
PHYSICAL REVIEW A VOLUME 44, NUMBER 1 1 JULY 1991

Energy loss of nuclear fragments in partially ionized materials of high atomic number
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Methods used for the computation of the stopping power of high-atomic-number media to light and
heavy nuclear fragments in un-ionized and completely ionized states are reasonably well developed. This
is not the case for partially ionized states. We propose a method that bridges these two extremes and
discuss applications of the method to e particles and fission fragments in uranium at extreme tempera-
tures and densities.

I. INTRODUCTION

To predict effects of nuclear-particle interactions in
targets, models of energy deposition over a wide range of
temperature and density are required. We are interested
in understanding the energy profile due to low-energy an-
tiprotons that come to rest in uranium and induce fission.
This process has recently been observed at the Low Ener-
gy Antiproton Ring (LEAR) at CERN [1—3]. Because
this fission occurs with nearly 100% probability and
emits —180 MeV of locally deposited fission fragment en-
ergy, it may be an efficient way of producing conditions
of high pressure, temperature, and compression in a tar-
get of fissile material. This possibility was first pointed
out by Polikanov in 1982 [4]. This leads to questions
concerning the stopping power of cold and hot uranium
to fission fragments, as well as light nuclear fragments
such as a particles resulting from fusion within a target
partially filled with isotopes of hydrogen.

The theory of the stopping power of ions in cold ma-
terial is well developed, and is readily tested and accessi-
ble in the program TRIM85 [5]. The theory for a com-
pletely ionized material is also understood and described
in the literature [6]. However, the stopping power of a
partially ionized, high-atomic-number medium is not well
described, in part due to lack of experimental data at the
extreme temperatures of interest.

We first briefly review stopping-power theory in cold
materials (Sec. II). This is followed by a detailed descrip-
tion of a generalized approach to describing stopping
power in partially ionized media (Sec. III), an application
to a particles and fission fragments in uranium (Sec. IV),
and finally conclusions (Sec. V).

in the uranium. The time of collision between the ion
and electron is determined by the ion velocity, leading to
an approximate 1/v dependence of the stopping power.

The maximum stopping power of an a particle occurs
at a specific energy of 0.2 MeV/amu [5], much lower than
the peak of S MeV/amu for a " Sn ion. For an o. parti-
cle, the maximum dE /dx occurs near the energy at
which its velocity is close to the mean electron velocity in
uranium. At lower velocities the collision time is
governed by electron motion, resulting in a stopping
power that decreases with decreasing ion velocity. For" Sn, inner-shell electrons on the projectile remain bound
for velocities below the velocities of electrons bound to
the uranium. The electrons on the ion provide a shield,
which limits the energy transfer to electrons in the urani-
um. The maximum stopping power occurs at an energy
for which the " Sn ion is nearly 100%%uo stripped of its
electrons.
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II. STOPPING POWER IN COLD MATERIAL

We have computed the stopping power of ions in a
cold material using the program TRIM85. Figure 1 shows
dE/dx versus energy for typical fission fragments (" Sn
ions) in cold uranium. The electronic stopping power
rises to a maximum, and then decreases monotonica11y
with increasing ion energy. The region above the max-
imum is described by Bohr theory [7,8]. In this region,
the ion velocity (v) is larger than the velocity of electrons
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FIG. 1. Electronic energy loss of" Sn ions for energies up to
5000 MeV in cold uranium as calculated by TRIM85.
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III. ENERGY LOSS IN PARTIALLY IONIZED
MATERIAL

One approach to describing energy loss of ions in a
partially ionized medium is based on the dielectric prop-
erties of the medium [10—13]. The effects of both free
and bound electrons in the medium are expressed in
terms of a complex index of refraction. The moving ions
excite various modes of oscillation in the plasma, leading
to transfer of energy. However, the energy loss is well
defined only if the ion is moving much faster than elec-
trons in the medium.

An alternate approach that can be used for both fast
and slow ion velocities is based on a separation of the
effects of bound and free electrons [14],where one writes

dE dE
dx dx b

L

dE
dx

dE
dx nuclear

The state of ionization of the medium is determined from
the Saha equation [15,16]. The ionization state of the ion
is defined by equating the velocity of the highest bound
electron in the ion to the mean relative velocity of the ion
and free electrons in the medium [14,17—19].

The contribution to the stopping power by free elec-
trons is well defined [14]. The behavior of stopping
power in a free-electron plasma is similar to that in cold
materials, provided one replaces the electron binding en-
ergy with the free-electron energy. The stopping power
due to free electrons can be written in the form

At very low velocities, far below the dF. /dx maximum,
the stopping power is proportional to velocity, the so-
called "velocity-proportional" region. In this region,
electron exchange is the mechanism for transferring ener-

gy from the ion to the uranium [9]. The contribution of
nuclear scattering is calculated using the screened poten-
tials in TRIM85 for low temperatures ( & 100 eV), and un-
screened Rutherford scattering for higher temperatures.

where a, b, c, and d are constants and Nb is the density of
bound electrons in the medium. The function F(y ) de-
pends only on the ratio of ion and electron velocities. Us-
ing the virial theorem, the mean bound-electron velocity
is calculated from the average ionization potential of the
medium, which is [14]

I(Z )=Zm/(Z —Z ) I(Z —Z ),
or [20]

I(Z ) =33Z (Z /Z )o s5 —23Z

where Z„ is the atomic number of the medium, Z is the
net charge of atoms in the medium, and I(Z —Z ) is
the mean ionization potential for a cold medium with
atomic number Z —Z . Equation (7) is derived from
the Thomas-Fermi model of ions, in which the radius of
the ion is smaller than the spacing between ions. The
model thus does not apply to densities much larger than
solid densities.

