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A family of exact pulse solutions of the homogenous free-space scalar wave equation is obtained.
These solutions describe moving modified Bessel-Gauss pulses. They include the fundamental Gaussian
pulse and the Bessel beam solutions as special cases. The zeroth-order Bessel-Gauss pulse is shown to be
more highly localized than the fundamental Gaussian solution because of its extra spectral degree of
freedom. A superposition of Bessel-Gauss pulses is used to create a splash pulse that is more localized

than the Ziolkowski splash pulse.

I. INTRODUCTION

In recent years, a number of exact solutions of the
three-dimensional scalar wave equation have been
discovered that describe localized transmission of elec-
tromagnetic energy in space-time [1-9]. One of these
solutions, the moving modified Gaussian pulse [2], was
shown to maintain its Gaussian profile during propaga-
tion with only local variations. Another solution, the
Bessel beam [6,7], has been shown, via both experiment
and numerical simulation, to exhibit diffraction-free
propagation over a limited range.

In accord with the above, we have derived a family of
exact solutions to the scalar wave equation that contain
both of the above solutions as special cases when ap-
propriate limits are taken. Specifically for the homogene-
ous free-space scalar wave equation,

(A—93%)®,(r,1)=0, (1

we have found that (1) is satisfied by
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where { =z —ct and =z +ct are the transformed coor-
dinates, ¥ =a, +i{ is the complex variance, p and ¢ are
the usual transverse cylindrical coordinates, a; is a
beam-source location term, and k and S are spectral pa-
rameters governed by the constraint equation

K*=4ap , (3)

as indicated by the bidirectional traveling-plane-wave
representation [9]. Thus the zeroth-order symmetric

solution,
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can be described as a modulated moving Bessel-Gauss
pulse. Equation (4) is derived in Appendix A. We show
an alternative derivation using a bidirectional plane-wave
decomposition in Appendix B.

II. BESSEL-GAUSS PULSE BEHAVIOR

Taking the limit of (4) as k approaches zero, we have
; a1 LBt /v—im)
Pe(r,1)= lim Oy(r,t)=—-e FF ", 5)
k—0 V

which is Ziolkowski’s fundamental Gaussian pulse [2,8].

By allowing a, to approach infinity, and using the
beam spread, 4 =a,+(£%/a,), and the phase front cur-
vature, R =¢+(a? /&), to obtain

Ii iy Gt 6)
e |V | % |4 R ’

we find that
Yp(r,t)= lim ®(r,t)=J,(kp)e *e'P @)

al—+oo

which is Durnin’s Bessel beam solution in bidirectional
traveling-plane-wave form with a =«2/4p.

We would like to compare the propagation characteris-
tics of the fundamental Gaussian and zeroth-order
Bessel-Gauss pulses. For p=0, z =ct ({=0),

Re[9g(r,t)]=Re[Dy(r,t)]=cos2Bz , (8)

indicating that both pulses’ initial amplitudes are
recovered periodically and thus they have the same type
of time history behavior [8].

For a given time, Fig. 1 is a three-dimensional plot of
the fundamental Gaussian pulse, [Re(1g)]% for a;=1
cm, t=0, $=0.3333 cm ™!, k=0. Figure 2 shows a plot
of the Bessel-Gauss pulse for the same values of the above
parameters but with k=3 cm ™!, giving a ratio of k /8=9.
The Bessel-Gauss pulse is more localized about the trans-
verse axis (z=0) and also about the propagation axis
when compared with the fundamental Gaussian. In gen-
eral, we find that for x/B <1, the Bessel-Gauss pulse is
very similar to the fundamental Gaussian and exhibits a
plane-wave character for small 3 values and a particlelike
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FIG. 1. Fundamental Gaussian pulse with a; =1 cm, t=0,
B=0.3333cm™ !, k=0cm™ .

character for larger B values. For «/B>1, it exhibits a
particlelike character and is highly localized near both
the transverse and propagation axes as k increases. Be-
cause of its extra spectral degree of freedom, for any
given value of B (by simply increasing «), one can obtain
a Bessel-Gauss pulse that is more localized in space than
the fundamental Gaussian.

Figure 3 shows a three-dimensional plot of the funda-
mental Gaussian for a given value of the transverse coor-
dinate, i.e., p=0, and shows {Re[vs(r,t)]}? versus the
propagation distance z and the time for $=0.3333 cm ™!
a,; =1 cm. We see that the pulse moves along a straight
line in the z-¢ plane with changing amplitude. The pulse
centers at z =ct with z=n /B are not clearly defined.
Figure 4 shows the same plot of a Bessel-Gauss pulse,
k/B=9, with the same parameters as in Fig. 3. Figure 4
shows the complete separation of each pulse center and
shows that this Bessel-Gauss pulse is highly localized in
time as well as space.

