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Bessel-Gauss pulses
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A family of exact pulse solutions of the homogenous free-space scalar wave equation is obtained.
These solutions describe moving modified Bessel-Gauss pulses. They include the fundamental Gaussian
pulse and the Bessel beam solutions as special cases. The zeroth-order Bessel-Gauss pulse is shown to be
more highly localized than the fundamental Gaussian solution because of its extra spectral degree of
freedom. A superposition of Bessel-Gauss pulses is used to create a splash pulse that is more localized
than the Ziolkowski splash pulse.

I. INTRODUCTION

In recent years, a number of exact solutions of the
three-dimensional scalar wave equation have been
discovered that describe localized transmission of elec-
tromagnetic energy in space-time [1—9]. One of these
solutions, the moving modified Gaussian pulse [2], was
shown to maintain its Gaussian proNe during propaga-
tion with only local variations. Another solution, the
Bessel beam [6,7], has been shown, via both experiment
and numerical simulation, to exhibit diFraction-free
propagation over a limited range.

In accord with the above, we have derived a family of
exact solutions to the scalar wave equation that contain
both of the above solutions as special cases when ap-
propriate limits are taken. Specifically for the homogene-
ous free-space scalar wave equation,
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as indicated by the bidirectional traveling-plane-wave
representation [9]. Thus the zeroth-order symmetric
solution,
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where g=z —ct and i)=z+ct are the transformed coor-
dinates, V =a, +if is the complex variance, p and P are
the usua1 transverse cylindrical coordinates, Q

&
is a

beam-source location term, and ~ and P are spectral pa-
rameters governed by the constraint equation

can be described as a modulated moving Bessel-Gauss
pulse. Equation (4) is derived in Appendix A. We show
an alternative derivation using a bidirectional plane-wave
decomposition in Appendix B.
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we find that

f~(r, t)= lim No(r, t)=Jo(tcp)e ' ~e'~",
gl ~OO

which is Durnin's Bessel beam solution in bidirectional
traveling-plane-wave form with a =tc /4P.

We would like to compare the propagation characteris-
tics of the fundamental Gaussian and zeroth-order
Bessel-Gauss pulses. For p =0, z =ct (/=0),

Re[pa(r, t) ]=Re[&ho(r, t) ]=cos2Pz, (8)

indicating that both pulses' initial amplitudes are
recovered periodically and thus they have the same type
of time history behavior [8].

For a given time, Fig. 1 is a three-dimensional plot of
the fundamental Gaussian pulse, [Re( Pa )], for a, = 1

cm, t=O, P=0.3333 cm ', x.=O. Figure 2 shows a plot
of the Bessel-Gauss pulse for the same values of the above
parameters but with ted=3 cm ', giving a ratio of Ic/P=9.
The Bessel-Gauss pulse is more localized about the trans-
verse axis (z=O) and also about the propagation axis
when compared with the fundamental Gaussian. In gen-
eral, we find that for tc/P(1, the Bessel-Gauss pulse is
very similar to the fundamental Gaussian and exhibits a
plane-wave character for small f3 values and a particlelike
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II. BESSEL-GAUSS PULSE BEHAVIOR

Taking the limit of (4) as tc approaches zero, we have

Qi 2
ga(r, t) = lim @o(r,t) = e

~~0 '
V

which is Ziolkowski s fundamental Gaussian pulse [2,8].
By allowing Q& to approach infinity, and using the

beam spread, A =a, +(g /a, ), and the phase front cur-
vature, R = g+ (a, /g), to obtain
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FIG. 1. Fundamental Gaussian pulse with a& =1 cm, t=O,
P=0.3333 cm ', s.=O cm

FIG. 3. Fundamental Gaussian pulse with a& =1 cm, p=O,
P=0.3333 cm ', a=Oem

4„(r,r ) =G„(p,p, g)e'~", (9)

character for larger P values. For a/P& 1, it exhibits a
particlelike character and is highly localized near both
the transverse and propagation axes as K increases. Be-
cause of its extra spectral degree of freedom, for any
given value of P (by simply increasing a), one can obtain
a Bessel-Gauss pulse that is more localized in space than
the fundamental Gaussian.

Figure 3 shows a three-dimensional plot of the funda-
mental Gaussian for a given value of the transverse coor-
dinate, i.e., p=0, and shows IRe[QG(r, t)]] versus the
propagation distance z and the time for p=0.3333 cm
a, =1 cm. We see that the pulse moves along a straight
line in the z-t plane with changing amplitude. The pulse
centers at z =ct with z =nor/P are not clearly defined.
Figure 4 shows the same plot of a Bessel-Gauss pulse,
I~/P=9, with the same parameters as in Fig. 3. Figure 4
shows the complete separation of each pulse center and
shows that this Bessel-Gauss pulse is highly localized in
time as well as space.

