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The consequences of internal reflection of multiply scattered light at the boundaries of disordered
media are studied. We show that the effect of internal reflection due to index mismatch can be
quantitatively accounted for with a single parameter by incorporating a reflection coefficient into the
boundary condition for the diffusive light. We measure the angular correlation functions in transmis-
sion and reflection at different thicknesses for both high- and low-index mismatch. By including the
effect of internal reflection, we are able to obtain consistent quantitative agreement between exper-
iment and theory. Extensions to other experiments including diffusing-wave spectroscopy, coherent
backscattering, frequency correlations, and pulse propagation are discussed.

I. INTRODUCTION

The problem of the propagation of light in optically
dense random media represents a significant challenge
that has attracted considerable attention in recent years
[1,2]. One approach that has met with considerable
success is the photon-diffusion approximation. This ap-
proximation is valid provided the scattering is not too
strong, so that kIl > 1, where [ is the scattering mean
free path and ¥ = 27n/), with A the wavelength of the
light and n the average index of refraction of the medium.
In addition, the diffusion approximation applies only for
distances greater than the transport mean free path I*,
the length scale over which the direction of light is ran-
domized by scattering. When these conditions are satis-
fied, diverse phenomena, such as the spatial and tempo-
ral fluctuations of multiply scattered light, pulse propa-
gation, and coherent backscattering, can be understood
within this simple, yet powerful framework. While good
agreement between experiment and theory is generally
achieved, many measurements exhibit systematic devi-
ations from the quantitative predictions of the theory.
Recently Lagendijk, Vreeker, and DeVries [3] suggested
that the source of these discrepancies may be a failure to
properly account for the reflection of light at the bound-
aries of the random medium. Indeed, by incorporating
the effects of internal reflection into the diffusion prop-
agator, they found that internal reflection can lead to
significant corrections in the apparent photon diffusion
coefficient for pulse propagation through a slab of an opti-
cally dense medium. Subsequently, Freund, Rosenbluth,
and Berkovits [4] demonstrated that reducing reflections
at the sample interface leads to a substantial improve-
ment between experiment and theory for measurements
of angular intensity autocorrelation functions. More re-
cently, they used Green’s-function methods [5] to show
that internal reflection could account for the discrepan-
cies between their earlier reported data and theoretical
predictions. Pine et al. have also noted that measure-
ments of the temporal correlations of multiple scattered
light leads to systematically low estimates of the trans-
port mean free path and have suggested that this may
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be due to not properly accounting for reflection of light
at the sample interface [6, 7].

In this paper, we show that the effects of internal re-
flection at the boundaries due to index mismatch can be
accounted for quantitatively with a single parameter by
incorporating a reflection coefficient into the boundary
conditions for the diffusion equation for light. We dis-
cuss measurements of the decay of the angular correla-
tions in the intensity of multiply scattered light when an
optically dense sample is rotated with respect to the inci-
dent laser beam. These correlations were first considered
by Feng, Kane, and Stone [8] using diagrammatic tech-
niques. Here, we present an alternate theoretical deriva-
tion of the correlations using the diffusion equation for
light. In addition to being more physically transparent,
this approach allows us to incorporate a more realistic
treatment of the boundary conditions. By properly ac-
counting for the internal reflection of light in the bound-
ary conditions, we are able to obtain consistent quan-
titative agreement between experiment and theory for
different sample thicknesses and for different index mis-
match. An important additional feature of the theory
we develop is that it enables us to quantitatively predict
value of the reflection coefficient. Exploiting transmis-
sion measurements for samples of different thickness, we
are able to accurately determine both the internal reflec-
tion parameter and the absorption length in the sample.
These same parameters can then be used to interpret the
angular correlations of backscattered light. In contrast
to the transmission measurements, the correlations of the
backscattered light are also very sensitive to the nature
of the initial conditions which describe the conversion of
the incoming plane wave to diffusing light. Here, we ob-
tain good agreement with data by using the rather crude
approximation that this conversion occurs at a fixed dis-
tance into the sample. An estimate of this distance is
obtained from the backscattering results.

The angular correlation of the scattered light upon
sample rotation is the simplest of the correlations be-
tween incoming and outgoing light described by Feng,
Kane, and Stone [8]. These correlations do not depend on
any phase interference within the sample, but merely re-
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flect the fact that the light propagation is diffusive. As we
will show, it is the very simple dependence of the angular
correlations on the diffusive propagation that enables us
to quantitatively determine the consequences of internal
reflection on the boundary conditions. Once these con-
sequences are determined, the new boundary conditions
can be used to properly interpret other experiments.

Physically, the consequences of internal reflections can
be understood by considering their effect on the distri-
bution of photon path lengths through the sample. The
internal reflection due to the mismatch of the index of
refraction at the boundary of the random media causes
photons to remain inside the medium for a longer time,
and thus increases the photon path lengths by an amount
determined by the index mismatch. In all backscattering
experiments, and in transmission experiments through
thin samples where path lengths are comparable to I*,
the increase in path length due to internal reflection is
generally a significant fraction of the total path length.
By contrast, in transmission experiments through thick
samples, where all paths are long, the increase in path
length due to internal reflections is only a small fraction
of total path length. Thus the effect of internal reflection
is significant for backscattering experiments and trans-
mission experiments through thin samples, and relatively
less significant for transmission experiments through very
thick samples.

II. THEORY

A. Angular autocorrelation functions

We consider a plane wave that is incident on one side
of a slab of random static scatterers. Transmitted or
backscattered photons emerge from the sample at a point
on the boundary and are detected. The light transport
within the sample is assumed to be diffusive and is de-
scribed by the diffusion equation

ou

e DVU = f(t,z,y,2) , (2.1)

where U is the density of photons, D = vl*/3 is the
diffusion coefficient of light, v is the speed of the light in-
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side the sample, and f(¢, z, y, 2) is the source of diffusing
light. The path of each diffusing photon is determined
by random multiple scattering from a sequence of scat-
terers. The multiply scattered electrical field F emerging
from the sample is made up of the contributions of fields
following many different scattering paths

E=)E,,
4

where p denotes a scattering path. The scattering inten-
sity is given by

1= E,E} .
p.p'

(2.2)

(2.3)