The Bessel-Gauss family of solutions to the three-
dimensional scalar wave equation is another example of
solutions obeying the general ansatz

®,(r,0)=G,(p,$,5)e™PT , ©)
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FIG. 2. Bessel-Gauss pulse with ¢; =1 cm, t=0, $=0.3333
cm~ !, k=3cm™L
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FIG. 3. Fundamental Gaussian pulse with ¢, =1 cm, p=0,
B=0.3333cm™ ', k=0cm™ L

where
2 a,p 2 iklay
Gn(p,¢,§)=—V*J,, v exp —E%—Wiln(ﬁ
(10)

is a function of p, ¢, and (z —ct) only. The G, are exact
solutions to a free-particle Schrodinger equation having
the form
oG,
of
Considering the ansatz in (9), the Bessel-Gauss pulse is
composed of a general wave traveling at a velocity ¢
along the +z-axis and a plane wave of wave number 3
traveling along the —z axis at a velocity ¢ [3,4]. A com-
parison of the function G in (10) with the zeroth-order
Bessel-Gauss solution in (4) is shown in Figs. 5-9. As-
suming that t=0 and choosing the maximum transverse
value of each function that occurs at p=0, these figures
compare [Re(G,)]? and [Re(®,)]? for various values of 53,
K, and a,. In each instance, G is the envelope of the en-
tire solution to the wave equation. For k/B=1, G, en-
velopes completely the maximum of @, but does not in-

V3G, +4ip =0. (11)

FIG. 4. Bessel-Gauss pulse with a; =1 cm, p=0, =0.3333
cm™ L k=3cm™ .
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FIG. 5. Comparison of Bessel-Gauss solution ®,, and its en-
velope G, with p=0, t=0, ¢, =1 cm, $=0.3333 cm™ !, k=3
—1
cm™ .

clude the sidelobes very well. For x/B>1, G, almost
completely encloses @, for values of a;=1. If @ is de-
creased, not only is ®, completely enclosed by G, but
the sharpness of its maximum and the damping of its
sidelobes is very clear.

Figure 10 shows a time history of the G, function and
plots the [Re(G,)]? as a function of z for different times.
Figure 11 shows the same plot for ®,. The envelope G,
since it is a function of (z —ct) and not of (z +ct), travels
without deforming in the +z direction at velocity c. The
complete Bessel-Gauss pulse also travels in the +z direc-
tion but it deforms as ¢ is increased from zero, losing am-
plitude and its symmetry, but reforming to its =0 shape
and maximum amplitude when

|cos2Bz| =|cos2fBct| =1 . (12)

Thus for appropriate values of z, ¢, and 3, the pulse @, re-
forms to its initial shape and amplitude periodically. Par-

(Re @, )2

t=0p=0 a;=1, B = 3333 « = 3.333

FIG. 6. Comparison of Bessel-Gauss solution P, and its en-
velope G, with p=0, t=0, a; =1 cm, 8=3.333 cm™ !, k=3.333
—1
cm™ .
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FIG. 7. Comparison of Bessel-Gauss solution ®, and its en-
velope G, with p=0, t=0, a;=1 cm, B=3.333 cm™ !, k=6
-1
cm™ .

t=0,p=0 a;=1, B = 23333 «x = 60

FIG. 8. Comparison of Bessel-Gauss solution @, and its en-
velope G, with p=0, t=0,a,=1,8=33.33cm ™, k=60 cm™".

-1 -0.5 \ 0.5 1
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t=0, p=0 a,=0l, B = 3333 x =60

FIG. 9. Comparison of Bessel-Gauss solution ®, and its en-
velope G, with p=0, t=0, a;=0.1, =33.33 cm™!, k=60
-1
cm™ .
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ticularly as k/p increases and a; decreases, the backward
traveling plane wave has little effect on the forward prop-
agation of the pulse.