Equations (6) and (7) interpolate smoothly between the
two extreme cases of an un-ionized medium and hydro-
genlike atoms with one remaining electron, and result in
mean electron velocities that are systematically lower by
up to 30% than velocities calculated from a more de-
tailed atomic theory [21].

The advantage of Eq. (4) is that the function F(y) can
be evaluated conveniently using the well-developed
theory [5] of stopping power in a cold medium. This ap-
proach of using the ratio of ion and electron velocities as
a scaling variable has been applied to cases where the ion
velocity is faster than [14], or comparable to [8], the
mean bound-electron velocity. We propose that Eq. (4)
is generally applicable to all ion velocities. At 10 keV
temperature, nuclear scattering reduces the range of 3.5-
MeV a particles by & 1%, and 90-MeV fission fragments
by —10%. For cold uranium, replacing the screened nu-
clear scattering in TRrM85 with Rutherford scattering has
no appreciable effect ( & 1% ) on the ranges.

dE =E,Z G(y)/u
dx

(2)
IV. APPLICATION OF GENERALIZED
STOPPING-POWER FORMULATION

G (y) = 2 [erf(y) —2&y /ere i'] ln(B &y ), (3)

where A and 8 are constants.
For the stopping power of bound electrons, we propose

a form similar to Eq. (2) above, namely

dx b

=Xi,Z F(y)/u

where F (y ) is written in the form

F(y) =ay "ln —+dyC

3'
(y )0.3), (5)

where N, is free-electron density, Z is the net charge on
the ion, and y =u/u, i„,„,„. The function G (y), which de-
pends only on the ratio of ion and electron velocities, in-
terpolates smoothly between slow and fast ion velocities
and is written in the form

The concepts described above are applied to uranium
to illustrate how energy deposition varies with properties
of the medium. The ionization state of the uranium
varies with temperature and density. The uranium is
more readily ionized at low density because of the large
volume of phase space for free electrons in a sparse medi-
um. The uranium is in a state of partial ionization for
temperatures up to 10 KeV, which is of interest for fusion
applications. Uranium at a density of 10po, where po is
the density at standard temperature and pressure, is
about 1% ionized even when cold, due to " pressure ion-
ization" [22,23]. At higher densities, pressure ionization
must be taken into account.

Figure 2 shows how the mean bound-electron energy
varies with temperature. The solid (dashed) curves were
calculated using Eqs. (6) and (7), respectively. For low-
density (0.01po) uranium, the bound-electron energy
reaches a maximum of (13.6 eV) (92 ) = 115 KeV, corre-
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FIG. 2. Mean bound-electron energy as a function of temper-
ature for three different uranium densities. The solid (dashed)
lines were calculated using Eqs. (6) and (7), respectively.
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FIG. 4. Range of 3.5-MeV o. particles in uranium as a func-
tion of temperature up to 400 eV for three different uranium
densities. The solid (dashed) curves were calculated using Eqs.
(6) and (7), respectively.

sponding to one bound electron. At temperatures above
8 KeV, the uranium is essentially 100% ionized, and the
factor X& in Eq. (4) goes to zero.

Figure 3 shows the range of a 3.5-MeV e particle in
uranium at various densities as a function of temperature.
The solid (dashed) curves were calculated using Eqs. (6)

and (7), respectively. The "range-shortening" phe-
nomenon often quoted in the literature [10—13] can be
clearly seen by expanding the region below 400-eV tem-
perature, as shown in Fig. 4. Compared to room temper-
ature, the range decreases by as much as a factor of 2 for
a density of 0.01po at temperatures around 100 eV. The
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FIG. 3. Range of 3.5-MeV o.' particles in uranium as a func-
tion of temperature up to 10 KeV for three different uranium
densities. The solid (dashed) curves were calculated using Eqs.
(6) and (7), respectively.

FIG. 5. Range of 90-MeV Assion fragments in uranium as a
function of temperature up to 10 KeV for three different urani-
um densities. The solid (dashed) curves were calculated using
Eqs. (6) and {7),respectively.
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range is decreased due to the fact that the plasma fre-
quency of free electrons is lower than the orbital frequen-
cy of outer electrons in cold uranium, resulting in a more
efficient transfer of energy from the a particle to the free
electrons. At temperatures higher than a few hundred
electron volts, electron thermal velocities are larger than
the velocity of the a particle over most of its range. The
stopping power decreases because the interaction time is
determined by electron motion, rather than by ion
motion. In effect, the electrons are moving so fast that
slow ions do not have time to transfer energy to the elec-
trons.

