= 1

(65)

We note that the mean-field equation for the mean output
activity, Eq. (65), can also be derived using a functional
approach similar to that developed for standard binary
networks [10].

Equation (64) is identical in form to the single-neuron
model of Aihara, Takabe, and Toyoda [12] and can have
both periodic and chaotic solutions. We shall assume
that /3, w, and y are fixed and discuss the dynamics of F&
as a function of the global external input I. Without loss
of generality we take I and w to be positive with I (w.
Suppose that i~= [wp/2y) —1])1 so that the function

has two critical points at +X*, where
PX*=ln[i~+)/(v —1)] (Fig. 1). There is also a unique
fixed point, denoted X=X0, which lies in the interval
[
—X*,X*]. Since p, y, and w are fixed, changing the

value of the external input I simply shifts the graph in
Fig. 1 vertically. For p))1 (low-temperature regime),
there exists an interval II = [w, w+ ], with
0 (w (w+ (w, such that for all IE Q the fixed point is
unstable. That is, the slope of the graph at the fixed point
Xo has modulus greater than unity. A11 trajectories then
converge to the closed interval g= [F&(—X*),F&(X*)]
on which the dynamics is either periodic or chaotic. The
possibility of chaotic dynamics arises from the fact that
for p)) 1 the negative gradient branch of the graph of F&
has an average slope of modulus greater than unity,
which can lead to a positive Liapunov exponent [12]. On
the other hand, if I~0, then the fixed point is stable and
all trajectories converge to Xo. In Fig. 2 the bifurcation
diagram of M(m), satisfying Eq. (65), is plotted as a func-
ton of I with P '=0.04, w=1.0, and y=0. 5. In Fig. 3
the bifurcation diagram of M(m) is plotted as a function

where X(m) is the mean membrane potential of the net-
work, X(m)=g;. =, V;(m)/N. The mean output activity
is now

1M(m) =
1+e
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FI3(X)
1.0

p

FIG. 1. Graph of the map F& for P=0.04. The critical
points —X*,X*,and the unique Axed point X0 are indicated by
p, q, and o, respectively. The dotted rectangular region denotes
the restriction of F& to g.

of the temperature T=P ' for fixed external input
I=0.09. Note that in the zero-temperature limit the sig-
moid function reduces to a threshold function and chaot-
ic dynamics cannot occur for any value of I. Moreover,
there exists a range of values of IH [O, w] over which
chaos cannot occur at any temperature. This is illustrat-
ed in Fig. 4 where the critical temperature T„defined as
the lowest temperature at which the Liapunov exponent
is positive, is plotted as a functon of I for w=1.0,
y =0.5. From Fig. 4 we find that a finite critical temper-
ature does not exist when I&[0.5 —5,0.5+6, ] where
b, =0.16. The behavior of F& on g may be understood
further by observing that if the points F13(

—X") and
F&(X*) are identified as points of a circle, then F& re-
stricted to g is equivalent to a nonmonotonic circle map
[41] with a single discontinuity at the identified point (see
also Ref. [11]).

0.0

0.10.050.0 Temperature T

FIG. 3. Bifurcation diagram for the mean output activity as a

function of temperature T=P ' for fixed external input

I=O.09.

We now interpret the solutions to Eqs. (64) and (65) in

terms of the behavior of the underlying neural network.
First, the existence of periodic and chaotic solutions im-
plies that in the limit X~~ the network exhibits macro-
scopic behavior in which asymptotic stability is broken.
For if the network were asymptotically stable, then Eq.
(38) would hold, implying that the ensemble average of
M( V), say, converges to the fixed point

1.0
0.1

0.5

0.0

1.00.50.0 External input I

FIG. 2. Bifurcation diagram of the mean output activity
M(m) as a function of the external input I for ~ =1.0, y =0.5,
P ' =0.04.

0.0 0.5 - h 0.5 + 6 1.0
External Input I

FIG. 4. Critical temperature T, for onset of chaos as a func-
tion of the external input I.



M„= f M(V)u„(V)dV . (66) dered macroscopic states so that there is no phase lock-
ing.