Rotating the sample changes the relative phase of the
field between paths and, as a result, the scattered inten-
sity fluctuates. The ensemble-averaged intensity is given

by
(I =Y (EpEp) = > (EpE;) . (2.4)

p.p’ r

The second equality follows from our assumption that
the positions of scatterers are randomly distributed and
that the relative phases of fields from different paths are
uncorrelated and therefore average to zero; the only non-
vanishing terms in (E, E},) are those with p = p’, where
the random phases of fields are canceled by their conju-
gates. We measure the intensity correlation of backscat-
tered or transmitted light as the sample is rotated along
an axis normal to the direction of the incident light. The
autocorrelation function is defined as

G2(0) = (1(0)1(9))

Y (B(0)E; (0)Ep (0)Eym(6)) ,

p.p'.p",p"

where 8 is the angle rotated and I(6) the intensity of the
light. Once again, because the relative phases of fields
are random, the leading nonzero terms are those with
p=p and p” = p"” or p = p’/ and p’ = p”. Then Eq.
(2.5) factorizes:

Il

(2.5)

Z (Ep (O)E;' (0)>6p,p’ <Ep" (6) E;"' (9))51)” '

o = A1)+ [SUE 0 B 0)] (2.6)

[

From Eq. (2.6), we see that go(0) and g,(8) are related:

92(0) = g1 (0)]* .

This equation, known as the Siegert relation, allows us to
obtain intensity correlation functions from calculations of
the field correlation functions. Thus, in subsequent sec-

(2.9)
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tions we always calculate the field correlation functions
and use Eq. (2.9) to obtain intensity correlation functions
for comparison with our experiments.

To calculate these autocorrelation functions we first de-
termine the contribution of a single diffusive light path
due to the rotation of the sample. This corresponds to
calculating the argument of the summation in Eq. (2.8).
Then the contributions of all paths, weighted by the dis-
tribution of the paths, are summed to obtain the desired
correlation function. The photon path distributions for
transmission and backscattering geometries can be de-
termined by solving the diffusion equation provided one
uses boundary conditions which properly account for the
behavior of the light at the sample interfaces. In the fol-
lowing section, we discuss the behavior of light near inter-
faces and develop boundary conditions which account for
the effect of internal reflection at the sample interfaces.
We then use these results to obtain explicit expressions
for the angular correlation functions of multiply scattered
light. These results are compared with experiments and
then generalized to several other types of measurements
involving strong multiple scattering. We show that the
simple angular correlation measurements allow the deter-
mination of the parameters that characterize the effects
of internal reflection. These parameters can then be used
directly to account for the effects of internal reflection in
other measurements.

B. Internal reflections and boundary conditions

A variety of boundary conditions have been used to
describe the behavior of diffusing light at a sample inter-
face. The simplest approach is to use perfectly absorbing
boundary conditions U=0. Feng, Kane, and Stone [8]
have used these boundary conditions within a diagram-
matic expansion to obtain an expression for the angular
correlation function for transmission through a slab of
thickness L. They obtain

ko6 L
910 = FRkeoD) ° (2.10)
where k = 2w /A. However, perfectly absorbing bound-
ary conditions are known to be inconsistent with the ex-
act Milne solution for scattering from uncorrelated point
particles [1]. Furthermore, because perfectly absorbing
boundary conditions cannot account for internal reflec-
tion of light at the interfaces, Eq. (2.10) fails to quanti-
tatively describe the experimental results [4]. Thus more
accurate boundary conditions are required.

To obtain more realistic boundary conditions, we con-
sider the flux of diffusing photons scattered through an
arbitrary small area dS inside the sample. For simplicity,
we will assume that the sample is made up of isotropic
scatterers and that absorption can be neglected (these
assumptions will be relaxed later). Without loss of gen-
erality, we let dS be at the origin and perpendicular to
z axis, as shown in Fig. 1. The flux of photons scat-
tered directly from the volume element dV through dS
is given by the product of the number of photons in dV/,
U(r,0,9)dV, the fractional solid angle cos0dS/r2, the
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FIG. 1.
photon flux.

Scattering geometry for the calculation of the

speed of light v, and the loss due to the scattering be-
tween dV and dS, exp(—r/l):

cosfdS _.,
—5 e .

U(r,0,p)dVv (2.11)

Replacing dV by r? sin @drdfdyp, this can be rewritten as

gU(r,G,p)v cosOsin e~ drdodyp . (2.12)
The total flux of photons scattered into the area dS per
unit time in the negative z direction is obtained by in-
tegrating over the number coming from the entire half-
space z > 0. Denoting the photon flux in the —z direction
as J_, we have

ds w/2 2w oo
J_dS = —v d&/ d<p/ drU(r,6,¢)
ar - Jo 0 0

x cosfsinfe~"/
(2.13)

To evaluate this integral, we expand U(r, 0, ¢) about the
origin. Since the primary contribution to the photon flux
through dS is from the neighborhood of a few mean free
paths away, we can restrict the expansion to first-order
terms in a Taylor expansion,

oU ou oU
U(r, 6 = -— - il
(r. 0, ¢) Uo+x(6x>o+y(ay)o+z(az)o’

(2.14)

where the derivatives are to be evaluated at the origin.
The independent variables z,y, and z may be expressed
in terms of spherical coordinates by
z =rsinfcosp ,
y=rsinfsingp, (2.15)
z=rcosf .
Since the integration over ¢ in Eq. (2.13) is between the
limits of zero and 2w, the terms containing z and y will
make no net contribution. Thus, replacing z by rcos@
and integrating over » and ¢, we obtain
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where D = vl/3 is the diffusion coefficient of light and,
for convenience, we neglect the subscript zero. Similarly
the photon flux through dS in z direction, J+, may be
obtained by integrating the contributions from 2z < 0:

v 0 27 ) aU
Jy=— d6/ d / dr (U + r— cos 0)
T A ~7/2 0 v 0 9z

x cos 0 sin fe~"/?
_Uv_D (&
T4 2 \0z/)

Equations (2.16) and (2.17) can be generalized to treat
the anisotropic scatterers typically used in experiments.
Here the single-particle scattering is peaked in the for-
ward direction so that the effective random-walk step size
is the transport mean free path [*, where [* is defined by
the relation {/I* = (1 — cos@). It can be shown [9] that
Egs. (2.16) and (2.17) are satisfactory for anisotropic sys-
tems, provided that {* replaces [ in the definition of the
diffusion coefficient, i.e., D = vl*/3.

