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Dynamics of a soliton in a generalized Zakharov system with dissipation
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A generalized Zakharov system (describing interaction of dispersive and nondispersive waves in one
dimension), with direct self-interaction of the dispersive waves and weak dissipation in the dispersive
subsystem, is considered. Evolution of a one-soliton state under the action of weak dissipation is ana-
lyzed. It is proved analytically that three different scenarios of evolution are possible: adiabatic (slow)
transformation of a moving subsonic soliton into a stable quiescent one, complete adiabatic decay of a
transsonic soliton with small amplitude, and the appearance of a transsonic one with a large amplitude
into a critical state, from which a further adiabatic evolution is not possible (it corresponds to a local
minimum in the dependence of the soliton s momentum on its velocity). In the latter case, numerical in-

vestigation of the further evolution of the soliton is performed. It is demonstrated that, in a general case,
it abruptly splits into a stable quiescent soliton, the slowly decaying small-amplitude transsonic one, and
a pair of left- and right-traveling acoustic pulses slowly fading under the action of weak dissipation.

I. INTRODUCTION

In this work, we will analyze the dynamics of a solitary
pulse (soliton) governed by the generalized Zakharov sys-
tem (ZS)

iu, +u„„+2k,~u
~

u+2nu =0,
n„cn„„—= —p(~u ~ ),„+yn,„ (1.2)

where the wave fields u (x, t} and n (x, t) are complex and
real, respectively, and the parameters A, , c, p, and y are
all real. The system of Eqs. (1.1) and (1.2) with X=O and
y=0 has been first derived by Zakharov in Ref. 1 to de-
scribe the interaction between Langmuir (dispersive) and
ion acoustic (approximately nondispersive) waves in a
plasma. Later, it has become commonly accepted that
the ZS is a general model to govern interaction of disper-
sive and nondispersive waves in one dimension. In this
sense, it is as universal as the nonlinear Schrodinger (NS)
equation, which governs evolution of an envelope of
weakly nonlinear dispersive waves [2]. The ZS has found
a number of applications in various physical problems,
such as interaction of intramolecular vibrations giving
rise to Davydov solitons with acoustic disturbances [3],
interaction of high-frequency and low-frequency gravity
disturbances in an atmosphere [4], and so on. There are a
few review papers surveying the dynamics of nonlinear
waves governed by the ZS [5].

In all the works mentioned, the ZS appeared with A, =O
[see Eq. (1.1)], i.e., no direct self-interaction of the disper-
sive waves was presumed. In this work, we will deal with
the generalized system (A,AO). The analysis of this sys-
tem was stimuled by the recent work [6] of two of the
present authors where propagation of nonlinear shear
surface waves was considered in a model of a semi-infinite
elastic body [7] covered by a thin "lid." It has been
demonstrated that, among three branches of the surface
waves in this model, one is dispersive and two are not,

and propagation of the dispersive waves is governed by
the NS equation provided their coupling to the non-
dispersive branches is ignored. In the same approxima-
tion, the nondispersive waves obey d'Alembert equations
(with different sound velocities). It the coupling between
the dispersive branch and nondispersive ones is taken
into account, we arrive at a straightforward generaliza-
tion of the ZS including two nondispersive components
n, and n2 (proof of this shall be given elsewhere). The
equation for the dispersive component of the generalized
ZS contains two different nonlinear terms: the direct
self-interaction A. ~u ~

u, like the single NS equation, and
the nonlinear coupling to the nondispersive components,
which can be written in the form (n, +n2)u. In this
work, we deal with the generalized ZS based on Eqs. (1.1)
and (1.2), i.e., for the sake of simplicity only one non-
dispersive component is retained. Note that the ZS in the
form of Eqs. (1.1) and (1.2) can also be obtained in anoth-
er way: take the ZS with two nondispersive components
and with no direct self-interaction of the dispersive one,

iu, +u„+2(n, +nz)u =0,
("1)tt Ci("1} = Pi(~u ~ }

(nz)„—Cz(nz}„„=—pz(~u~ )„„,

(1.3)

