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We derive the momentum and pseudomomentum conservation laws from a very general nonrelativis-
tic Lagrangian theory of the interaction of the electromagnetic field with a deforming, dispersive dielec-
tric. From the former of these laws, we obtain the momentum density of an electromagnetic wave in
matter to be ¢,E X B, not the Abraham form of €;EXuoH. From the latter of these laws, we obtain the
electromagnetic pseudomomentum density in the absence of deformation of the matter to be P XB plus a
dispersive term, not the Minkowski form of D XB as proposed by Blount (unpublished). We show by
quantizing the energy of the wave that the sum of momentum and pseudomomentum, which we name
wave momentum, corresponds to N7k (N an integer), the quantity that enters wave-vector conservation
or phase-matching relations in wave interactions and that is consistent with the Jones-Richards experi-

ment.

INTRODUCTION

It is a striking fact that for over eighty years there has
been a controversy over a seemingly simple classical
quantity, the momentum density of an electromagnetic
wave in a material medium. The controversy began with
Minkowski’s Lorentz-covariant formulation of Maxwell’s
electromagnetism in which he proposed a relativistic
4X 4 stress-energy-momentum (SEM) tensor of the elec-
tromagnetic field [1]. His momentum density part of the
SEM tensor, in its ordinary three-vector SI units, is
D X B, where D is the electric displacement and B is the
magnetic induction. Abraham [2] soon criticized the
Minkowski tensor for its lack of symmetry. Because of
the close connection in relativity between momentum and
the flux of energy EXH, he proposed an alternate SEM
tensor that is symmetric and which contains a momen-
tum density, again in its ordinary three-vector SI units, of
EXH/c? where E is the electric field, H the magnetic
field, and c the speed of light.

Since neither the Minkowski nor the Abraham tensor
was truly derived, the issue has been reconsidered in
scores of papers from scores of viewpoints. Interestingly,
the ““vote” has split about equally over the years between
the two forms. Reviews that consider the controversy to
about 1970 are Pauli [3], Mdller [4], Brevik [5], Penfield
and Haus [6], and de Groot and Suttorp [7].

In 1971 Blount [8], in a seminal, but unpublished, work
introduced the concept of pseudomomentum or crystal
momentum, well known in solid-state physics, into the
controversy. He identified by relativistic, macroscopic
arguments the Abraham form EXH/c? as the momen-
tum density and the Minkowski form D X B as the pseu-
domomentum density. Momentum, of course, is a con-
served quantity by virtue of the homogeneity of space,
that is, as a result of the invariance of the laws of physics
to displacements of the spatial coordinates. Pseu-
domomentum can also be a conserved quantity provided
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the material medium is homogeneous, that is, as a result
of the invariance of the laws of physics to translations of
the material coordinates (those which label a point of
matter). This important distinction has reoriented work
on the Minkowski-Abraham controversy from a simple
issue of right or wrong to one of proper identification and
experimental applicability.

More recent papers of Skobel'tsyn [9], Gordon [10],
and Robinson [11] have agreed that the Abraham form is
the momentum density of the electromagnetic wave while
agreeing that the Minkowski form applies to many exper-
iments, in particular, to the Jones and Richards experi-
ment [12] and its improved version [13]. Gordon [10]
and Peierls [14-16] accept the identification of the Min-
kowski form as the pseudomomentum density. Peierls
differs, however, from other work by concluding [14] that
“Abraham’s formula gives correctly the part of the
momentum of the medium which resides in the elec-
tromagnetic field, but not the mechanical momentum of
the medium which travels with the light pulse.” A par-
ticularly important work is the derivation by de Groot
and Suttorp [7] of the Abraham result for the momentum
density from a relativistic treatment. Interestingly, they
obtain a different result, ¢,EXB, from a nonrelativistic
treatment. We shall return to a discussion of this later.

The results we derive in this paper differ on the form of
both the momentum density and the pseudomomentum
density from the Abraham form and the Minkowski
form, respectively. We find the momentum density of an
electromagnetic wave in a material medium to be €;EXB
in SI units and the pseudomomentum density (in the ab-
sence of deformation) to be PXB plus a dispersive term.
Besides presenting a very general deductive mathematical
derivation for each of these quantities, we present what
we believe to be a strong physical argument in support of
each. We also present a new interpretation of the Min-
kowski momentum density. It represents, in the absence
of deformation, the nondispersive part of the sum of
momentum and pseudomomentum densities. With the
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dispersive part included, we define this sum of momen-
tum and pseudomomentum as wave momentum and show
that it is the quantity which plays the dominant role in
wave interactions.