Now consider the photon flux at the boundaries at 2=0
and L. If there is no internal reflection, there will be no
photon flux from outside the sample, that is, J4=0 at
z=0and J_ =0 at z = L. This gives the mixed boundary
conditions

(2.16)

(2.17)

20 oU
U - 379?—0 at z =0, (2‘18)
20 oU
——— —_ . 2.1
U+S5-=0 atz=1L (2.19)

By contrast, if there is internal reflection, there will be
some incoming flux due to the reflection at the bound-
aries. The simplest treatment is to define a reflection
coefficient R, which is the ratio of the incoming flux to
the outgoing flux at the boundaries. Thus the boundary
conditions are Jy = RJ_ for z = 0 and J_ = RJ; for
z = L. This gives boundary conditions

ou
U—Cg——o at z =0, (2.20)
oU
U+CE;_O at z=1L, (2.21)
where
_2'1+R
C= 3SI-R" (2.22)

When R=0, we recover the mixed boundary conditions
for no reflections. If we assume QU /9z is constant inside
the sample near the boundaries, Egs. (2.20) and (2.21)
are essentially equivalent to extrapolating U to 0 at a
distance C' outside of the boundaries. In the limit that
R = 0, C = 21*/3, which is very near the frequently
used extrapolation length of 0.7104/* given by the Milne
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solution [1]. However, in the presence of reflections, this
extrapolation length can be significantly larger.

C. Calculation of angular correlation functions

For convenience, we assume that the incident light is at
near normal incidence on a slab of thickness L and that
the wave vector of the detected light is approximately
parallel to the incident light. As shown in Fig. 2, we de-
fine a coordinate system with an origin on one side of the
sample where the light is incident at z = 0 from the —z
direction. The sample is rotated about the z axis. A typi-
cal diffusing-light path through the sample is also shown
in Fig. 2. A photon incident on the slab at a position
r; = (zi,yi,0) follows a path of total length s through
the sample and emerges at a position r; = (24, y:, L). We
calculate the phase shift of photons traversing this same
path after the sample rotates through a small angle 6.
The phase shift arises from the change in the totallength
of this path. However, since the scatterers are station-
ary, the path length within the sample is unchanged upon
rotation, and all the phase shift arises from the change
in path length outside the sample. As shown in Fig. 2,
there are two contributions to the change in path length,
one from each side of the sample. The path length of the
incident light is decreased by y;#, while that of the emerg-
ing light is decreased by y;6. Defining a scattering wave
vector ¢ = ko, the total phase difference of the path on
rotation is A¢r = A¢; +A¢, = q(y: — y;) +0(0?). Thus,
if the electric field at r; is initially £(0), then after the
sample is rotated through an angle 6, the electric field
will be

E(0) = E(0)e* =¥ (2.23)

—f |=—v®
yp8 —= IT—

4-7—_——_12'

: 716
—]

yi®

FIG. 2. Experimental geometry with a typical diffusive
light path shown. The input, transmission output, and
backscattering output points ri, r;, and rs, respectively, are
shown in their initial positions. The dashed lines indicate the
sample position after the sample is rotated through an angle

6.
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Photons incident at r; can travel many different paths
within the sample before emerging at r;. We denote by
p(s,ri,rs) the probability that, in the absence of absorp-
tion, a photon follows a path of length s whose end points
are at r; and r;. Since the light emerging at any single
point from the sample is made up of contributions of dif-
ferent paths beginning anywhere on the incident face of
the slab, we can calculate the angular correlation func-
tion of the electric field by summing over all paths and
all incident points:

_ {EQ)E"(0))
g1(g) = (E(0)E(0)) (2.24)
~ / ds dz; dy; p(s,ri,ry) el 1Wi=vi)e=s/la ,  (2.25)

where we have also accounted for the possibility of ab-
sorption by including an exponential cutoff with an ab-
sorption length {,. Similarly, we can calculate the phase
shift for a backscattered photon following the path shown
in Fig. 2 and emerging at a positition on the incident
face r; = (x1,y:,L). For this case, we obtain A¢p =
Ay + A¢i = q(ys + yi) + O(63). The angular autocorre-
lation function of backscattered fields is then given by

g91(q) =~ /ds dz; dy; p(s,r;,rp) etetyi)e=s/la (2.26)

In addition to collecting light from a single point on the
outgoing surface as discussed above, it is also instructive
to consider collecting the light from the whole outgoing
plane. This entails an additional integration over the out-
going surface to calculate the correlation function. How-
ever, the results can be seen immediately from symme-
try arguments. For transmission, the phase shift depends
only on the difference y; — y; and thus g;(¢) is transla-
tionally invariant on the outgoing plane. Thus summing
over the whole plane yields the same result as for a point.
By contrast, for backscattering the phase shift depends
on the sum y; + y;. Thus g1(¢g) is not translationally in-
variant on the outgoing plane. In this case summing over
the plane results in no correlations at all.

To obtain explicit expressions for g¢;(¢) from Eqgs.
(2.25) and (2.26), we must determine p(s,r;,rs) for each
scattering geometry. To this end, we consider an instan-
taneous pulse of light which begins to diffuse a distance
2o inside the slab at ¢ = 0, so that the initial conditions
for the diffusion equation are

fit,z,y,2) = 6(1)8(z — z;:)6(y — ¥i)6(z — z0),

where we expect zp ~ [*. Photons emerging at r; at
time t have all traveled a distance s = vt. The average
number (or flux) of photons emerging from the sample
at r; at time ¢ will be proportional to the probability
that a photon travels a distance s from r; to r;, that is,
p(s,r;,ry). The photon flux can be determined within the
diffusion approximation by solving the diffusion equation,
Eq. (2.1), for U, subject to the appropriate boundary
conditions for U at z = 0 and L, and then calculating
the outward flux at the boundaries using Egs. (2.16) or
(2.17). The solution of Eq. (2.1) can be simplified by
separating U into three parts,

(2.27)
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4
U(z,y,2,t) = X(z,1)Y (y,t)Z(2,1) , (2.28)
where
1 (z — z;)?
X(z,t) = mexp (— 101
and

__(y— vi)?

1
Y(y:t) = mexp "W

are the solutions to the one-dimensional diffusion equa-
tions 0X/0t — DV?*X = 6(xz — x;)6(t) and 3Y /It —
DV?Y = é(y—y;)6(t) in an infinite medium, and Z(z,t)
is the solution to the equation

8Z/0t — DV?*Z = é(z — z0)6(t) , (2.29)
subject to the boundary conditions
z—c%ézo atz=0, (2.30)
0z
Z+CE—O at z=1. (2.31)
The transmitted flux from the sample at r; is
_Us_Dov
tT g 2 8z
Uv VXYZ =1, (2.32)

T21+R) 2(1+R)

where the second equality follows from the boundary con-
dition at z = L, Eq. (2.21). Similarly, the backscattered
flux from the sample at r; is
v, DU

4 2 0z
_ Uv v XYZ
T 2(1+R)  2(1+R)

J_ =

at 2 =0.