As seen in Fig. 3, the range of a 3.5-MeV a particle in
uranium at 10 KeV temperature does not scale linearly
with density. The range at 10po density is nearly twice as
long (42@m) as would be predicted by scaling the 22-mm
range at 0.01po density. Physically, the plasma frequency
is higher in a denser medium, resulting in a shorter range
of impact parameters for which energy is transferred
efficiently from the ion to electrons.

Figure 5 shows range versus temperature for a 90-MeV" Sn ion in uranium. The solid (dashed) curves were cal-
culated using Eqs. (6) and (7), respectively. For all densi-
ties, the range is shortened by about a factor of 2 for tem-
peratures around 1 KeV. The physical mechanism for
this range shortening is different from that depicted in
Fig. 4. The net charge on the " Sn ion increases with in-
creasing temperature. Thus, the Z factor in Eqs. (2)
and (4) is mainly responsible for the range shortening of" Sn ions. The range of a 90-MeV " Sn ion in uranium

at 10-KeV temperature does not scale linearly with densi-
ty. The range in uranium at 10po density is nearly twice
as long (3.5@m) as would be predicted by scaling the 1.6-
mm range in 0.01po density uranium.

V. CONCLUSION

The methods presented in this paper allow computa-
tion of energy loss under conditions of high pressure,
temperature, and compression in fissile targets. The ex-
treme conditions in such targets can result in dramatic
changes in the range of ions compared to that in cold ma-
terials. We have described a method for calculating the
electronic stopping power of ions of any energy over a
large range in density and temperature in targets of high
atomic number. We observe that the ranges of 3.5-MeV
a particles and 90-MeV " Sn ions (fission fragments) are
shortened only over a limited region of temperatures in
uranium. The ranges scale linearly with density only in
cold uranium; at high temperatures the ranges in 10po
density uranium are up to twice as long as expected by
scaling from the range in 0.01po density uranium. It
would be of great interest to test the predictions under
experimental conditions.

ACKNOWLEDGMENT

This work was supported in part by Contract No.
958301, Jet Propulsion Laboratory, California Institute
of Technology, Pasadena, CA 91109.

[1]A. Angelopoulos et al. , Phys. Lett. B205, 590 (1988).
[2] T.A. Armstrong et al. , Z. Phys. A, 331, 519 (1988).
[3]J.P. Bocquet et al. , in Physics at LEAR with Low Energy-

Antiprotons, edited by C. Amsler et ah. (Harwood,
Switzerland, 1988), p. 793.

[4] S. Polikanov, in Physics at LEAR with Low Energy Cooled-
Antiprotons, edited by U. Gastaldi and R. Klapisch (Ple-
num, New York, 1984), p. 851.

[5] J.F. Ziegler, J.P. Biersack, and U. Littmark, The Stopping
and Range of Ionsin Solids (Pergamon, New York, 1985).

[6] J.D. Jackson, Classical Electrodynamics, 2nd ed. (Wiley,
New York, 1975), p. 641.

[7] N. Bohr, Philos. Mag. 25, 10 (1913).
[8] U. Fano, Ann. Rev. Nucl. Sci. 13 1 (1963).
[9] O.B. Firsov, Zh. Eksp. Teor Fiz. 36, 15.17 (1959) [Sov.

Phys. JETP 9, 1076 (1959)].
[10] K.A. Bruckner, L. Senbetu, and N. Metzler, Phys. Rev. B

25, 25 (1982).
[11]X. Yan, S. Tanaka, S. Mitake, and S. Ichimaru, Phys. Rev.

A 32, 1785 (1985).
[12] N.A. Tahir and K.A. Long, Phys. Fluids 30, 1820 {1987).
[13]S. Karashima and T. Watanabe, Laser Part. Beams 5, 525

(1987).
[14] T.A. Mehlhorn, J. Appl. Phys. 52, 6522 (1981).
[15]M.N. Saha, Philos. Mag. J. Sci. 40, 472 (1920).
[16]H. Drawin and P. Felenbok, Data for Plasmas in Local

Thermodynamic FquiIibrium (Gauthier-Villars, Paris,
1965).

[17]V.S. Nikolaev and I.S. Dmitriev, Phys. Lett. 28A, 277
(1968).

[18] K.A. Long and N.A. Tahir, Phys. Rev. A 35, 2631 (1987).
[19]E. Nardi and Z. Zinamon, Phys. Rev. Lett. 49, 1251

(1982).
[20] J.M. Peek, Phys, Rev. A 36, 5429 (1987).
[21]E.J. McGuire, Phys. Rev. A 26, 1871 (1982).
[22] D. Menzel et al. , Stellar Interiors (Chapman and Hall,

London, 1963).
[23] S. Knipp and E. Teller, Phys. Rev. 59, 659 (1941).