A review of the techniques used in this long controver-
sy produces a number of lessons useful to a present-day
worker on the controversy. First, though the controversy
arose out of relativistic formulations of electromagne-
tism, the main issue is not relativistic. The Minkowski
momentum density differs from that of Abraham by a
factor of the refractive index squared, which can range in
value from 2 to 10. Thus a nonrelativistic treatment
should be capable of resolving the main issue. The rela-
tivistic issues are important, but can be dealt with more
easily when the main issue is resolved. Second, the issue
cannot be resolved by reliance on Maxwell electromagne-
tism and relativity alone. The matter equations must be
included and handled on an equally fundamental basis,
with the action and reaction between field and matter
correctly included. Third, because the controversy has
always treated the matter as a continuum, the matter
equations can be treated in the long-wavelength limit
(wavelengths much greater than the atomic or cellular
size). Fourth, imposing symmetry in an unfamiliar area
from a macroscopic viewpoint may be unjustified; it
should rather be derived from a more fundamental
viewpoint. For example, imposing symmetry on the 4 X4
SEM tensor forces the 3 X 3 stress tensor to be symmetric.
However, this is untrue as shown for an arbitrary dielec-
tric crystal for dynamic excitations [17,18]. For materi-
als with a soft optic mode the asymmetry can be sizeable.
There the torque from the antisymmetric part of the
stress tensor is balanced by a change in the internal angu-
lar momentum density of the optic mode. Fifth, as is evi-
dent from the fourth point, it is important to include all
long-wavelength mechanical modes of motion, three of
which are acoustic modes and 3N —3 of which are optic
modes (N is the number of particles per primitive unit
cell in a crystal). The optic modes not only allow asym-
metric stresses but produce the frequency dispersion in
the dielectric tensor that accounts for the temporal
response of the medium. Sixth, in order to handle these
many modes of motion correctly, it is important to intro-
duce appropriate coordinates. These should include the
continuum center-of-mass position, which is closely relat-
ed to the displacement vector that describes the three
acoustic modes and which carries all the momentum of
the material medium. They also should include N —1
vector internal coordinates, linear combinations of which
are the 3N —3 scalar optic mode normal coordinates,
which describe the 3N —3 optic modes. These must be
defined so that they cannot carry any momentum of the
material medium. Seventh, since a key concept has prov-
en to be the distinction between momentum and pseu-
domomentum, which have their natural expressions in
two different coordinate systems, the spatial (Eulerian)
and material (Lagrangian) coordinate systems, respective-
ly, it is important to use a formulation of the problem
that employs both of these systems. Eighth, the issue of
whether a resolution of the controversy must arise from
microscopic [7] or macroscopic [8,11] origins is, to this
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author’s way of thinking, mostly a matter of aesthetics.
The important aspect of a resolution is that it be deduc-
tive from well-accepted first principles. If it is first done
so from macroscopic origins, it is doubtless that those
origins will later be justified from microscopic origins,
but, by that time, it will not be a resolution of this contro-
versy but rather an expansion of the interconnections
that physics must have. Alternatively, if a resolution is
first obtained from microscopic origins, the development
will produce a macroscopic intermediate formulation in
the process of resolution and all viewpoints should be
satisfied. Ninth, since the flow of momentum and pseu-
domomentum hinges on the nature of the forces involved,
it is important to distinguish between long-range and
short-range forces. Short-range forces arise from bond-
ing forces in the solid and produce mechanical stresses
(or contact forces) active only across a surface. They
arise as derivatives of a stored energy of the solid which
is a function only of the 3N mechanical coordinates of the
solid. Long-range or volume forces arise from derivatives
of a multipole expansion of the interaction energy of the
solid with the macroscopic electromagnetic fields. Tenth,
unambiguous identification of a density and a flow of a
conserved quantity requires, as a minimum, obtaining the
actual conservation law, not just a continuity relation of
the quantity for some subsystem, such as the electromag-
netic field. Otherwise, the density, the flow, and the in-
teraction with other subsystems can be rearranged into
many forms with consequent ambiguity of interpretation.
Also, the derivation of the general conservation law is
preferable in our way of thinking to the evaluation of a
thought experiment. While constructing the theory of a
thought experiment is often a fruitful approach, it has
proven to have many pitfalls in this field because of the
rather subtle distinction between momentum and pseu-
domomentum in experimental situations. Applications to
thought experiments are better handled after the general
concepts are established. Eleventh, for a conservation
law as unfamiliar as that of pseudomomentum in continu-
um physics, it should be derived from, or verified by, an
application of Noether’s theorem [17] in order to be cer-
tain that the quantity involved is actually pseudomomen-
tum. Twelfth, since the truth of a conservation law never
depends on specialized constitutive relations, such as
linearized or nondispersive ones, their use should be
avoided. At best, their use leads to a loss of generality,
and, at worst, they may mislead interpretation. Thir-
teenth,  the constitutive relations for the material
response fields (polarization P, magnetization M, quadru-
polarization Q, etc.) are given basically in terms of
mechanical variables of the medium. These response
fields combine with the fundamental ‘‘vacuum” elec-
tromagnetic fields E and B to produce the combination
fields D and H. These distinctions between the fields are
central to the physical interpretation of the momentum
and pseudomomentum densities that we derive. Also, the
inclusion of magnetization and quadrupolarization in the
present derivation is a substantial generalization of the
earlier work [17] at the electric dipole (polarization) level.
We make use of all of these lessons in the development
that follows.
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LAGRANGIAN FORMULATION

Our approach to the Minkowski-Abraham controversy
is to derive the two basic conservation laws relevant to
the controversy, as redefined by Blount. These are the
conservation laws of momentum and pseudomomentum.
To this end we use a very general Lagrangian formula-
tion. The Lagrangian approach has the great merits of
economy of construction, guaranteed self-consistency of
deductions including equality of action and reaction be-
tween subsystems, and the derivation of all constitutive
relations along with the dynamical equations of the sys-
tem. The reader is referred to Ref. [17] for a full exposi-
tion of this Lagrangian method.

We treat a closed system of an arbitrary dielectric crys-
tal, homogeneous in its natural (unperturbed) state, in in-
teraction with the electromagnetic field in the nonrela-
tivistic regime. The crystal may have arbitrary symmetry
and anisotropy, arbitrary structural complexity, and arbi-
trary order of nonlinearity in the interaction of the vari-
ous modes of excitation—acoustic, optic (both ionic and
electronic), and electromagnetic. The theory is based on
a macroscopic Lagrangian which, however, is derived
from microscopic physics by a long-wavelength limit
[17]. Thus it is hoped that the present treatment of the
Minkowski-Abraham controversy will satisfy both those
desiring a macroscopic resolution and those desiring a
microscopic resolution. While a statistical average is pre-
ferred by some [7] for passage from microscopic to mac-
roscopic equations, a long-wavelength limit must also
produce the same macroscopic equations or there would
be another controversy equal to the one presently dis-
cussed.

The Lagrangian consists of three parts: the matter La-
grangian L, the electromagnetic field Lagrangian Ly,
and the matter-field interaction Lagrangian L,

L=Ly+Ly+L,. 1)

Since we deal with the system in the long-wavelength or
continuum limit, the Lagrangian is an integral over a La-
grangian density .£, which is the quantity entering the
Lagrange equations. The density may be taken with
respect to the ordinary spatial coordinates z or with
respect to the material coordinates X. The choice de-
pends on which position coordinates one wishes to use as
the independent variables. Of course, transformation be-
tween the two choices can be done in the Lagrangian or
in the equations of motion with use of the deformation
transformation.

The matter Lagrangian consists of the kinetic energy of
the matter minus the stored energy of the matter. It is
important to choose appropriate fields in which to ex-
press these two quantities and thus the mechanical
motion of the crystal. The vector field coordinate x
representing the continuum formed from the center of
mass of all the primitive unit cells of the crystal should be
chosen as one such field because (i) all the momentum
carried by the matter can be expressed with this coordi-
nate and (ii) the three acoustic modes of the matter arise
from the equation of motion of the center-of-mass vari-
able [19] or the closely related displacement vector. The
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latter relates the spatial or deformed position x of a mass
point (z=x inside matter) with its material or unde-
formed position X by

u;=x;—8; X4 - (2)

Note that spatial frame components are denoted by
lowercase subscripts and material frame components are
denoted by uppercase subscripts even though the choice
of the Kronecker delta as the shifter tensor in Eq. (2)
shows that both types of coordinates are referred to the
same rectangular Cartesian axes.