(2.33)

Equations (2.32) and (2.33) are directly proportional to
p(s,r;,rs) and p(s,r;, 1), respectively, when the time de-
pendence t in XY Z is replaced by s/v. Substituting
these expressions for p(s,r;,r;) and p(s,r;,r:) into Egs.
(2.25) and (2.26), and then integrating over z; and y;,
we obtain

o0
g1(q) / P(s)e= (@ +e)" 5[5 (2.34)
0

where a? = 3/1*l, and P(s) x Z(z,t)|,=r for transmis-
sion and P(s) o« Z(z,t)|;=0 for backscattering where,
once again, we use the transformation ¢ = s/v. That
is, P(s) is proportional to the solution of the one-
dimensional diffusion equation, Eq. (2.29), and thus is
the probability of a photon having a path length s re-
gardless of its end points. From Eq. (2.34), we see that
paths with large s decay more rapidly than paths with
small s. Physically, this is because paths with large s
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have, on average, a larger transverse separation y; —y; or
Yo — ¥; of their end points. This larger separation results
in a larger change in phase when the sample is rotated, as
can be seen from the expression for the # dependence of
the electric field, Eq. (2.23). We note here, and we will
discuss in more detail later, that Eq. (2.34) has, apart
from a simple transformation of variables, the same form
as the expressions for the coherent backscattering cone
and the temporal autocorrelation function. This is due
to the fact that all these effects depend on changes in the
phase of the multiply scattered light which scale linearly
with the path length s.

The calculation of g1(g) can be further simplified by
noting that Eq. (2.34) is the Laplace transform of P(s).
Thus, instead of solving the diffusion equation to obtain
P(s), we can solve the Laplace transform of the one-
dimensional diffusion equation, Eq. (2.29), and obtain
g1(q) directly. The solution of the diffusion equation us-
ing the Laplace transform is given in Carslaw and Jaeger
for this slab geometry [10]. They obtain

(L 4+ 2C)/(z0 + C)[sinh(z04/q? + a?) + C/¢? + a? cosh(z0/¢? + @?)] '
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7= / Z(z,t)e Pidt
0
1 .
= 3D e~2=%l 4 Asinh(nz) + Beosh(nz) , (2.35)

where 7 = \/p/D and the coefficients A and B are chosen
so that the boundary conditions, the Laplace tranforma-
tions of Eqgs. (2.30) and (2.31), are satisfied at z = 0
and L, respectively. After tedious but straightforward
algebra, we obtain

sinh[(L — z + 20)n] + Cpcosh[(L — z + z)7]
(1 + C?n?) sinh(Ln) + 2Cncosh(Ln) '

(2.36)

Comparing Egs. (2.34) and (2.35), we see that Z is equiv-
alent to g1(¢) if one makes the transformation of variables
s — t/c and p = Dn? — (¢% + a?)vi*/3. The second

transformation is equivalent to n — 1/¢? + 2. Thus, in
transmission, where z = L, we obtain

Z =

91(q) =

[14 C2(¢2 + a?)]sinh(L+/q? + a2) + 2C\/q% + a2 cosh(L+/q? + a2)

(2.37)

For z9/L < 1, g1(q) is insensitive to the exact value of zo. Physically, this means that for light transmission through
thick samples, the exact depth into the sample at which the light begins to diffuse is unimportant. For perfectly
absorbing boundary conditions (C' = 0), Eq. (2.37) reduces to Eq. (2.10), g1(g) = ¢L/sinh(¢L), derived by Feng,
Kane and Stone, provided there is no absorption (a = 0) and the sample is very thick ( zo/L < 1).

For C/L < 1, Eq. (2.37) is equivalent to the results of Feng, Kane, and Stone, but for a sample with an effective
thickness of L + 2C rather than L. Thus the effect of reflections is to increase the apparent thickness of the sample.
To see this, we consider a sample with an effective thickness of L +2C. We use the simple boundary conditions U = 0
at z = —C and L 4+ C, and evaluate g;(¢q) at 2 = L. We obtain

~ sinh[(z + 2C)+/¢? + a?] + sinh(zg+/¢? + a?)
sinh[(L + 2C)+/¢? + o?] .

In the case of C/L < 1, we can make the approximations sinh(2Cq) ~ 2Cgq and cosh(2Cq) ~ 1 + 2C?¢?, to obtain

91(9) (2.38)

[1 4 C?(g? + a?)]sinh(29+/q2 + a?) + C+/q? + o2 cosh(z0y/q? + a?)

[1 +2C2(¢% + o?)]sinh(L\/q2 + a2) + 2C/q% + a2 cosh(L\/q? + a2)

91(q) (2.39)

Equations (2.37) and (2.39) are identical if we neglect terms with C2. This calculation also suggests that the effects
of internal reflection become less important for thick samples.

In contrast to transmission, the diffusion equation does not fully describe backscattered light because it consists of a
significant contribution of paths of length comparable to the transport mean free path. However, Pine et al. [11] have
shown that the diffusion equation can provide a surprisingly accurate description of temporal correlation functions
of backscattered light with the boundary condition U = 0 provided that the incident light is artificially assumed to
start diffusing at a fixed distance y{* inside the sample. The parameter vy then appears in their expression for the
correlation function as the initial slope of the decay. Caution must be excised in assigning a physical meaning to 7y
since it is observed to depend on the polarization of the incident and detected light and on the ratio of the transport
and scattering mean free paths [12]. Here we show that the initial slope is also a function of the internal reflection.

To obtain an expression for the angular correlation in backscattering we let z = 0 in Eq. (2.36) and obtain

sinh[(L — 20)v/q? + o?] + Cv/q? + a? cosh[(L — z9)\/q? + 2]

[1 4+ C2(¢2 + a?)]sinh(L+/q2 + a2) + 2C/¢% + a2 cosh(L\/q? + o?)