The Bessel-Gauss family of solutions to the three-
dimensional scalar wave equation is another example of
solutions obeying the general ansatz

where

G„(p,g, g) = J„
KQ )P
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is a function of p, P, and (z ct) only.—The G„are exact
solutions to a free-particle Schrodinger equation having
the form

BG„
V, G„+4iP =0 .

Considering the ansatz in (9), the Bessel-Gauss pulse is
composed of a general wave traveling at a velocity c
along the +z-axis and a plane wave of wave number P
traveling along the —z axis at a velocity c [3,4]. A com-
parison of the function Gc in (10) with the zeroth-order
Bessel-Gauss solution in (4) is shown in Figs. 5 —9. As-
suming that t=O and choosing the maximum transverse
value of each function that occurs at p=O, these figures
compare [Re(GO)] and [Re(@c)] for various values ofP,
K, and a, . In each instance, Go is the envelope of' the en-
tire solution to the wave equation. For v/p~ 1, Gc en-

velopes completely the maximum of @o, but does not in-
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FIG. 2. Bessel-Gauss pulse with a& = I cm, t=O, p=0.3333
cm ', K =3 cm

FIG. 4. Bessel-Gauss pulse with a, =1 cm, p=O, p=0.3333
cm, ~=3 cm
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FIG. 5. Comparison of Bessel-Gauss solution N0, and its en-
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FIG. 7. Comparison of Bessel-Gauss solution @0 and its en-
velope Go with p=O, t=O, a, =1 cm, P=3.333 cm, «=6
cm '.

!cos2pz! =!cos2pct! = 1 . (12)

Thus for aPProPriate values of z, t, and P, the Pulse @cre-
forms to its initial shape and amplitude periodically. Par-

elude the sidelobes very well. For «/p& 1, Gc almost
completely encloses 40 for values of a, =1. If a& is de-
creased, not only is No completely enclosed by Go, but
the sharpness of its maximum and the damping of its
sidelobes is very clear.

Figure 10 shows a time history of the Go function and
plots the IRe(GO) j as a function of z for different times.
Figure 11 shows the same plot for +0. The envelope Go,
since it is a function of (z ct) and no—t of (z +et), travels
without deforming in the +z direction at velocity e. The
complete Bessel-Gauss pulse also travels in the +z direc-
tion but it deforms as t is increased from zero, losing am-
plitude and its symmetry, but reforming to its t=O shape
and maximum amplitude when
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FIG. 8. Comparison of Bessel-Gauss solution N0 and its en-
velope Go with p=0, t=0, a, =1,p=33.33 cm ', «=60 cm
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FIG. 6. Comparison of Bessel-Gauss solution @0, and its en-
velope Go with p=O, t=O, a, = 1 cm, @=3.333 cm, «=3.333
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FIG. 9. Comparison of Bessel-Gauss solution N0 and its en-
velope Go with p=O, t=O, a, =0.1, P=33.33 cm, «.=60
cm
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ticularly as a./p increases and a, decreases, the backward
traveling plane wave has little effect on the forward prop-
agation of the pulse.

III. SUPERPOSITION
USING BESSEL-GAUSS PULSES

In the bidirectional traveling-plane-wave synthesis,
general solutions to the scalar wave equation can be
found using Eq. (2.22) in Ref. [9],

g(p, g, ri)=
z f da f da f dPCo(a, P, a)a

(2m) o o o

XJo(ap)e

K
X e'~"5 ap—

4

(13)

where for simplicity we have taken n=0 and /=1. This
is a superposition of elementary Bessel beam solutions
with an appropriate spectrum and the constraint equa-
tion included. Ziolkowski created a superposition of ele-
mentary fundamental Gaussian solutions [2,8]. This is
done because these types of syntheses utilize basis func-
tions that are localized and thus well suited to describe
localized energy transmission. We have shown that
Bessel-Gauss pulse solutions are even more localized than
the fundamental Gaussians and are a generalization that
includes both Durnin's Bessel beam solution and the fun-
damental Gaussian as special cases. Thus using them as
basis functions in (13) should give more general localized
solutions of the scalar wave equation. Then the superpo-
sition becomes

f (r, t)=
z f d~ f da f dpCo(~, p, a)a Jo(2')~ V o o o

2

exp[ P(p /V—i ri) ia—g—a, /V] 5 aP—

(14)

or performing the integration over a:
2f (r t) = f da f dp Co ~,p, —Jo

(2~) V o o

Ka )P P
V V

exp —p —i il
ia a, g

4PV
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lf the spectral function Co(a, p, a' /4p) satisfies certain
criteria [9], then f (r, t) will have finite energy.