If there are N particles per primitive unit cell,
then N —1 additional vector coordinates y’"
(v=12,...,N—1), called internal coordinates, are
needed (the superscript T for total is explained below).
They can and should be defined as displacement-invariant
coordinates. As a result of this they cannot carry
momentum, which is consistent with the center-of-mass
field carrying all of it. As a convenience the internal
coordinates can be defined so as to diagonalize the kinetic
energy. In a linearized theory the coordinates that diago-
nalize both the kinetic and stored energies are the normal
coordinates of the optic modes of the crystal. Thus they
are linear combinations of the internal coordinates. The
material-frame form of the matter Lagrangian is then

Ly= f'LMMdV , (3)
Ly =1p%% P+ 3 1m (3T —p°3 . @

Here dV =dX,dX,dX;, p° is the mass density (per unde-
formed volume) of the crystal, m " is the mass density (per
undeformed volume) associated with the v-internal coor-
dinate, the dot represents the material time derivative (X
held fixed), and X is the stored energy per unit mass.

The stored energy depends only on the configuration of
the particles in the primitive unit cell and the bonding
forces between them. As such, it can depend only on the
mechanical coordinates of the crystal. The stored energy
must permit the theory to conserve energy, momentum,
and angular momentum. This requires it to be indepen-
dent of time, to be independent of z and x, and to be a ro-
tational invariant (in the spatial frame). To satisfy the
last condition it is most convenient to express the stored
energy as a function of a minimal but complete set of ro-
tationally invariant measures of the mechanical coordi-
nates. Since perturbations of the medium are typically
small, a series expansion in terms of the rotational invari-
ants is useful. Such an expansion can be truncated at a
finite number of terms for application to some particular
interaction only if the rotational invariants vanish in the
natural state of the crystal. These several requirements
are met with the choice

S=3(E 5, 1I%), (5)
where
Ep=(x; 4%, —8,45)/2, (6)

Oy=Xc;y/"—Y¢ . )
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Here E , is the Green finite strain tensor, Y" is the value
of y'¥ in the natural state (y?*=Y"+y"), and gradient
notation is defined by x; ,=0x;/0X, and X¢;
=0X(/0dx;. Since we do not make use of the series ex-
pansion of Eq. (5) until the Appendix, we do not write it
down here.

The electromagnetic field Lagrangian is given by

Lsz’CFSdU ’ (8)
_fozn 1 oo
L > (E) 2#0( ), 9)
where
E=—24 _yo, (10)
ot
B=VXA. (11)

Here @, the scalar potential, and A, the vector potential,
are the Lagrangian variables and the integral with respect
to dv =dz,dz,dz, indicates that the field Lagrangian den-
sity .L p¢ is a spatial frame density. Note that E and B are
the fundamental electromagnetic fields because they are
derivable from the potentials and so exist both inside and
outside the matter.
The interaction Lagrangian is given by

LI:f"LIMde f"LISdU ) (12)
"CIS=J_1"£IM:j'A—qq) N (13)

where J =det(dx /3X ) is the Jacobian of the deformation
transformation and g and j are the charge and current
densities, respectively, in the spatial frame. Note that the
interaction Lagrangian density is given in two forms. We
find it convenient (but not necessary) to find the matter
equations of motion in the material frame and the elec-
tromagnetic equations in the spatial frame. Since the in-
teraction Lagrangian affects both, it is given here as two
densities appropriate for the two uses.

Since we treat a dielectric crystal, the free-charge den-
sity and the free-charge current density vanish. Because
these terms are the monopole terms of a multipole expan-
sion of g and j, it is convenient to employ a multipole ex-
pansion. This is also convenient because it can be trun-
cated at some appropriate order, commonly the electric
dipole order. Here we wish to retain magnetic dipole
terms so as to include magnetization terms and thus
unambiguously distinguish between the magnetic induc-
tion B and the magnetic field H, a distinction crucial to
interpreting the form of the momentum density. Because
the electric quadrupole terms are of the same order as the
magnetic dipole terms and can mix together with the
latter in the internal motion equations, we also must in-
clude them. The multipole expansions yield the current
and charge densities of bound charge

j—%—P+VX(PXx)+VXM——(V Q)
—VX[V-(QX%)], (14)
¢g=—V-P+VVQ . (15)
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Here the polarization P, the magnetization M, and the
quadrupolarization Q are given by

1
P=72qu”, (16)
2J zq/,w T,quTv 17
Q——Eq"” TuyT>, (18)

where g¥ and ¢** are charges associated with the internal
coordinates. Equations (14) and (15) contain spatial-
frame time derivatives /9t (z held fixed) and gradients
V;=0/0z;. The magnetization arising from intrinsic spin
is not included.

EQUATIONS OF MOTION

The Lagranglan density developed in the precedmg
section is a functlon of the Lagrangian variables x, y’
(v=1,2,. —1), A4, and ®, and an equation of
motion for each can be found. The material frame
Lagrange equation for x is obtained from

d 3Ly 3Ly g ALy,
dt ax.l axi dXA axi’A ’

(19)

where only the matter and interaction parts of the
material-frame Lagrangian density .L,, contribute. The
result is

0
RO
dXA ax,», A

+pJE +ez]kaBk +€1]kx Bk 1P1

+m By Y quE T € X i B im 9im t €519 B 1 >
(20)

where p=JP, m=JM, q=J 6, and the electromagnetic
fields are evaluated at z=x(X,#), X and ¢ being the in-
dependent variables. A similar procedure yields the
equations of motion for the internal coordinates

Vis ‘V—_a

m-y,; 3y Tv +qv(Ei+6ijkijk )+ %qv“ijuEij
l

+€ijkx.j Eqv”le#Bk,I_*_eijk zqvﬂ}) :‘;Bk . (21)
K ©

When the last three terms in Eq. (21) are traced to
their origins in the Lagrangian, it is seen that they each
contain contributions from both the magnetization and
the quadrupolarization. It is for this reason that quadru-
polarization is included in the treatment even though our
main interest is in the inclusion of magnetization in order
to distinguish H from B.

The spatial-frame Lagrange equation for the vector po-
tential A is obtained from

d oL, L d 9L,
dr 3(04,;/3t) 0A4; dz; 34

to be

(22)
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1 yxB—eE=j, (23)
Ko at

where j is given by Eq. (14) and the independent variables
are z,t with z=x inside matter. A similar procedure
yields the equation for the scalar potential ®

€ V-E=g¢q , (24)

where g is given by Eq. (15).