(It is assumed throughout that the thermodynamic limit
is taken before any long-time limits. ) It is important to
note that the macroscopic behavior of the homogeneous
network, Eq. (57), is independent of initial conditions so
that in this particular case the breaking of asymptotic
stability does not lead to the breaking of ergodicity. A
second consequence of Eqs. (64) and (65) is that for cer-
tain values of the external input the dynamics is phase
locked in the sense that the firing patterns of (almost) all
the neurons are synchronized. This only occurs when the
network dynamics is restricted to ordered macroscopic
states, i.e., M(m)=0, 1 for all m )0. Such states corre-
spond to cases in which the membrane potentials of the
neurons have relatively large modulus so that fluctuations
can be ignored in the low-temperature regime. (On the
other hand, phase locking cannot arise for disordered
macroscopic states, irrespective of whether the dynamics
is periodic or chaotic, since the particular neurons which
are active at any given time is random. ) For example,
when IE [0.4, 0.6] the network is bistable, with the mean
output activity oscillating between the ordered states 0
and 1. On the other hand, when I=O. 1 the dynamics of
M(m) is chaotic and includes both ordered and disor-

VII. DISCUSSION

In this paper we have analyzed the stochastic dynamics
of time-summating neural networks with noisy external
inputs, based on the discrete time leaky-integrator model
of Bressloff and Taylor [10]. Moreover, we have shown
how nontrivial periodic and chaotic dynamics can be gen-
erated at the microscopic and macroscopic levels. A
number of interesting issues are raised by this work.

(i) In Sec. VI we derived dynamical mean-field equa-
tions describing the response characteristics of a homo-
geneous time-summating binary network as a function of
an external input I, in terms of the mean output activity
M(m), Eq. (63). One possible way to extend such an
analysis is to take the connection weights w;J in Eq. (20)
to be of the Hebbian form [42] wg„ iPP/N, for a set
of P random pattern vectors P, @=+1, and to consider
external inputs QP, I"P'. If the outputs of the neurons
are expressed in terms of the "spin representation"
S; =26( V;(m)+71;(m)) —1=+1, then following the
analysis of Sec. VI, we can derive the mean-6eld equa-
tions (for large m and finite P, as N ~ ~ )

(67)

M"=g+ iPS; /N, and (& )) denotes self-averaging
over the random pattern vectors [6]. However, the
analysis of Eq. (67) in nontrivial since (i) the average
long-term behavior of the network will depend on the ini-

tial conditions, implying that ergodicity as well as asymp-
totic stability has been broken; (ii) the various attractors
of the dynamical mean-Geld equations will generally be
periodic orbits or chaotic (rather than fixed points, as in

the case of the Little-Hopfield model with symmetric
weights); and (iii) it is necessary to perform the self-

averaging over the space of pattern vectors. Moreover,
although functional techniques along the lines of Ref.
[32] can be used to derive dynamical mean-field equations
when the number of patterns P increases with the size of
the network, P=alV, the resulting self-consistency equa-
tions for the autocorrelation and response functions ap-
pear intractable. These issues need to be confronted be-
fore an analysis of the pattern storage capacity of sto-
chastic time-summating networks with Hebbian learning
can be carried out. (See also Ref. [28] for a discussion of

stochastic time-delay networks. )

(ii) The Hebbian form for the connection weights is
based on a learning rule in which each w, is modified ac-
cording to the output activities on either side of the con-
nection (ij ) and does not depend on the particular values
of the internal membrane potentials V;, V. . Since the
dynamical variables of time-summating networks are the
internal activation states of the neurons rather than the
binary outputs, it would be of interest to develop alterna-
tive learning rules which have an explicit dependence on
the V; (especially of the target neuron).

(iii) Instead of considering the relationship between the
macroscopic behavior of a network and the underlying
microscopic behavior of the individual neurons, it is pos-
sible to view the network itself as a single formal unit
along similar lines to Amari [43] and Anninos er al. [44].
One may then analyze the dynamics of networks of such
units or "netlets" with the important variable of each
unit being the mean activity, say.
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