91(q) x (2.40)
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For thick samples, where L/zo > 1 and L/C > 1, Eq.
(2.40) becomes

exp(—20V/¢> + o?)
1+C/?+a?

In the case of weak absorption o < ¢, the initial decay
of Eq. (2.41) can be approximated by

91(¢) =1—(20+C)g=1— (20 + C)kob .

Here, the initial slope, dg1/df = [z0/1* + gl(%]kol* de-
pends critically on the internal reflection.

Internal reflection increases the photon path lengths
and causes ¢g;(¢) to decay more rapidly. By contrast, ab-
sorption cuts off long paths and causes g;(g) to decay
more slowly. We can exploit this fact to experimentally
determine both a and C by making measurements in
transmission as a function of sample thickness. For a
thin sample, where L < 1, g1(gq) depends only on the
sample thickness and the internal reflection, that is, on L
and C. By contrast, for a thick sample, where C/L < 1,
the effect of internal reflection becomes small and g,(q)
only depends on the sample thickness and the absorp-
tion, that is, on L and a. Thus, by measuring g¢;(g) in
transmission and backscattering for different thicknesses,
we can determine C' and «. These quantities can then
be used to interpret other phenomena involving multiple
light scattering, such as frequency correlation and pulse
propagation. We will show that the theory is in good
agreement with our experiments for samples with both
large and small index mismatch, in both transmission
and backscattering geometries, and for several different
sample thicknesses.

91(g) (2.41)

(2.42)

III. EXPERIMENT

A. Samples and procedure

In our experiment we use two sets of samples, one of
which has a higher average index of refraction than the
other. The first set is made of sintered polydisperse alu-
mina particles with a mean diameter of about 2.5 pum
and a volume fraction of 0.96. Three samples with thick-
nesses of 0.615, 0.385, and 0.256 mm were used. The
second set is from commercial glass frits with pore sizes
between 10 and 20 pm and with a volume fraction of glass
of approximately 0.96. The index of refraction of solid
alumina is 1.7, while that of glass is 1.5. Thus we expect
that the effect of internal reflection should be stronger
for the higher-index alumina samples than for the lower-
index glass frit sample.

The samples were mounted on a vertical translation
stage and placed at the center of a rotation stage. We
used the 488-nm line of an Art laser; the beam was
expanded to a diameter of 1 cm, collimated, and then
directed towards the sample at near-normal incidence.
Two methods were used to collect the scattered light in
transmission or backscattering. In the first method, we
measured the scattered intensity at a single point near
the center of the sample, which was aligned to be on the
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axis of rotation. This central spot was imaged one to one
onto a 25-pm pin hole with a 50-cm focal length lens. A
4.3-mm aperture was placed in front of the lens to de-
termine the angular width of the detected light and to
ensure that only a single speckle spot, and thus a single
wave vector, was detected. In the second method, we
measured all the transmitted or backscattered light with
the wave vector the same or opposite to that of the inci-
dent wave vector. This was accomplished by placing the
detector pin hole at the focal plane of the collection lens.
To accumulate the autocorrelation function, the sample
was rotated about the center of the incident beam. It was
turned from 85 to 95 deg relative to the incident beam at
a constant angular speed of w = 5 x 102 deg per sec.
The scattered intensity was detected with a photomulti-
plier tube using photon counting electronics. A digital
correlator was used to measure the temporal intensity
correlation function. The temporal intensity correlation
function was converted to g2(g) using the relation § = wt.
To ensure good ensemble averaging, we averaged several
runs illuminating different areas of the samples.

From the correlator, we obtain normalized intensity
correlation functions (1(0)I(g)}/(I)? = 1+ Bg(8), where
B is a constant of order unity which is determined by the
number of speckle spots detected. Our detection area
was about half a speckle spot, corresponding to 8 ~ 0.8.

B. Results

In Fig. 3, we plot the normalized angular intensity au-
tocorrelation functions obtained from a 0.385-mm-thick
alumina sample. Angular correlation functions obtained
in the transmission geometry are shown in Fig. 3(a) for
the two cases of planar and point collection optics. They
are identical to within experimental uncertainty. This
reflects the vertical (y-direction) translational invariance
of the expression for the change in phase, Eq. (2.25), for
each light path upon sample rotation. By contrast, angu-
lar correlation functions obtained in the backscattering
geometry decay very differently for planar and point col-
lection optics, as shown in Fig. 3. The dashed curve in

1.0 —— 1.0 yo————

0.8 | (a) 40.8 (b) L
< osl TRANSMISSION | o ¢ [: BACKSCATTERING |
S 0.4} ' {04} 4

02} \ Joz2}i .

0.0 — s oolia . . o

0 10 20 30 40 50 0 10 20 30 40 50

6(mdeg) 6(mdegq)

FIG. 3. Comparison of angular correlation functions ob-
tained using planar (dashed lines) and point (solid lines) col-
lection optics. (a) For the transmission geometry, the de-
cay of g»(#) is independent of the collection optics. (b) For
the backscattering geometry, the decay of g2(6) is much more
rapid for planar detection optics than for point detection op-
tics.
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Fig. 3(b) was obtained by collecting light over the entire
outgoing plane, an area approximately 1 cm in diameter.
The dashed curve decays much more rapidly than the
solid curve, which was obtained by collecting light from
a single point. In fact, the residual correlation in the
dashed curve reflects only the finite size of the collection
optics and the resultant finite speckle size. Thus the ab-
sence of translational invariance over the collection plane
in the backscattering geometry results in drastically dif-
ferent correlation functions, depending on whether planar
or point collection optics are used while in transmission;
the translational invariance ensures that the two collec-
tion schemes yield identical results. In the remainder of
this paper we report only measurements obtained using
point collection optics.