The electromagnetic equations (23) and (24) are in the
Maxwell-Lorentz form in which E and B are regarded as
the fundamental electromagnetic fields and the response
of the matter is determined entirely by j and g, which by
Egs. (14) and (15) are expressed in terms of the matter
response fields P, M, and Q. Note also that the response
fields are defined in Egs. (16)—(18) in terms of the
mechanical coordinates of the matter. The Maxwell-
Lorentz equations (23) and (24) in conjunction with Egs.
(14) and (15) can be reexpressed in the Maxwell form by
defining the magnetic field H and the electric displace-
ment field D by

H=L1B-Pxx—M+V-(§xx), (25)
Mo
D=¢E+P—-V-Q. (26)

Thus H and D are combinations of the fundamental vac-
uum electromagnetic fields E and B and the matter
response fields P, M, and Q The two remaining Maxwell
equations,

a

VXE+—B=0, 27)
ot

V:-B=0 , (28)

are direct consequences of the definitions of E and B in
terms of the potentials and so arise as ancillary condi-
tions in the Lagrangian method.

MOMENTUM CONSERVATION

Momentum conservation is one of the basic laws of na-
ture and results from the homogeneity of free space. This
is proven by Noether’s theorem, which shows that the
momentum conservation law results from requiring the
laws of physics to be invariant to an arbitrary
infinitesimal displacement of the spatial coordinates
z—z+8d. Besides being able to obtain the momentum
conservation law directly from Noether’s theorem, it may
also be obtained from the equations of motion. Useful
and different insights are obtained from the two methods.
We will present here the derivation from the equations of
motion.

Since momentum is inherently a spatial-frame quanti-
ty, it is natural to express its conservation law in the spa-
tial description, that is, with z,¢ as the independent vari-
ables. If Eq. (20) is multiplied by the Jacobian J, it can be
reexpressed after considerable manipulation as

pX;=tf;+qE,+(jXB); , (29)

where p=p°/J, j and q are given in Egs. (14) and (15),
and
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(p=Tb4 OpT +6,P,

il J axi,A i

3Q; .
—at’ +(Qyj% ), m + €1jm M,y | By

m ——le,mE
€k (QimX;) m B

+eik

+leE
+ €k Qum X By, —

=TT R S P B 6 (00

where 6, =E;+€;3X,;By, p’=m"/J, and the last form of
tf is obtamed with the use of the internal motion equa-
tion [20]. Equation (29) can be put into a momentum
continuity form by converting a material time derivative
in the inertial term to spatial time and space derivatives:

—é’;(,)x,-)—%(tf—px,.x,quziﬂjxn)i . A
The momentum continuity equation for the electromag-
netic field is obtained by forming a vector product of Eq.
(23) with —B, a vector product of Eq. (27) with —E, a
product of Eq. (24) with —E, and a product of Eq. (28)
with —B/u,, and adding them to obtain

om;
3 (e EXB),— =2t

ot 9z, — 9k

—(jXB); , (32)
where the electromagnetic stress tensor is defined by

1
mﬂEE()EiEI“*‘L(BiBI)—% EOEkEk_'-——BkBk 8,-1 .
Ko Ko

(33)

The addition of Egs. (31) and (32) gives the conservation
law of momentum in the spatial frame
d

9 s _9 .k
at (px +60EXB),’ az, (til +m,~,

—px;%;)=0 . (34)

There are several points to be made about this. First,
that this is the conservation law of momentum is verified
by obtaining it also from the Lagrangian by applying
Noether’s theorem for invariance to displacements in the
spatial coordinate z. Second, the action and reaction in
Egs. (31) and (32) between the electromagnetic field and
the matter are the familiar Lorentz force. Third, the
internal motion equations are not used to obtain the
momentum conservation law, a fact revealed only by the
equations-of-motion-type derivation. This is to be ex-
pected because the internal coordinates are displacement
invariant and so cannot carry momentum. Fourth, there
cannot be any confusion between the momentum density
of the matter px and the momentum density of the elec-
tromagnetic field €;EXB because the matter speed x of
an acoustic disturbance is about 107 °c and a rigid body
speed would likely be even smaller. We thus find no ma-
terial momentum traveling at the speed of the elec-
tromagnetic momentum. Thus the electromagnetic
momentum density €gEXB that we derive is different
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from the Abraham form EXH/c’=equ,EXH. The
difference between these is readily interpretable: as seen
from Eq. (25) H differs from B by terms which involve
the response fields P, M, and Q which, in turn, are given
in terms of the internal coordinates, as seen in Egs.
(16)-(18). Since the internal coordinates cannot contrib-
ute to momentum, their absence from the momentum
density is expected, and so our derived form of the elec-
tromagnetic momentum density in matter is supported on
physical grounds.

We have chosen to express the momentum conserva-
tion law, Eq. (34), in the spatial description, that is, with
z,t (z=x inside matter) as independent variables. This is
natural because the invariance z—z+8d that gives rise
to momentum conservation is a spatial-frame transforma-
tion with the result that momentum is inherently a
spatial-frame vector (lowercase subscripts). Nonetheless,
the momentum density and the stress tensor can be re-
garded as functions of X, as independent variables (the
material description) by using the deformation transfor-
mation x=x(X,¢). The momentum conservation law can
then be transformed to be

d .
E(pox +J€,EXB);

—%{JX,,,[t,.,E+m,.,+eo(ExB)ix1]}=0. (35)
J

Note that the momentum density remains a spatial-frame
vector even though it now is in the material description.
This description is the natural choice to examine the
momentum density of a linear acoustic wave since it is
naturally expressed with a material description phase
K-X—owt. We see from Eq. (35) that the momentum den-
sity of such a wave is simply p°%, a strictly linear expres-
sion, which thus integrates to zero over a wavelength in
space or a period in time. In this sense a linear acoustic
wave possesses no momentum. It follows that an acous-
tic phonon possesses no momentum either.

Our derivation differs with those works [6-8,11] which
advocate the Abraham result. Other recent works
[9,10,14] do not include magnetic effects and so do not
distinguish between our result and Abraham’s result. In-
terestingly, Livens [21] and Tiersten and Tsai [22] both
obtain €,E X B, though neither related their expression to
the Minkowski-Abraham controversy. Livens obtains
the result by reexpressing the Lorentz force [see Eq. (32)],
which he takes as fundamental. The Tiersten-Tsai result
arises from much the same origin, but through a much
more elaborate theory. Since we find the Lorentz force to
be the form of the interaction between the matter and the
electromagnetic field subsystems, it is not surprising that
we agree with them.