III. SUPERPOSITION
USING BESSEL-GAUSS PULSES

In the bidirectional traveling-plane-wave synthesis,

general solutions to the scalar wave equation can be
found using Eq. (2.22) in Ref. [9],

_ l o -] o
Wpbm="5 [ "dr [ "da [ “dBColaB
XJo(kple '
X e'Bng aB—T ,
(13)
.|
_ 1 al 0 =] Y
flr,n= (2#)27f0 dr [ “da [ “dB Cy(x,B,a) | T,
or performing the integration over a:
2, ® ® |k Ka,p
= B | 5d
flr,1) (27)2Vf0 d [ “dBC, |k.B 48 |87 | v

If the spectral function Cy(k,B,x>/4B) satisfies certain
criteria [9], then f (r,¢) will have finite energy.
As a specific example, we use the spectrum [9]

Co |8, | =2mp 2= g2
0 K:B! 4B =\ I‘(m)B €Xp a 4B
(16)
(a;=1, x =3, =0.3333, p = 0)
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FIG. 10. Time history of the Bessel-Gauss envelope G, with
p=0,a,=1cm, f=0.3333cm™ ', and k=3 cm™".
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where for simplicity we have taken n=0 and /=1. This
is a superposition of elementary Bessel beam solutions
with an appropriate spectrum and the constraint equa-
tion included. Ziolkowski created a superposition of ele-
mentary fundamental Gaussian solutions [2,8]. This is
done because these types of syntheses utilize basis func-
tions that are localized and thus well suited to describe
localized energy transmission. We have shown that
Bessel-Gauss pulse solutions are even more localized than
the fundamental Gaussians and are a generalization that
includes both Durnin’s Bessel beam solution and the fun-
damental Gaussian as special cases. Thus using them as
basis functions in (13) should give more general localized
solutions of the scalar wave equation. Then the superpo-
sition becomes

2
exp[ —B(p*/V —in)—iata,/V] | aﬁ—%’
(14)
2 i’at
—B & —in|——2 (15)
exp B v in 1%
|
with m integer and a,,a;>0.
Then
_2Tm oa ® 0 m—2 —Bls+ay)
finn=F—= [ “derdoye) [ “dBBT %
Xe~x2p/4ﬂ,
(17)
(@a;=1,x =3, B=0.8333, p = 0)
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FIG. 11. Time history of the Bessel-Gauss envelope @, with

p=0,a,=1cm, 3=0.3333 cm™Landk=3cm™ L.
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where
s=£;——n] , (18a)
y="=2, (18b)
p=as+! (180)

Performing the integration with respect to B using
Gradshteyn and Ryzhik [11], formula 3.471.9,

I[;= fooodBBm -2, —B(s +a2)e —k2p /4B (19)
K2 (m—1)/2
= —L“4(s +a,) K, (kVp(s+ay)).  (20)
Now f(r,t) becomes
-m 2a (m—1)/2
flon=—=_—L|__p
C(m) V |4(s+a,)
® m
Xfo dk k"Jo(vK)K,, _1(8k) , 1
with
8=V'pls+a,) . (22)

Finally, performing the integration over « using Ref. [11],
formula 6.576.3,

al (m—1)/2 1
flr,0=|— __p 1
|4 4(s +a,) §ltm
2
X F m,l;l;—ng , (23)

where F is the hypergeometric function and can be writ-
ten in the form [9,12]

2

F m,l;l;—% -1 24)
5]
For m=1,
flen==% (}/2—1*—82) 25)

Equation (25) has the same form as the splash pulse in
Ref. [2] although the variables in the denominator are
different.

We can compare the splash pulse derived using a su-
perposition of fundamental Gaussian pulses with the
splash pulse derived from a superposition of Bessel-Gauss
pulses. Ziolkowski’s splash pulse is shown in Fig. 12 with
the parameters t=0, a; =0.01 cm, @, =1 cm. The splash
pulse determined with Bessel-Gauss basis functions is
shown in Fig. 13 for =0, a;=0.01 cm, a,=1 cm, and
a3;=0.01 cm. With the extra parameter a;, we have
achieved a sharper pulse than the splash pulse of Fig. 12.
It is more highly localized near both the transverse and
propagation axes. Thus with Bessel-Gauss basis func-

3945

p(cm)

FIG. 12. Fundamental Gaussian splash pulse with =0,
a,;=0.01lcm,a,=1cm.

tions, we have created a more localized pulse than can be
obtained using fundamental Gaussian basis functions.

IV. CONCLUSION

We have obtained a family of exact solutions to the
scalar wave equation that describe modulated moving
Bessel-Gauss pulses. The zeroth-order solution of this
family was shown to include both the fundamental
Gaussian solution and the Bessel beam solution (in bi-
directional form) as special cases. These pulses are more
localized than the fundamental Gaussians because of
their extra degree of freedom over a transverse spectral
parameter. Thus using them in a superposition with an
appropriate spectral function produces a pulse with more
highly localized propagation characteristics. We have
shown only one example of such a pulse but many in-
teresting exact solutions of the scalar wave equation may
be obtained in this way.

FIG. 13. Bessel-Gauss splash pulse with =0, @, =0.01 cm,
a,=1cm, a;=0.01 cm.