In Fig. 4, we show autocorrelation functions obtained
in the transmission geometry for alumina samples of
three different thicknesses. As expected, the autocorrela-
tion functions decay more rapidly with increasing sample
thickness. This reflects the fact that longer paths dephase
the light more rapidly than do shorter paths. The solid
lines are fits to the data using Eq. (2.37) with a single set
of fitting parameters: C = 0.212 mm and a = 0.8 mm™?
for all three samples. The fact that a single set of pa-
rameters describe the data for all three samples strongly
supports the theory developed in Sec. II. For comparison
we also show, by the dashed line, the result of the the-
ory for the thickest (L = 0.615 mm) sample with C = 0
and « = 0, i.e., without any internal reflection or ab-
sorption. The disagreement between these calculations
and the measurements is apparent. It is important to
note that increasing internal reflection tends to move the
dashed curve towards the data and improve the agree-
ment between theory and experiment, while increasing
absorption tends to move the dashed curve away from
the data. Physically, this follows from the fact that in-
ternal reflection increases the effective length of the light
paths through the sample, while absorption tends to at-

g.(6)

FIG. 4. Correlation functions for alumina samples: 0O,
L =0.256 mm; O, L = 0.385 mm; A, L = 0.615 mm. The
solid line indicates a fit to Eq. (2.37) with a single set of fitting
parameters for all three curves: C = 0.212 mm and o = 0.8
mm™'. The dashed line is the theory for L = 0.615 mm with
no reflection or absorption (C = 0 and a = 0).
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tenuate the contribution of the longer paths. Thus it is
the inclusion of reflection in the theory which provides
the improved agreement with the data.

To better appreciate the relationship between g2(g)
and L we plot the half-width 8, of the measured au-
tocorrelation functions as L is varied. The values for the
alumina samples are shown in Fig. 5(a). The lower solid
line through the data is a fit to Eq. (2.37) and is in excel-
lent agreement with experimental data. From the fit we
obtain C' = 0.212+0.001 mm and o = 0.8+0.1 mm™!, in
excellent agreement with the values obtained from the fit
to the individual autocorrelation functions. The dashed
line is calculated from Eq. (2.10), without the effect of in-
ternal reflection and absorption, and cannot account for
the observed behavior. The internal reflection has the
strongest effect for those samples with the highest index
mismatch, particularly the thinnest samples. Since the
thinnest samples have the shortest characteristic photon
path lengths without internal reflection, the fractional in-
crease in path length due to internal reflection is greatest
in these samples. In Fig. 5(b), we plot 8, for the glass
frit samples and fit the data with Eq. (2.37) to obtain
C =0.143+0.001 mm and a = 0.5+ 0.1 mm~!. Again,
the agreement between theory and experiment is excel-
lent. Furthermore, the effect of the internal reflection is
considerably less for these samples since their index mis-
match is less. In fact, for the thickest sample L = 2.92
mm the effect of the internal reflection is negligible. Nev-
ertheless, over the full range of sample thicknesses used,
inclusion of internal reflection in the theory provides sub-
stantially better agreement with the data than the theory
with C = 0, which is shown by the dashed curve in Fig.
5(b).

II)l order to determine the reflection coefficient R from
our measurements of C', we must know [* for our sam-
ples. We can obtain a good estimate of {* by combining
our measurements of g,(#) in transmission with measure-
ments of g2(#) in backscattering. In backscattering, the
angular correlation function depends not only on C and
«, as in transmission, but on zg as well. Since @ and C

6 .‘.'\‘ ( b) y

"\ GLASS FRIT

0.2 0.4 0.6 1 2 3
L(mm) L(mm)

FIG. 5. Half-width 85 of angular correlation functions ob-
tained in transmission measurements vs sample thickness for
(2) alumina and (b) glass frit samples. The solid line in (a)
indicates a fit to Eq. (2.37). The dashed line is calcuated from
Eq. (2.10) without reflection and absorption. Similar curves
are shown in (b) for a glass sample where the effect of internal
reflection is smaller due to smaller index mismatch.
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are determined from transmission experiments, the mea-
surements of g2(f) in backscattering can be used to deter-
mine the remaining unknown parameter zo. In previous
measurements of the temporal autocorrelation functions
in multiply scattering colloidal suspensions, and in mea-
surements of the coherent backscattering cone, zp was
found to be approximately equal to I* to within £30%.
Thus, once 2o is known, we can exploit this empirical
relationship to determine I*. In Fig. 6 we plot the mea-
sured angular autocorrelation functions of the polarized
intensity in the backscattering geometry for (a) the alu-
mina sample with L = 0.615 mm and (b) the glass frit
sample with L = 2.92 mm. The solid lines are fits to Eq.
(2.40) that give zo = 50 pm for both samples. By con-
trast, we show, by the dashed lines the calculation using
Eq. (2.40) with C = 0, @ = 0 and zg = 50 pm. These
results decay much more slowly than the data. By using
I* = 50 pm for both samples, we obtain R = 0.73 for the
alumina sample and R = 0.63 for the glass frit. These
values are substantially higher than the reflection coeffi-
cient for normal incidence from air to glass which is 0.04.
However, much of the multiply scattered light inside the
sample is incident on the boundary at very large angles
resulting in total or near total internal reflection. Thus
the internal reflection coefficient multiply can be quite
high even for moderate index mismatch.

C. Estimation of R from Fresnel’s law

We can obtain an estimate of the reflection coefficient
R using Fresnel’s law. We assume that the direction and
polarization of diffusing light incident on the boundary
from inside the sample is completely random and that
the sample surface is flat. For an angle of incidence 8 the
reflection coefficient R(6) averaged over polarization is

R1(0) + Ry(9)

T|| , (3.1)
where R (0) and R||(t9) are the Fresnel reflection coeffi-
cients for incident light polarized perpendicular and par-

allel to the plane of incidence, respectively [13]. The
reflected flux for a given angle of incidence at z = 0 is

R(9) =

g2(8)

0O 20 40 60 80
6(mdegq)

FIG. 6. Correlation functions obtained in backscattering
for (a) an alumina sample and (b) a glass frit. The solid lines
indicate fits to Eq. (2.40). Both fits give zo = 50 um. The
dashed lines are calcuated from Eq. (2.40) with C =0, o = 0,
and zo = 50 ym.
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R(6)J(0), where J () is the angle-dependent flux incident
on the interface from inside the sample. To obtain J(6),
we consider once again the flux, given by Eq. (2.12), from
a volume element dV through an arbitrary small area dS
inside the sample. Integrating over r and ¢ we obtain an
expression for J(6):

*

J(0) = %cost?—f~ z

5 —U-cosﬂsinﬁ.