Peierls, in a series of papers [14—16], has proposed that
the material momentum term px of Eq. (34) can be driven
by bilinear electromagnetic terms and so be reexpressed
in terms of the electromagnetic momentum term €,EXB
(as he considers a nonmagnetic medium, he does not dis-
tinguish between this and the Abraham form). He then
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concludes that the material momentum px travels at the
optical velocity. We find this puzzling because the term,
by its nature, represents the momentum of the mass of a
volume element traveling at the material velocity x. We
do not disagree that a light wave could impart momen-
tum to the center-of-mass continuum, but we do not be-
lieve that material momentum can travel at an optical ve-
locity (except for relativistic motion of whole bodies).

de Groot and Suttorp derive a momentum conserva-
tion law from both nonrelativistic [23] and relativistic
[24] points of view with use of a statistical average to ob-
tain the macroscopic equations from microscopic begin-
nings. Their nonrelativistic derivation obtains the elec-
tromagnetic momentum density €;EXB in agreement
with our derivation. However, their relativistic treat-
ment obtains EXH/c?, the Abraham result. They be-
lieve that this is in agreement with their nonrelativistic
result because the magnetization part of H disappears in
the nonrelativistic limit [25]. We find this puzzling based
on our argument that the magnetization, being a function
of the internal coordinates, cannot carry momentum.

PSEUDOMOMENTUM CONSERVATION

We pointed out above that a conservation law can be
obtained by two methods, from the equations of motion
and from Noether’s theorem, and that different insights
are often obtained from the two methods. Since the pseu-
domomentum conservation law is uncommon in classical
field theories and the prescription for finding it from the
equations of motion is not commonly known, we find it
useful to derive it first from Noether’s theorem.

To do a Noether’s theorem derivation one must know
the relevant symmetry transformation that leaves the
equations of physics invariant. For pseudomomentum
conservation the symmetry transformation must
represent the homogeneity of the material body (which
ideally must extend throughout all space). This can be
readily determined in analogy to the symmetry transfor-
mation that expresses the homogeneity of space and leads
to momentum conservation. That transformation is
x—x+38d, where x is the spatial position coordinate vec-
tor and 8d is an arbitrary infinitesimal displacement.
Thus, by complete analogy the transformation expressing
the homogeneity of a material body (in the continuum
limit) is X—X+8D, where X is the material position
vector and 8D is an arbitrary infinitesimal displacement
in the material coordinate system. The conservation law
that results from Noether’s theorem with the use of the
latter symmetry transformation is defined as the pseu-
domomentum conservation law. We believe that our use
of the term “pseudomomentum” to refer to the quantity
conserved as a result of material homogeneity is conven-
tional. Our work departs from others by our insistence
that the transformation X—X+8X is the proper one to
characterize material homogeneity.

This conservation law has been obtained from
Noether’s theorem before [17] in the form
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though no further exploration of its meaning was pursued
there. This law is inherently a material-frame law with
all fields regarded as functions of X,¢ and with the pseu-
domomentum density vector and the pseudostress tensor
having components referred to that system (uppercase
J

d (_ o,
dr | P iic
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Several things should be said about this pseudomomen-
tum conservation law. First, now that the form of the
general pseudomomentum conservation law is known, it
is a simple matter to find a prescription for obtaining it
from the equations of motion. That prescription is to
form a scalar product of Eq. (20) with —x; ¢ over i, a sca-
lar product of Eq. (21) with —y/c over i, sum the latter
equation over v from 1 to N —1, add the two results, and
rearrange the terms into perfect derivatives. Equation
(37) again results. Thus this general conservation law ex-
ists independently of Noether’s theorem argument; the
latter is useful, however, to interpret the origin of it.
Second, an interesting insight results from this
equations-of-motion derivation: the electromagnetic
equations (23), (24), (27), and (28) are not used in the
derivation. This fact remains true even if the material
form of electromagnetism is used. We interpret this fact
by realizing that the pseudomomentum is a quantity that
is inherently referenced with respect to the matter, that
is, the material coordinate system. The matter equations
of motion are thus clearly relevant to it. However, the
electromagnetic equations describe the E and B fields
that can exist in a vacuum and are inherently spatial-
frame quantities and so do not contribute. This distinc-
tion also expresses itself in the pseudostress tensor where
the quantity in the large parentheses in Eq. (37) is just the
material-frame Lagrangian density of the matter and
matter-field interaction. The remaining part of the La-
grangian, the Lagrangian of the electromagnetic field,
which is inherently a spatial-frame density, disappears
from there in spite of the entire Lagrangian entering
there in Eq. (36). Third, it should be emphasized that in
a homogeneous body there are two distinct, separately
conserved quantities, the momentum in Eq. (34) and the

—X;
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subscripts). Note that this does not prevent x, y?¥, and
A from being spatial-frame vectors. The material-frame
Lagrangian density .L,, is used in Eq. (36) and consists of
Egs. @), (13), and L gy, =J L pg with L g given by Eq. (9)
where the fields are regarded as having been converted to
dependence on X,t by substitution of the deformation
transformation x=x(X,#). Substitution of the Lagrang-
ian density into Eq. (36) leads to terms in both the pseu-
domomentum density and pseudostress (or flow of pseu-
domomentum) that are gauge variant. The combination
of terms can be shown to vanish by a lengthy algebraic
procedure that is quite analogous to that [26] used for the
momentum conservation law when it is found from
Noether’s theorem. The final result is

2 mv V 1VC +x1 Cel]kijk +x1 Cel_]kq]IBk l+ El]k 2 q# yz,Cy] Bk

pv

)2/2—p°=+p-(E+xXB)+m-'B

3p°=

=0.
i,C ax; 4 (37)

—

pseudomomentum in Eq. (37), which have the same phys-
ical dimensions. In spite of this similarity they are dis-
tinctly different quantities. Pseudomomentum is in-
herently a vector having material-frame components and
momentum is inherently a vector having spatial-frame
components. Each is expressed in the coordinate system
in which the symmetry transformation that produces its
conservation operates. Fourth, because pseudomomen-
tum and momentum are vectors in different frames, they
cannot in general be combined. Furthermore, since there
are only two distinctly different coordinate systems, the
spatial and material coordinate systems, in which to in-
voke homogeneity, there are only two momentumlike
quantities conserved. Thus we are certain that there can-
not be any further general conservation law beyond the
two presented involving a quantity having the physical
dimensions of momentum. Fifth, if a situation in which
there is no deformation of the material is considered
(x;,c=8,c, J=1), then the distinction between the spa-
tial and material coordinate systems vanishes. In this
special case, momentum and pseudomomentum can be
combined, added for example. Since this special case ap-
plies to an optical frequency wave in a material medium,
which is the situation traditionally considered in the
Minkowski-Abraham controversy, it is considered in the
following section. We also discuss there other special cir-
cumstances where the two conservation laws can be use-
fully combined.