(1.4a)

(1.4b)

and consider the case Cz ))C, . It is well known that the
usual ZS can be approximately reduced to the NS equa-
tion if the group velocities V (e.g. , the velocities of soli-
tons) in the dispersive component are much smaller than
the sound velocity. So, in the case when V =C& «Cz
the fast nondispersive component nz can be excluded by
means of the relation n2 =(iud/Cz )

~

u ~, and the system of
Eqs. (1.3) and (1.4) turns into the system of Eqs. (1.1) and
(1.2) with y =0 and A,

—:iM2/Cz.
Let us now comment on the dissipative term in Eq.

(1.2). In a realistic physical system, dissipation must be
included into each equation, the term added to Eq. (1.2)
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being the usual viscous dissipative term in the equation
for sound propagation. In this work, we concentrate on
the case when the direct dissipative losses in the disper-
sive component may be neglected. As will be demon-
strated below, in this case the dynamics of a soliton is
most interesting.

As is well known, although the ZS is not exactly in-
tegrable [7], it has the exact one-soliton solution, which
takes the following form for the system of Eqs. (1.1) and
(1.2) with y=0.

uso)(x, t)=A, tt' , U„)(x,t) .

Here

(1.5a)

A,,~:—A, +p(C —V ) (1.5c)

is the effective coefficient of self-interaction of the disper-
sive wave component. The nondispersive component of
the soliton is

n„&(x, t) =kg A,,z'(C —V )
' sech (2gx ) . (1.5d)

The soliton exists at the values of V for which A,,~ is
positive. As for the sign of A, , it may be both positive and
negative, which corresponds, respectively, to the attrac-
tive and repulsive self-interaction of the dispersive waves.
At the same time, we will presume the coupling constant

p positive. Otherwise, the proper energy of the non-
dispersive waves in the full Hamiltonian of the undamped
ZS,

(1.6)

is negative.
As follows from Eq. (1.5c), at A, &0 the solitons exist

(A,,s & 0) in the subsonic range

V2( C2 (1.7)

and in the transsonic one (it may also be called supersonic)

V &C +p/l,
while there are no soliton solutions (A.,s&0) in the gap
C & V &C +p/A, . Note that, according to Eq. (1.5d),
the nondispersive component of the solitonic wave field is
positive in the subsonic case, and negative in the
transsonic one.

If A, (0, the solitons exist only inside the gap

(1.9)

provided p/~A, ~
& C, or in the whole subsonic range (1.7)

if p/~A, ~
& C .

The objective of the present work is to study the evolu-
tion of the soliton under the action of the weak dissipa-

U„,(x, t) =2i g sech [2g(x —Vt) ]

Xexp[(i/2) Vx +i (4' V /—4)t] (1.5b)