0z
At z = 0 the only diffusive flux in the +z direction is from
reflected light. Thus the total flux in the 4z direction
at z = 0 is obtained by integrating over light reflected
through all ¢

(3.2)

w/2
Iy = / d6 J(8)R(0) . (3.3)
0
Away from the boundary inside the sample, J, is given
by Eq. (2.17). Within the diffusion approximation, these
two expressions for Jy, Eqgs. (2.17) and (8.3), must be
equal near the sample boundary at z = 0. Thus, setting
Egs. (2.17) and (3.3) equal and using the expression for
J(6) in Eq. (3.2), we obtain the boundary condition at
z=0,

Ly Cy 0
—Ire—= 3 , 4
— —'CH aZ (3 )
where
w/2
C = / dOR(6)sin b cos (3.5)
0
and
0
Cy = / dfOR(6)sin f cos® @ . (3.6)
—n/2
At z = L, we obtain a similar boundary condition,
U+ 3= 3 +C:0U (3.7)

— _'(jl Bz

Equations (3.4) and (3.7) have the same form as the
boundary conditions we previously derived, Egs. (2.30)
and (2.31), provided we make the identification

1+0C

c=1r
i_¢c

(3.8)

We can obtain an expression for the parameter R, which
depends only on the indices of refraction of the sample
and the surrounding medium (e.g., air or glass), by com-
paring Eq. (3.8) with Eq. (2.22). This gives

_ 3Cy + 2C,
T 3C;—-2C,+2°

Taking n = 1.7 for the alumina and n = 1.5 for the
glass frit we obtain R = 0.68 for the alumina sample and
R = 0.57 for the glass frit. These values are in reasonable
agreement with the experimental estimates of 0.73 and
0.63, respectively.

We note that the treatment of reflections given

(3.9)
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above differs from the earlier treatment of Lagendijk,
Vreeker, and DeVries [3] in that it allows for angle- and
polarization-dependent internal reflection of light. Thus
we are able to predict the value of the reflection coeffi-
cient incorporated into the boundary conditions in terms
of known material parameters, namely the indices of re-
fraction of the scattering medium and the sample con-
tainer. Furthermore, in the absence of internal reflection,
we recover boundary conditions which are more consis-
tent with the Milne solution than the perfectly absorbing
boundary conditions sometimes used [3, 8].

IV. APPLICATIONS

Since internal reflection of light changes the path
length distribution P(s), its effects must be taken into
account in measurements of other quantities which in-
volve multiply scattered light. Below, we discuss the ef-
fects of internal reflection on dynamic light scattering
in the multiple-scattering limit, coherent backscattering,
and frequency correlations. Because all of these measure-
ments depend on P(s) in essentially the same way, we can
generalize our results for angular correlations to each of
these measurements. In fact, in each of these cases we
show how the expressions obtained in the absence of in-
ternal reflection can be modified to obtain more general
expressions which apply when internal reflections are not
negligible. Furthermore, in all cases, the effects of inter-
nal reflection enter the expressions by means of the same
parameter C. Thus, at least in principle, it is possible to
determine C, and the effects of internal reflection, from
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tion function in transmission has the unique advantage
that, in the absence of absorption, the only other param-
eter it is dependent on is the sample thickness, which can
easily be determined independently. It is this fact which
makes the angular correlation function so useful.

A. Diffusing-wave spectroscopy

Diffusing-wave spectroscopy (DWS) is the extension
of dynamic light scattering to the multiple-scattering
regime and involves the analysis of the temporal fluctua-
tions in the intensity of the light multiply scattered from
mobile particles. The normalized intensity correlation
function measured experimentally is (I(0)I(7))/{I)? =
1+ B|g1(7)|? where 3 is again a constance which depends
on the collection optics. For a suspension of colloidal par-
ticles undergoing Brownian motion, the normalized field
autocorrelation function g1(7) is given by

(oo]
gl(r)oc/ P(s)e=Hr/mo)s/1" (4.1)
0
where 19 i1s the characteristic time for particle motion.
For diffusing Brownian particles, 7o = 1/D,k? where D,
is the diffusion coefficient of the particles and k = 27n/A
is the wave vector of the light in the sample. Equation
(4.1) has exactly the same form as the general expression
for the angular correlation function with no absorption,

8T
To '

except that g is replaced by + Thus, for plane-

wave incidence, the form of g;(¢) may be obtained from

91(r) =

: : 8T
the angular correlation function in transmission, and use Eq. (2.37) by making the transformation ¢ — /2.
this value for other measurements. The angular correla-  For example, in transmission we obtain
J
L+2C sinh[(z0/1*)1/67/70) + (C/1*)\/67 /70 cosh[(z0/1*)\/6T /0] (4.2)
20+ C [1 + (C/1*)267 /0] sinh[(L/1*)\/6T/70] + (2C/1*)\/67 /70 cosh[(L/1*)/6T /o]
|

For R = 0, the above equation reduces to the same func- g1(7) = exp(—7+/67/70) , (4.3)

tional form obtained previously [6].

If experimental data from a DWS measurement are
interpreted without including the effects of internal re-
flection, the value of L/I* obtained by fitting the data to
Eq. (4.2) with R = 0 will be somewhat larger than its
actual value. Physically, this reflects the increase in the
effective path length due to the internal reflection. Thus
the value of I* will be underestimated. For example, with
R =0.2and L/I* = 10, I* will be underestimated by 10%
if internal reflection at the boundaries is not included.
Previous reports of DWS measurements in transmission
are consistent with these considerions [6].

In the backscattering geometry, the effects of internal
reflection on a DWS measurement can be even more pro-
nounced. In previous reports, the autocorrelation func-
tion in backscattering for a thick sample (L > I*) were
found to be well approximated by [11]

where v was observed to be a function of polarization and
the ratio I* /I. Here we emphasize that v is also a function
of the reflection coefficient R. Making the substitution

of ¢ — Il.,/-f—: in Eq. (2.41), we obtain an expression

for the temporal autocorrelation function with internal

reflection
e—zm/G-r/-ro/I‘
= ——————.
9(7) 14 C\67/70/1*

Performing a small time expansion of Egs. (4.3) and (4.4),

we obtain the relationship

20+C 2  2(1+R)
* 0 31-R)’

Thus the value of 7 can depend on the optical properties

of the sample container and its surroundings. For exam-

(4.4)

(4.5)
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FIG. 7. Calculated reflection coeflicient vs index mis-
match m = ns/no, where n; is the index of refraction of the
sample and no is the index of refraction of the surrounding
medium.

ple, for zo = I* and R = 0, v = 1.67. By contrast, for
R = 0.2, v = 2. Note that finite values of R lead to larger
values of v. In Fig. 7 we show the reflection coefficient
as a function of index mismatch.