It is important to show that the classical expression for
the pseudomomentum density found in Eq. (37) agrees
with the expected quantum expression for a linear acous-
tic wave. For this application the magnetization and
electric quadrupolarization terms  should be dropped.
Also, the term representing the interaction of the polar-
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ization and the magnetic induction has nothing to do
with a linear acoustic wave since even in a piezoelectric
crystal the linear electric-field wave that accompanies the
linear displacement wave is completely longitudinal and
so has no accompanying magnetic-field wave; hence this
term should also be dropped. The pseudomomentum
density for a linear acoustic wave is thus

Ve VeV

Ge= _Poxixi,c_ >m’y yic . (38)

We prove in the Appendix that the second term vanishes
for a linear acoustic wave in the long wavelength or con-
tinuum limit. We reexpress the first term with the use of
the displacement u

u(X,t)=Uyb; cos(K-X—wt) , (39)

where U, is a constant amplitude, b is a unit displace-
ment eigenvector, and K is a material-frame wave vector.
If we substitute into Eq. (38) and take a time average,
then

- O U3
G:P 0

K. (40)

The time-averaged energy density in such a wave is
—  p%?U}
2

When quantized, we take this wave to have N phonons
per unit volume and so an energy density of

H=N%w . (42)

(41)

Combining the three preceding equations yields
G=N7K , (43)

the expected amount of pseudomomentum for N pho-
nons. Thus the general expression for pseudomomentum
density in Eq. (37) is consistent with conventional think-
ing on pseudomomentum in linear acoustic waves.

WAVE MOMENTUM

We pointed out in the preceding section that in the ab-
sence of deformation of the material medium
(x;,c=8;c, J=1) the distinction between the spatial and
material coordinate systems disappears and thus momen-
tum and pseudomomentum may be combined. Since the
last two terms in Eq. (37) in the pseudomomentum densi-
ty are trilinear, rather than bilinear, they represent non-
linear corrections which have played no role in the
Minkowski-Abraham controversy. Thus we drop them
here. The momentum density g and the pseudomomen-
tum density G in the absence of deformation are then
given by

g=p’x+€e,EXB, (44)
G=—p"%— 3 m" Vy’+PXB. (45)

The forms of these suggest adding them; we denote the
sum by
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§=DXB— 3 m"p /Vy} (46)

and name it wave momentum for reasons that will be-
come apparent. Note that if the Abraham momentum
EXH/c? were in Eq. (44), the addition would not give
DXB in Eq. (46). Note also the absence of any term
representing the momentum of the center-of-mass contin-
uum in the expression for wave momentum.

Let us comment on Egs. (45) and (46). It is apparent
from Eq. (45) that the pseudomomentum of a light wave
in the material medium is the combination of the second
and third terms on the right side, the first term being that
of the (possibly) moving matter. The second term, we
will show shortly, accounts for the dispersion of the opti-
cal properties of the medium, an effect not included in the
work of Blount [8] or Peierls [16]. However, the main
difference that we find with them is in the third term: we
find the pseudomomentum of a light wave to be PXB
while they conclude it is DXB. Blount identified the
latter quantity as the pseudomomentum by an argument
in which he imposed invariance of his equations to a
translation of the displacement u or what he termed the
“disturbance.” Since the displacement is the difference of
the spatial coordinate and the material coordinate, Eq.
(2), invariance to a translation of u is equivalent to invari-
ance to translations in both x and X. Such a procedure
would be expected to produce a conservation law that
combines momentum and pseudomomentum. From this
reasoning it is not surprising that Blount’s conserved
quantity D XB is just (apart from the dispersive term) the
sum of our momentum density Eq. (44) and our pseu-
domomentum density Eq. (45). Peierl’s approach was
quite similar. We believe that the invariance X —X+8D
that we used to represent homogeneity of the matter and
so to obtain pseudomomentum conservation is so com-
pletely analogous to the invariance x—x-+8d, which
everyone agrees represents homogeneity of space and
leads to momentum conservation, that our identification
of pseudomomentum must be correct.

Next we evaluate Eqgs. (44)-(46) for a linear optical
wave in a crystal. The electric field is taken as

E=eE,cos(k-z—wt) , (47)

where k=wns/c is the wave vector, n the refractive in-
dex, s a unit propagation vector, and e a unit electric-field
eigenvector. Also,

B—_—%sXeEO cos(k-z—wt) . (48)

Since the terms involving p% in Eqs. (44) and (45)
represent motion of the center of mass of a volume ele-
ment, they do not propagate at the optical velocity and
can be dropped here. The time-averaged momentum
density of a light wave from Eq. (44) is then

eE2n
2c

g= [s—e(s-e)], (49)
which has the direction of the group velocity.

To evaluate the pseudomomentum density we must
first evaluate the second term of Eq. (45). This is done in
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the Appendix. It becomes for the linear optical wave
(time-averaged)

2
€oEd

- e X w)

dw

ek, (50)

—XmyiVy’=
v

where ¥ is the linear electric susceptibility. The time-
averaged pseudomomentum of a light wave then becomes
from Eq. (45)

€En
2c

» o)
2 dw

G:

se: |Y(w)+ -e—es'Y(w)-e

(51)

Note that this pseudomomentum density is not in the
direction of the propagation vector s (nor the direction of
the group velocity).