is the standard form of the NS soliton with amplitude q
and velocity V, and

tion in the nondispersive subsystem [see Eq. (1.2)]. In
Sec. II, this is done analytically by means of the simplest
technique, based on the balance equations for the wave
action and momentum, which are integrals of motion of
the unperturbed one [Eqs. (1.5)], but the parameters g
and V undergo a slow (adiabatic) evolution. The analysis
demonstrates that in the case k &0 an initial state in the
form of the subsonic soliton always evolves into the
quiescent soliton ( V =0), which remains the obvious ex-
act solution of the damped ZS system. As for the
transsonic solitons, two different routes of evolution are
possible. If the initial amplitude of the soliton is
sufficiently small, the dependence of the soliton's momen-
tum P on its velocity V is monotonous, and the
dissipation-induced evolution results eventually in a com-
plete decay of the soliton. In the opposite case, when the
initial amplitude is sufficiently large, the dependence
P(V} proves to be nonmonotonous, see Fig. 2(b) below.
In this case, during a finite time the transsonic soliton
reaches a value V = V„corresponding to a local
minimum of P. At this critical point, a "catastrophe"
must happen with the soliton, as its full momentum must
keep decreasing under the action of the dissipation, but
this is impossible if the soliton retains a form close to the
unperturbed one given by Eqs. (1.5), just because this is
the state corresponding to the minimum of P. We
demonstrate that the perturbative analysis becomes ir-
relevant for V very close to V„. To follow the further
evolution, Eqs. (1.1) and (1.2) have been integrated nu-
merically. The results of the simulations, presented in
Sec. III, demonstrate that, at V = V„, the transsonic soli-
ton splits very quickly into a few new solitary pulses, one
of them being a subsonic soliton which finally turns into
the stable quiescent one in accordance with the analysis
developed in Sec. II. In addition, two strong acoustic
pulses, i.e., those which are salient in the n component,
but have no counterparts in the u component, are gen-
erated. The acoustic pulses propagate with the velocities
+C and are slowly damped by the dissipation. At last, in
some cases an additional transsonic soliton with a smaller
amplitude is also formed after the splitting of the original
one. This secondary transsonic soliton slowly decays as
was predicted analytically in Sec. II.

In the case k &0, the dependence P( V) is always mono-
tonous, and the initial soliton residing in the gap (1.9) al-
ways drifts to the left boundary of the gap. If p/I &

l
& C'

it decays like the transsonic soliton with the small initial
amplitude in the case k&0, and if p/~A,

~

& C, it turns
into the quiescent soliton ( V=0} like the subsonic soliton
at k) 0.

At last, in Sec. IV we briefIy discuss some problems for
the generalized ZS related to soliton-soliton interactions
in this system.

II. ANALYTICAL TREATMENT OF THE EVOLUTION
OF THE SOLITON

A. The general analysis

To apply the balance-equation analysis to the slow
dissipation-induced evolution of the soliton (1.5), let us
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note, first of all, that the damped ZS [Eqs. (1.1) and (1.2)]
conserves the total wave action

N= I lu(x, t)l dx . (2.1)

In the aforementioned surface-wave problem [6], the con-
served quantity (2.1) may be regarded as a full number of
the surface phonons.

In various fields of physics, other examples of dissipa-
tive systems based on the NS equation are known that
conserve the wave action despite the presence of dissipa-
tion. Important examples are the evolution equation for
the envelope, of Langmuir waves in a plasma, which
takes account of the nonlinear Landau damping (see e.g. ,
Ref. [8]), and the equation for the envelope of elec-
tromagnetic waves in a nonlinear optical fiber with re-
gard to the intrapulse Raman scattering [9]. The latter
equation has the form

iu, +u„+2l u l'u =y( lu I'),u, (2.2)

y being a real perturbation parameters. It is straightfor-
ward to see that the perturbing term in Eq. (2.2) is dissi-
pative, but, nonetheless, it conserves the wave action
(2.1). It is known [9,10] that, in both physical systems
mentioned, the nonlinear dissipative term, regarded as a
small perturbation, acts upon a soliton like a constant ac-
celerating force, i.e., the soliton s amplitude (which is
proportional to the conserved wave action) remains con-
stant, while its velocity grows linearly with time.

Inserting Eqs. (1.5) into Eq. (2.1) yields the value
of X for the soliton of the generalized ZS:
N =4rt /[A, +p( C —V )

' ], hence one of the evolution
equations for the soliton can be written in the form

,'N[A, +P(C ——V ) '] . (2.3)

It is implied that X is the conserved quantity given by
an initial condition, while the amplitude g and velocity V
slowly evolve so that the relation (2.3) between them
remains fulfilled in the adiabatic approximation.