B. Coherent backscattering

Another commonly performed experiment, which is
also strongly affected by internal reflection, is the coher-
ent enhancement of backscattered light [2, 14]. The an-
gular width of the coherent backscattered cone has been
used as a direct measure of {*. The equation for the
angular correlation function, Eq. (2.34), has exactly the
same form as the expression for the coherent backscatter-
ing cone [14]. Thus, for very thick samples, the angular
dependence of the coherent backscattering cone is given
by Eq. (2.41) and the inverse angular width is given by
[z0/1* + 2(1 4+ R)/3(1 — R)]kol*. Even a modest index
mismatch at the sample boundaries can lead to signif-
icant corrections to the apparent value of I* measured
using coherent backscattering. For example, a reflection
coefficient of R = 0.2 increases the value of v from 1.67
to 2. Thus caution must be exercised in interpreting the
width of the coherent backscattering cone, and the effects
of internal reflection must be considered.

J
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C. Frequency correlation

Another measurement which can also be strongly af-
fected by internal reflection is the frequency correlation
of transmitted light as the incident frequency is changed.
Such measurements have been used, for example, to de-
termine the diffusion coefficient D of light [15]. The phase
shift of a path of length s due to a frequency shift Av
is 2wsAv/v = 2rAvsl* /3D. An expression for the fre-
quency autocorrelation function can be obtained within
the diffusion approximation in a fashion analogous to
that used to obtain other correlation functions by sum-
ming the contribution from all paths. The result is

{ee]

71(Av) o / P(s)ei2maval [3D=s/le g (4.6)

0
Equation (4.6) has the same form as the general expres-
sion for the angular autocorrelation function, Eq. (2.37).
Thus explicit expressions for the frequency autocorrela-
tion function for different geometries can be obtained
from our formulas for the angular autocorrelaton func-
tion by making the substitution ¢ — /:27Av/D into
Egs. (2.37) and (2.40). Once again, the effect of re-
flections is to increase the effective length of light paths
through a sample. Thus, if internal reflection is not taken
into account, the apparent diffusion coefficient extracted
from a fit to the data will be smaller than its actual
value. However, because the effects of internal reflec-
tion decrease with increasing sample thickness, the fitted
value of D should increase and saturate at the true value
when L > C. These results are consistent with the re-
cent report using microwave measurements [16].

D. Pulse propagation

Internal reflection can also strongly affect pulse prop-
agation and the transmission coefficient of light through
random media. For an instantaneous pulse of light in-
cident on a random medium, the transmitted pulse is
broadened in time. Physically, this reflects the fact that
photons traverse a distribution of path lengths. Those
with shortest paths escape from the sample first and
those with longer paths escape later. The functional form
of the transmitted pulse is simply P(s) with the trans-
formation of variables s = vt. For plane-wave incidence,
the solution of the diffusion equation is given by Carslaw
and Jaeger for the slab geometry [10]

P(t) io: kp[sin(kmzo) + Cky, cos(kmzo)][cos(km L) — Ckm Sin(kmL)]e—D(kf;,+a2)t

(C2k2, + 1)L + 2C

m=1

where k,,, is mth positive root of the hyperbolic equation
2kC
tan(kL) = i 1 (4.8)
D = vl*/3 is the diffusion coefficient of light, and a? =
3/1,1*. The internal reflection increases the path length
which delays the peak of transmitted pulse and broad-
ens its width. At long times, where P(¢) decays expo-
nentially, the decay is slower when reflection is included.

Thus, if internal reflection is not taken into account, the
apparent diffusion coefficient extracted from a fit to the
data will be smaller than its actual value. For example,
fitting the exponentail tail of P(¢) by assuming R = 0 and
renormalizing D gives the apparent diffusion coefficient

D"~ D <1 - ?’(—f_-@’-;)—L) . (4.9)
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A similar result was obtained by Lagendijk, Vreeker, and
DeVries [3], but with a slightly different numerical coef-
ficient resulting from their assuming perfectly absorbing
walls in the absence of reflection (see Sec. II B).

V. CONCLUSIONS

We have developed a simple theory to describe the
internal reflection of light at the sample boundaries in
systems which multiply scatter light. We find that the
effects of internal reflection can be accounted for by in-
corporating a single parameter C into the boundary con-
ditions of the diffusion equation for light. Using these
boundary conditions in the solution of the diffusion equa-
tion, we obtain explicit expressions for various experi-
mentally measurable quantities, including the angular,
temporal, and frequency autocorrelation functions, as
well as the coherent backscattering cone and the shape of
the transmitted pulse in a pulse propagation experiment.

We find that the measurements of the angular correla-
tion functions are in excellent agreement with the theory
only when the effect of internal reflection at the sample
interface is properly taken into account. The angular au-
tocorrelation functions depend on sample thickness, ab-
sorption, and internal reflection. The effects of reflection
and absorption can be independently determined through
their different dependences on sample thickness. Inter-
nal reflection increases the light path by a fixed amount
which depends on the reflection coefficient. Therefore, in
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transmission experiments, internal reflection is most sig-
nificant for thin samples. By contrast, absorption cuts
off long paths and, therefore, is significant only for trans-
mission through thick samples. Thus measurements of
g1(¢) as a function of thickness can be used to deter-
mine the absorption and reflection parameters a and C,
respectively. To obtain a value for the reflection coef-
ficient R which appears in C, the transport mean free
path I* must be known. An estimate of [* can be ob-
tained from backscattering measurements of the angular
correlation function. Thus, by measuring autocorrela-
tion functions for different thicknesses in both transmis-
sion and backscattering, we can determine the absorption
parameter and obtain an estimate of the reflection coef-
ficient and the transport mean free path.

Finally, using a simple model based on Fresnel theory,
we calculated the dependence of the reflection coefficient
on the index mismatch at the sample boundaries. As
expected, larger index mismatch leads to larger reflection
coefficients. The reflection coefficients we calculate are
in good agreement with the measured values of R for
samples with different index mismatch. Thus reasonable
a priort estimates of the effects of reflection are possible
for a given experiment using multiple light scattering.
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