The time-averaged value of the wave momentum from
Eq. (46) for a linear optical wave now becomes
[remembering sK(w)-e is zero]

= eEqn | © IK(w)
g= e e K(m)+2 %0 -es , (52)

where #®(w)=T+¥(w) is the dielectric tensor. Note that
§ is in the direction of the propagation vector even
though neither g nor G is. The quantities in Eq. (52) are
closely related to the time-averaged energy density of the
light wave given by

— &E} | o @)
H= ) e K(co)+2 EY e . (53)

In fact, the magnitude of the quantity in Eq. (52) can be
described as the total energy density of the wave divided
by the phase velocity of the wave ¢ /n. From the quan-
tum viewpoint the plane optical wave can be regarded as
consisting of N photons per unit volume having an ener-
gy density of

H=N%o . (54)
Combining the three preceding equations yields
§=N7k . (55)

Equation (55) may be said to be the expected result, but
our derivation of it requires an alternative, but immedi-
ately reasonable, interpretation. The quantity 7k has
often been called (but without proof, to our knowledge)
the pseudomomentum of a photon in a material medium,
but our derivation shows that it is the sum of momentum
and pseudomomentum. It is for this reason that we give
it a new name, wave momentum. This different interpre-
tation of #ik of a photon in matter from #k of a phonon,
as discussed in the preceding section, arises quite natural-
ly from the essentially different natures of light and
sound. Light can travel in a vacuum, sound cannot.
When light travels through matter, part is carried by the
fundamental of vacuum fields E and B, and part is car-
ried by the response fields P, M, Q, etc. of the matter.
The former transmit the momentum, the latter create the
pseudomomentum. The sound wave, being entirely a ma-
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terial based field, possesses only pseudomomentum. Thus
its wave momentum is equal to its pseudomomentum.
We conclude that the wave momentum, not the pseu-
domomentum, is the unifying concept between the quan-
tum interpretation of sound and light, Egs. (43) and (55).

It is important to realize that the Minkowski momen-
tum D X B is not sufficient to obtain the result of Eq. (52)
for a realistic medium; the dispersive term, Eq. (50), is
essential in order to obtain the full expression for the en-
ergy density, Eq. (52). We emphasize that it would be in-
consistent to consider a dispersionless material medium
having a refractive index differing from unity. The oscil-
lators in the matter (the optic modes) that couple to the
electromagnetic field and make the refractive index differ
from one, the vacuum value, inherently have resonant
frequencies and so inescapably introduce dispersion. Our
derivation handles this dispersion in a general manner. It
should be further remarked that the addition of momen-
tum and pseudomomentum to produce Eq. (46), which
gives the desired wave momentum of Eq. (55), has de-
pended on the momentum density of the electromagnetic
field being € E X B, not the Abraham momentum density
€oEXuoH. We believe that this gives further support to
the correctness of the €;E X B form of momentum density
that we derive.

The inclusion of dispersion is important from another
viewpoint. Examination of the energy density in Eq. (53)
reveals that there is energy in the light wave contained in
the dispersive term that does not contribute to the
momentum of the wave as given in Eq. (49). This is again
explained by the fact that the internal coordinates (optic
modes) can store energy as a light wave passes but cannot
contain momentum because of their displacement-
invariant nature.

The significance of the wave momentum in nonlinear
optics, such as, for example, in sum-frequency generation
w0, +w,=w;, is that its conservation law (with 7 divided
out)

k,+k,=k, (56)

expresses the phase-matching condition needed to obtain
maximum power transfer in a finite crystal from waves 1
and 2 into wave 3. In this situation it is not a rigorous re-
quirement as is apparent from the solution for such an in-
teraction being proportional to the phase-matching func-
tion. In this situation Eq. (56) is not a rigorous conserva-
tion law because a finite-sized crystal does not have ma-
terial homogeneity throughout all space. It does become
a rigorously exact conservation law for an infinite crystal.

The wave momentum density of Eq. (55) is proportion-
al to the refractive index of the material medium if the
energy density of the wave is held constant (N=const)
when comparing one medium to another. This wave
momentum is clearly the proper quantity to explain
momentum transfer from a light wave in a medium to a
test object such as the torsion-balance-mounted mirror
used in the Jones-Richard experiment [12] and its im-
proved successor [13]. Those experiments accurately
measured a deflection proportional to the refractive in-
dex, as we would expect. Of course, detailed application
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of our result to those experiments cannot be made be-
cause they were necessarily performed in dielectric
liquids while our theory applies to crystalline media.

From these several considerations we conclude that
wave momentum is a more important quantity in wave
interactions than either momentum or pseudomomentum
alone.

The fact that the sum of momentum and pseu-
domomentum in the absence of deformation gives such a
readily interpretable and important quantity as the wave
momentum suggests that the entire conservation laws,
Eq. (34) and (37), should be added under this condition
also. The result is a combined, specialized conservation
law for optical interactions,

g9, oT, —o
ot 0z; e
where § is given by Eq. (46) and

T,=E,D;+H,B,— -(E-D+B-H)5,

(57)

Y

- |2 (" —p’2+IP-E+IMB |5, . (58)
Here, once again, the electric quadrupolarization terms
are dropped (but not the magnetization terms) for simpli-
city, and the moving medium terms are dropped also
(x=0). The first four terms comprise the stress tensor of
Minkowski [1] and Abraham [2]; the last four are new
but have a zero time average for a linear light wave in a
dielectric.

Up to this point we have considered adding the
momentum and pseudomomentum conservation laws
only in the complete absence of deformation. There is
also a way that they can be combined (added) in the pres-
ence of deformation for application to a specific interac-
tion such as acousto-optic diffraction. The procedure is
to expand the fields in the various terms of each conser-
vation law to a level appropriate to the interaction. For
example, the acousto-optic interaction is a three-field in-
teraction, two fields being electric fields and one field be-
ing a displacement field. Once this is done, the distinc-
tion between the spatial coordinate x and the material
coordinate X can be dropped because their difference by
Eq. (2) would then be of higher order. The conservation
laws can then be added and the resultant quantity again
called wave momentum. If the sum is integrated over a
volume larger than the interacting waves, the divergence
terms yield surface integrals that vanish. If the time
derivative terms are integrated from a time before the in-
teraction begins to a time after it is complete and the
terms evaluated, the equation of conservation of wave
momentum for the particular interaction results. It is
equivalent to what is called the phase-matching condition
of the interaction.

SUMMARY

We approached the Minkowski-Abraham controversy
on the nature of momentum of a light wave in matter by
deducing the momentum conservation law from a very
general nonrelativistic Lagrangian theory of the interac-
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tion of the electromagnetic field with a dispersive, de-
forming dielectric. Because of the redefinition of the con-
troversy by Blount [8], we also calculated the pseu-
domomentum conservation law that results from homo-
geneity of the material medium. Particularly because of
the unfamiliarity of pseudomomentum in classical field
theories, we found it advantageous to obtain each conser-
vation law from two methods: Noether’s theorem and
combining the equations of motion. Each method gives
different and important information. Noether’s-theorem
approach guarantees that the nature of the conserved
quantity is properly defined by relating it to the symme-
try transformation (invariance) from which it arises. The
derivations from the equations of motion reveal that cer-
tain fields do not contribute to each of the quantities: the
internal motion field equations representing the optic
modes of the medium do not contribute to momentum
and the electromagnetic-field equations do not contribute
to pseudomomentum. We found that each of these facts
aided physical interpretation.