&s a specific example, we use the spectrum [9]

with m integer and az, a 3 )0.
Then
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FIG. 10. Time history of the Bessel-Gauss envelope G0 with

p=0, a, =1 cm, P=0.3333 cm ', and v=3 cm
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FIG. 11. Time history of the Bessel-Gauss envelope @0 with
p=0, a, =1 cm, P=0.3333 cm ', and «=3 cm
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Performing the integration with respect to P using
Gradshteyn and Ryzhik [11],formula 3.471.9, p(cm)

f "dp pm
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FIG. 12. Fundamental Gaussian splash pulse with t=O,
a

&
=0.01 cm, a2 = 1 cm.

tions, we have created a more localized pulse than can be
obtained using fundamental Gaussian basis functions.

IV. CONCLUSION

Finally, performing the integration over a. using Ref. [11],
formula 6.576.3,

f (r, t)= a1

V

(m —1)/2
P 1

4(s +a2) g1+ m

XF m 11'—r'
(23)

F m, l;1;— 2

r'
2 m (24)

where F is the hypergeometric function and can be writ-
ten in the form [9,12]

T

We have obtained a family of exact solutions to the
scalar wave equation that describe modulated moving
Bessel-Gauss pulses. The zeroth-order solution of this
family was shown to include both the fundamental
Gaussian solution and the Bessel beam solution (in bi-
directional form) as special cases. These pulses are more
localized than the fundamental Gaussians because of
their extra degree of freedom over a transverse spectral
parameter. Thus using them in a superposition with an
appropriate spectral function produces a pulse with more
highly localized propagation characteristics. We have
shown only one example of such a pulse but many in-
teresting exact solutions of the scalar wave equation may
be obtained in this way.

For m=1,

a1
(r, t)=

& (y+5) (25)

Equation (25) has the same form as the splash pulse in
Ref. [2] although the variables in the denominator are
diA'erent.

We can compare the splash pulse derived using a su-
perposition of fundamental Gaussian pulses with the
splash pulse derived from a superposition of Bessel-Gauss
pulses. Ziolkowski s splash pulse is shown in Fig. 12 with
the parameters t=0, a1 =0.01 cm, a2 =1 cm. The splash
pulse determined with Bessel Gauss basis functions is
shown in Fig. 13 for t=0, a1=0.01 cm, a2 =1 cm, and
a3=0.01 cm. With the extra parameter a3, we have
achieved a sharper pulse than the splash pulse of Fig. 12.
It is more highly localized near both the transverse and
propagation axes. Thus with Bessel-Gauss basis func-
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FIG. 13. Bessel-Gauss splash pulse with t=O, a, =0.01 cm,
a2 = 1 cm, a3 =0.01 cm.
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APPENDIX A: DERIVATION
OF THE ZEROTH-ORDER BESSEL-GAUSS PULSE

where qo is a constant. Then (A5a) can be solved,

s =spq, (A7)
Let

C (r, t) =e't" +"'G(p, z c—t)

satisfy the three-dimensional scalar wave equation,

(b, —B„)4(r,t) =0

(where we assume azimuthal symmetry).
G (p, z ct—) satisfies

(Al)

Then

where so is a constant also. Thus (A5b) gives
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2 +Pp ~
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(V', +4iPa, )G(p, g) =0,
where we have transformed to g=z ct, g—=z +ct

Assuming the fo11owing ansatz, i.e.,
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=iq
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q =g—ia, , (A loa)
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s
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where s, P, and q are functions of g only, Eq. (A3) yields
three equations, P=i ln 1+
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From (A5c),
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(A12) becomes (and setting A o
= 1)
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Using (A15) in (Al) gives an exact solution to the scalar
wave equation,

Using the usual prescription of g —+2z, g~z, p~p/2,
and a, =pwo, where wo is the beam waist parameter at
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z=0, (A16) reduces to a zeroth-order Bessel-Gauss beam
[10].

APPENDIX B: BIDIRECTIONAL PLANE-WAVE
DECOMPOSITION OF THK ZKROTH-ORDER

BESSEL-GAUSS SOLUTION

Co(a', P', a') =2sr a, Io

Xexp

KK Q)

2P'

a, (tc +tt' )
5(P—P'), (B1)

The bidirectional plane-wave representation [9] in Eq.
(13) can be used to derive the zeroth-order Bessel-Gauss
solution in Eq. (4). We start with the spectrum

where I0 is a modified Bessel function of the first kind.
Substituting (Bl) into Eq. (13) in the text and integrat-

ing over a', we have
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The ~' integration can be written
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using formula 6.633.4 in Ref. [11]. The P' integration is
now

Q(x 1—
V
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vQ &P

V

X exp —p

or finally

Q&
C'o(t»k n}= ~ Jo

2

l'g
V

i xa&g.
4pV

(B9)
Due to the Dirac 5 function, (B6) is simply which is the same as Eq. (4).
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