To obtain the second evolution equation, we will con-
sider the balance equation for the full momentum of the
system. Note that the momentum-balance equation was
effectively used to study the motion of a kink (topological
soliton) in a perturbed sine-Gordon model [11].To define
the full momentum of the undamped ZS, we need to in-
troduce the "potential" v(x, t) of the nondispersive wave
field: n =v„. In terms of u(x, t) and v(x, t), the full
momentum is

Thus, Eqs. (2.6) give the evolution equation for the veloc-
ity V in the closed form [recall that the amplitude rt has
been excluded by means of Eq. (2.3)].

For definiteness, in what follows we will consider posi-
tive values of V. As explained in Sec. I, we deal with pos-
itive p only, and the existence of the soliton implies that
the combination (1.5c) is positive too. Thus, it follows
from Eq. (2.a) that P) 0, and Eq. (2.6b) tells us that
dP /dt (0. The positiveness of P and the negativeness of
dP/dt will play an important role in the subsequent
analysis.

B. A, & 0, the subsonic range

For A, )0, the solitons exist in the subsonic range (1.7)
and in the transsonic one (1.8). In the former range, the
dependence P(V) following from Eq. (2.6a) takes the
form shown in Fig. 1. According to what was said above,
the dissipation gives rise to the slow decrease of the
momentum (breaking of the soliton). Thus the soliton's
velocity must drift in the direction shown by the arrow in
Fig. 1, and at t~~ the velocity vanishes. This means
that, asymptotically, the initial subsonic soliton turns
into the one given by Eqs. (1.5) with V =0. Note that the
maximum value of the soliton's wave field, equal to

lu l,„=2il/'t/A, +p(C —V )

,'N)/A+ p( C —V)—(2.7)

right-hand sides of Eq. (2.5). Excluding the amplitude rl
in favor of N by means of Eq. (2.3), we find the soliton's
momentum

P =NV+ 2pN—V(C —V ) [A, +p(C —V ) '], (2.6a)

where the first and second term on the right-hand side
are contributions from the dispersive and nondispersive
components, respectively [see Eq. (2.4)]. The
dissipation-induced rate of change of the momentum is

dP 'ypN—V(C V)—[A, +p(C —V ) ']
dt

(2.6b)

P= j [i(uu„' —u*u, ) —4p 'v v, ]dx (2.4)

[cf. expression (1.6) for the. Hamiltonian in terms of
p(x, t)]. Differentiating Eq. (2.4) in time and inserting
Eqs. (1.1) and (1.2), one arrives at the balance equation
for the momentum:

dP + oo

=(4y/p) f n„n, dx . (2.5)

Next, assuming, as was said above, that the slowly
evolving soliton retains a form close to the unperturbed
one, we substitute Eqs. (1.5) into both the left-hand and

FIG. 1. Dependence of the soliton momentum P on its veloc-
ity V [Eq. (2.6(a)] in the subsonic range (at A, & 0). The arrow in-
dicates the direction of the adiabatic dissipation-induced drift of
the velocity.
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according to Eqs. (1.5) and (2.3), diminishes as V de-
creases. So, the final state (the quiescent soliton) is less
steep and more broad than the initial one.

C. A, & 0, the transsonic range

In the transsonic range (1.8), the dependence P ( V) may
take two principally difFerent forms shown in Figs. 2(a)
and 2(b). The former case takes place if the wave action,
or, in other words, the initial amplitude of the soliton [see
Eq. (2.3)], is sufficiently small. In this case the momen-
tum monotonously grows from the value
P„=N+C +p!I, [Fig. 2(a)] with the increase of Vfrom
+C +p/A, to infinity. Accordingly, under the action of
the dissipation the value of V monotonously decreases
from some initial value Vo to the boundary value
+C +p/k. At the asymptotic stage of the evolution
(t ~ oo), the evolution equation (2.6) for the soliton's ve-
locity takes the form

NV= —
—,'OypV(C —V } A,,ir, (2.8)

Substituting Eq. (2.9) into Eqs. (1.5a), (1.5b), and (2.3), we
conclude that the soliton spreads unlimitedly, its width
growing according to the law

(2.10)

which does not depend on the value of N. The maximum

I

(a)

where )i,,ir is the quantity (1.5c). Finally, it follows from
Eq. (2.8) that, at r

(2.9)

i.e., very slowly. As a matter of fact, the evolution of the
transsonic soliton governed by Eqs. (2.10) and (2.11) may
be called its decay.