3946

APPENDIX A: DERIVATION
OF THE ZEROTH-ORDER BESSEL-GAUSS PULSE

Let

®(r,t)=eP2tIG (p,z —ct) (A1)
satisfy the three-dimensional scalar wave equation,
(A—9%)®(r,t)=0 (A2)
(where we assume azimuthal symmetry). Then
G (p,z —ct) satisfies
(V2+4iBd,)G (p,£)=0, (A3)
where we have transformed to {=z —ct, n=z +ct.
Assuming the following ansatz, i.e.,
o2
Glp, &)= Aol | L~ P+ | (a9
p,8)=4oJo 50 |*P 4 (&)

where s, P, and g are functions of £ only, Eq. (A3) yields
three equations,

P. L. OVERFELT

s
1oy, (ASa)
s q
: 2
4B _ K _4pp,=o0, (A5b)
q s
g;—1=0. (A5c)
From (A5c),
9=q0t¢, (A6)
J
Glp,&)=AgJo |t lexp li | —i ln—2- —tan~!
P> ovo p w(E)
Using
Wo e—itan_l(é'/al)= a,
w(g) a+ig’
(A12) becomes (and setting 4,=1)
_ a, Kpa, _ Bp*
Glo.O= Fin o |a,+ic || a,+ie |
or using V =a, +i¢,
_a, x| [ =8
G(p,{) VJO v |exP v
—iKzalg
Xexp "4B—V (A15)

Using (A15) in (A1) gives an exact solution to the scalar
wave equation,

4“4
where g is a constant. Then (A5a) can be solved,
§=50q , (A7)
where s is a constant also. Thus (A5b) gives
P=ilng+—5—+p (A8)
=i In, —_— .
9 4Bs2q °
At {=0, we want
— A2
G(p,0)= AgJy(kple ¥ '" (A9)
thus
qg=¢—ia, , (A10a)
s=49 (A10b)
a;
and
21172 2 2 2
_. —g_ _ —1 _Q. _ K al _ K al
P=iln |1+ a; tan a) 48q 148
(A10c)
As in Ref. [8], by defining
21172
w(f)=w, |1+ f— ] R (A11)
1
(A4) becomes
22 2
K‘ay K°a, 322
— —— ex (A12)
4Bg  i4P ] ’la
(A13)
way |_ar 1 (A14)
4B |a,t+ig
[
a, Kpa, 2
Po(r,1)=—7Jo | =5 |exp | —B %—”7
)
ik“a,§
— Alé6
4BV ( )

Using the usual prescription of n—2z, {—z, B—PB/2,
and a,=pPw}, where w, is the beam waist parameter at
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z=0, (A16) reduces to a zeroth-order Bessel-Gauss beam
[10].

APPENDIX B: BIDIRECTIONAL PLANE-WAVE
DECOMPOSITION OF THE ZEROTH-ORDER
BESSEL-GAUSS SOLUTION

The bidirectional plane-wave representation [9] in Eq.
(13) can be used to derive the zeroth-order Bessel-Gauss
solution in Eq. (4). We start with the spectrum

J

Y e 2 | K , ,
<I>0(p,§,77)—7f0 dk fo dp l? Jolk'p)y(Kk'oy)e
with

Ka,
al:EBT (B3)
The «' integration can be written
— ® 0t ’ ’ —K'ZV/4H'
LK,—fO dK'k'Jo(K'p) (KT, )e (B4)
_2p (01—p*)B’ 20 pB'

using formula 6.633.4 in Ref. [11]. The B’ integration is
now

© —a,k? .
Oolp 5 =a; [ "dBEB—pre " el
1 (01—p*)B'
X Vexp %
20,08
0|5 (B6)

Due to the Dirac 6 function, (B6) is simply

—a,(B+x?)/88 _. 2
1 e TiK'C/4B o
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kKk'a
Co(a’,B',K’)=21r2a,IO —EB,—I]
a,(kK+«k'?)
X exp ———43—,—— 8(B—p'), (B1

where I, is a modified Bessel function of the first kind.
Substituting (B1) into Eq. (13) in the text and integrat-
ing over a’, we have

Brg(B—p') , (B2)

_al 20’1pB
Do(p,8,m)= V-Io %
2
—Bp? 0B a k.
Xexp v + Vv 45 +ifn
(B7)
or
@ )_‘11J ka,p 8 . K’a;
olps&m=-3-Jo | =5 |exp v T s
x [1— 2t (B8)
| 4
or finally
al Kalp
(D N _
olp:&m=—Jo | —5
2 ix*a,&
_pilP__ — 1
Xexp BlV in By |’
(B9)

which is the same as Eq. (4).
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