The momentum and pseudomomentum densities found
from the conservation laws contain contributions from
both the electromagnetic field and from the matter. In
each case, however, the division between the contribu-
tions is crisp and obvious.

We find that the electromagnetic momentum density is
€,EXB, not the Abraham form €,EXpu,H. We find the
difference between these forms physically interpretable
and in support of the former. The E and B fields are the
fundamental, vacuum electromagnetic fields, that is,
those derivable from the potentials that are the more fun-
damental quantities in the Lagrangian theory. The mag-
netic field H, on the other hand, contains in addition
response fields of the matter such as the magnetization.
Since the response fields are all proportional to some
power of the internal motion coordinates, which we
showed cannot contribute to momentum, their absence
from our momentum expression is understandable and to
be expected.

We find the electromagnetic pseudomomentum density
is easily distinguishable from the matter pseudomomen-
tum when the deformation of the medium vanishes.
Then it is P X B plus a dispersive term involving the optic
modes. The first term is physically reasonable because it
is proportional to a response field of the matter, the po-
larization. It differs from the form advocated by Blount
and Peierls, which is D X B.

When we applied the above expressions for momentum
and pseudomomentum densities to a linear light wave, we
found that a very important quantity was the sum of
momentum and pseudomomentum, which we thus named
wave momentum. It is the momentum that in the quan-
tum regime is expressible as 7ikk per photon. We also
found that an acoustic phonon has pseudomomentum of
#ik, zero momentum, and thus wave momentum of #k.

We found that the components of the momentum and
pseudomomentum vectors are inherently referred to
different coordinate systems, momentum to the spatial
coordinates, pseudomomentum to the material coordi-
nates. Thus, under general circumstances they cannot be
combined. However, we indicated how they can be indi-
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vidually expanded for a particular interaction and then
added to form wave momentum. After integration over
space and time the result is the well-known conservation
of wave-vector or phase-matching condition of the wave
interaction.

We close with a caveat. We expressed confidence in
our derivation of the expression €gEXB for the elec-
tromagnetic momentum density in contradistinction to
the Abraham form €,EXpu,H based on a physical argu-
ment about the natures of B and H. However, de Groot
and Suttorp [7] obtained the Abraham form from a rela-
tivistic derivation of the momentum conservation law
and they argued that only in the nonrelativistic limit does
the magnetization drop out leaving the form we obtain.
Their conservation law is exceptionally long, complex,
and difficult to interpret. This leaves a puzzling
discrepancy between their work and ours. Thus, while
we argued that our nonrelativistic treatment should be
capable of deciding the main issues in the Minkowski-
Abraham controversy, it appears that this one, numeri-
cally small but conceptually large, issue can be fully
resolved to our satisfaction only with a relativistic gen-
eralization of our method.
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APPENDIX

While the derivation of the general conservation laws
does not require specifying the form of the stored energy,
Eq. (5), application to linear acoustic and optical waves
does. This is done by a series expansion in terms of rota-
tionally invariant measures of the deformation gradient
and the internal motion coordinates defined in Egs. (6)
and (7). Each of these measures is chosen to vanish for
the natural state of the crystal, that is, in the absence of
any static or dynamic perturbation of the perfect crystal.
Since linear terms in the stored energy are needed only
when there are initial electric fields or strains, as met in
ferroelectric and ferroelastic phenomena, they may be
dropped here and we have

P02 :OZMABCDEABECD +3 ZoMﬁfa 1% I’y
WV

+ 3 "M Ypc I Epc (A1)
v

where the various "M are called material descriptors
and serve as expansion coefficients.

The linear terms of the internal motion equations (21)
become, with the use Eq. (A1),

m*y /= E;—2 3 M yf +u, Y~ Mo,
m

(A2)
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where the magnetization and electric quadrupolarization
terms are omitted since they represent wave-vector
dispersion corrections to linear excitations. Once the
terms are expanded to a given order (linear here), the dis-
tinction between material and spatial coordinates and
components (upper and lower case indices) may be
dropped as being of higher order. The internal coordi-
nates can be transformed to optic-mode normal coordi-
nates nk by

77k= E(mn)l/lnku.yu , (A3)
I
where the normal-mode eigenvectors n** satisfy
kp20pruv
n; M} )k
2% ——=Qin;" (A4)
% (m*m V)1/2 kT
and form a complete orthonormal set:
> n*t.nlt=84 (A5)
I
zk‘, nf“‘njkv= &8, . (A6)
This leads to Eq. (A2) being expressed as
i1 £+ Q=B — (1M, + N gy (A7)
where
k
qtn;*
k—
Ci = 2 172 ° (AS)
' (mht)
n kv 1l 'Vb
11 k — i ia
Mab‘— 2 (m’V)l/2 ’ (A9)
(A10)
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If the right side of Eq. (A7) is represented as simply L*,
then the normal coordinate %* can be written for a
plane-wave excitation of angular frequency w as

v  L*
Qk—w

(A11)

The dispersive term in the pseudomomentum can now
be evaluated for a linear acoustic wave to be

chispz — > m% Wl (A12a)
v
—_ 2 ﬁkn,"c (A12b)
k
c 0 (L*)?
_gpC 0 < LY Al12
K3 awgni—wz’ (A2

where K is the wave vector of the acoustic wave.
Though the last form of Eq. (A12) could be elaborated in
terms of the linear electric susceptibility, the piezoelectric
stress tensor, etc., it is not necessary. The important
point is that the frequency dependence of each of these
quantities is explicitly exhibited in Eq. (A12c). Since the
resonant frequencies Q; (k=1,2,...,3N —3) of optic
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modes in normal stable crystals are many terahertz while
the frequency of the linear acoustic wave is typically at
least one thousand times smaller, we see that these quan-
tities have an exceedingly small frequency dependence
and thus the frequency derivative can be taken as zero, as
used in the text. Only in the case of a soft-optic-mode
frequency nearing zero will this argument need
modification, as has been discussed [18]. That case, of
course, is not a simple acoustic wave as we wish to treat
here.

Next we wish to evaluate Eq. (A12a) for a linear opti-
cal wave. Since there is no significant displacement gra-
dient existing at optical frequencies, its terms may be
dropped from L * with the result

4“4
ek (o)
Gd‘SP=—02—XaJ—wE,-Ej , (A13)
where
1 cik"!c
Xy@) =23 - (A14)

is the linear electric susceptibility. Since an optical fre-
quency typically is above the ionic mode resonances and
below the electronic mode resonances, the frequency
dependence of x;;(w) is significant and must be retained,
as used in the text.
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