Let us proceed to the case corresponding to Fig. 2(a),
when the dependence P( V) is nonmonotonous. This case
can be surely realized if N is suKciently large. Analyzing
the dependence P(V) given by Eq. (2.6a), one can see
that, provided N )&C /pA, , the momentum attains the
local minimum at the point

V;„=(2pA,N )' (2.12)

It is worth mentioning that a nonmonotonous depen-
dence of the full soliton's momentum on its velocity has
been recently revealed [12] in the system consisting of the
sine-Gordon equation coupled to one or two D'Alembert
equations (according to Ref. [13], this system describes
dynamics of elastic ferromagnets and ferroelastics}.

Again, the momentum must monotonously decrease
under the action of the dissipation. If the initial soliton's
velocity Vo lies between the local maximum V and the
boundary value +C +p/A, [Fig. 2 (a)], the evolution of
the soliton will be qualitatively the same as in the preced-
ing case, i.e., it will eventually decay according to Eqs.
(2.10) and (2.11). However, if Vo lies to the right of V
the soliton must adiabatically drift to the state with
V = V„corresponding to the minimum value P =P„,see
Fig. 2(a). Note that the drift from V= Vo to V= V„
takes finite time, as the rate of change of the momentum
dP/dt does not vanish at V = V„[see Eq. (2.6b)]. When
the velocity attains the value V„, the soliton must keep
decreasing its momentum according to Eq. (2.6b), but,
being in the state with the minimum momentum, it has
no way to do this adiabatically. Thus we can expect that
the soliton cannot retain its nearly unperturbed form, and
some "catastrophe" must abruptly happen with it at V
close to V„. The "catastrophe" will be investigated, by
means of the direct numerical integration of the underly-
ing equations (1.1) and (1.2), in the next section. Here it
is pertinent to note that the perturbative analysis gets in-
valid at small values of 5V:—V—V„. Indeed, as the
dependence P(V) has a minimum at V= V„, we have
P P„=(5V) at 5V~—O, hence we must insert into the
evolution equation (2.6b)

value of the soliton's wave field decreases as follows [cf.
Eq. (2.7)]:

(2.11)

dP dP ~

dt dV
(2.13)

(5V—:V). Since the right-hand of Eq. (2.6b) has no pecu-
liarity at V= V„, Eqs. (2.6b) and (2.13) yield

(6V)'- y(t„r), — (2.14)

FIG. 2. Dependence P(V) in the transsonic range (at A, )0).
The dashed asymptotic line, P =XV, gives the contribution of
the dispersive component to the full momentum, see Eq. (2.6a).
(a) The small amplitude of the soliton; (b) the large amplitude.
The arrows have the same meaning as in Fig. 1.
c+=(c'+~yx)'".

5V-y/+r„r— (2.15}

diverges at t„—t ~0. In the same time, the perturbative

where t„ is the critical moment when V= V„. Accord-
ing to Eq. (2.14), the derivative
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analysis is applicable provided the velocity changes
sufficiently slowly, i.e., 5V is small. Thus Eq. (2.15) im-

plies that the perturbation theory does not apply at small
values of t„t,—i.e., at small (5V), see Eq. (2.14). Equa-
tion (2.15) suggests also that the rearrangement of the sol-
iton near V = V„must be rather quick, which is corro-
borated by the numerical results presented in Sec. III.

D. The case A, & 0 (a)

If A, is negative, the solitons exist inside the gap (1.9).
If p, /! A, ! & C, the left boundary of the gap is, in fact, the
point V =0. In this case, the situation is qualitatively
similar to that shown in Fig. 1, i.e., the soliton will stop
eventually. If p/! i, ! & C, the dependence P ( V) takes the
form shown in Fig. 3, where Po =N~C— p/! k—!. In this
case, the soliton drifts to the boundary point
V=+C —p/!A, ! where A,,z vanishes, see Eq. (1.5c). So,
the soliton decays asymptotically according to Eqs. (2.10)
and (2.11).

III. NUMERICAL RESULTS: REARRANGEMENT
OF THE SOLITON AT THE CRITICAL POINT

To analyze the further evolution of the soliton after the
critical point V = V„has been reached, we integrated nu-
merically Eqs. (1.1) and (1.2) (for A, )0) with initial condi-
tions corresponding to a transsonic soliton. The simula-
tions were performed with the values of the parameters
C =1, A, =l, @=1, y=0. 1 [in fact, one can always set
C =p = 1, making an obvious scale transformation in
Eqs. (1.1) and (1.2)]. An Euler implicit scheme was used
for the NS equation [14] while a simple explicit-difference
scheme is quite sufhcient for the wave equation. The nu-
merical plots give successive snapshots every 70—100
time computational steps (the precise number depends on
the figure ).

First of all, we have taken the initial values

N=1 V =3 (3.1)

which, as one can check, correspond to the situation of
Fig. 2(a). The evolution of the dispersive and nondisper-
sive components of the wave field is shown in Fig. 4. As
is seen (with regard to the linear perspective artificially

FIG. 4. Results of the numerical integration of Eqs. (1.1) and
(1.2) with the initial data (3.1): (a) the dispersive component
!u!; (b) the nondispersive one, —n. Note that the graphs are
plotted with an artificially introduced linear perspective;
N=1, V2=3

introduced by the computer plotter) from Fig. 4, the soli-
ton slowly spreads in accordance with the prediction
drawn in the preceding section.

The opposite case, when the local minimum is well
pronounced on the dependence P(V) [Fig. 2(b)], corre-
sponds to the initial data

N=5 VO =10 (3.2)

when the initial point lies well on the right of V„. The
evolution of the soliton is shown in Fig. 5. At the initial
stage, which proves to be very short in this case, the soli-
ton evolves adiabatically, and then, at the critical point, it
abruptly splits into three pulses. Comparing the signals
in the u and n components [Figs. 5(a) and 5(b)], we con-
clude that the central signal (n &0) corresponds to the
stable quiescent ( V=0) soliton, while the left-going and
right-going ones (n &0), which have no counterparts in
the u component, are acoustic pulses that propagate at
the velocities —C and +C and slowly fade under the ac-
tion of the dissipation.

To see the rearrangement of the soliton in the inter-
mediate case, we have also taken the initial values

N=2, V =3 (3.3)

FIG. 3. Dependence P(V) in the case A, &0, p, /!A, ! &C . The
arrow has the same meaning as in Figs. 1 and 2.c-=(c'—~/! x!)'".

[cf. the initial data (3.1)]. In this case, the numerical
simulation demonstrates a rather long adiabatic evolution
of the initial soliton (Fig. 6), which is changed by the
abrupt (but less abrupt than in Fig. 5) splitting into four
pulses. These pulses may be identified as the stable quies-
cent soliton (the central signal, n )0, in the n component
and its counterpart in the u component), the slowly
spreading transsonic soliton, similar to that shown in Fig.
4 (the ultimate right signal in the n component and its
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(a)

(b)

FIG. 6. The same as in Fi . 4
N=2, V =3.

in Ig. for the initial data (3.3);

FIG. 5. The same as in Fi . 4 for
N=5 V =10

ig. or the initial data (3.2);

counterpart in the u subsystem), and two s
acoustic pulses with
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