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The many-Hilbert-space approach to the measurement problem in quantum mechanics is applied
to a typical “yes-no” experiment relative to two branch routes corresponding to mutually exclusive
propositions. First, we reformulate the notion of wave-function collapse by measurement as a de-
phasing process between the two branch waves of an interfering particle (from our own point of
view as opposed to the conventional Copenhagen interpretation). In this way, the concept of
“wave-function collapse” is replaced by that of a statistically defined dephasing process. One of the
most important points of this paper is the introduction of an order parameter € that quantitatively
describes the degree of decoherence. Its value ranges from e=0 (which describes the case in which
the two waves are perfectly coherent) to e=1 (which describes the case in which coherence is totally
lost); for this reason € is named the “decoherence parameter.” In terms of this parameter we formu-
late a definite criterion to judge whether an instrument works well or not as a measuring apparatus.
Then, we study the interaction between a microscopic particle and a macroscopic system (a detec-
tor), by modeling the macrosystem with a linear array of complex & potentials, which undergo
several kinds of statistical fluctuations. This leads us, under particular conditions, to the so-called
wave-function collapse, which is attained in the limit e=1. We also examine in some detail which
kind of elastic and/or inelastic collisions can give the wave-function collapse. Some connections

with recent experimental results in neutron interferometry and quantum optics are also stressed.

I. INTRODUCTION

It is widely known that the Copenhagen approach to
the measurement problem in quantum mechanics is based
on the conventional notion of wave-function collapse by
measurement. For several decades many serious ques-
tions have been raised against the Copenhagen interpreta-
tion and von Neuman’s postulate, which require the pres-
ence of an external observer in order to explain the evolu-
tion from a pure to a mixed state. Indeed, it seems that
the presence of a classical observer is an essential require-
ment of the Copenhagen approach. However, this is un-
satisfactory from several points of view, because, for in-
stance, the necessity of introducing classical concepts in
order to explain the quantum postulates prevents quan-
tum mechanics itself from being a self-contained theory.

On the other hand, Machida and one of the present au-
thors pointed out some years ago!? that it is possible to
explain the evolution from a pure state to a mixed state
without resorting to classical concepts. In their many-
Hilbert-space (MHS) approach, the wave-function col-
lapse is indeed described within quantum mechanics itself
via a continuous superselection rule whose precise
mathematical meaning was later discussed by Araki.3

Besides some rather old but still open questions against
the above-mentioned Copenhagen interpretation, we are
now facing new problems coming from recent experi-
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ments, such as neutron interferometry,* mesoscopic phe-
nomena,” and others, which seem to be hardly under-
standable in terms of the naive Copenhagen interpreta-
tion. In order to explain these kinds of experiments, we
have to reconsider the meaning of wave-function collapse
by measurement, apart from the conventional
Copenhagen interpretation, and furthermore, we should
reformulate our measurement theory so as to give a
definite criterion to judge whether an instrument can
work well or not as a measuring apparatus. Nowadays,
therefore, any measurement theory has to be considered
unsatisfactory unless it is capable not only of describing
the measurement process in an abstract way but also of
analyzing concretely the most recent experiments. In
this context, the concept of measurement in quantum
mechanics has changed over the past ten years from a
few simple postulates to a very challenging problem.

The MHS theory has already formulated a criterion for
the wave-function collapse in terms of an inequality,'? by
means of which Namiki and his collaborators have ana-
lyzed some crucial points of neutron-interference experi-
ments.>°

In this paper we first discuss what the wave function
collapse is, apart from the naive Copenhagen interpreta-
tion, along the basic line of thought of the MHS theory.
Based on this discussion, we formulate a criterion for the
wave-function collapse, not as an inequality but as a
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quantitative condition, in terms of an order parameter €,
which gives an estimate of the degree of decoherence of a
quantum system. We have already applied this new cri-
terion to the neutron-interference experiments with an
absorber.” The general theoretical formulation of the
problem will be followed by a numerical simulation in
which a detector will be modeled with a Dirac comb of
complex potentials. A similar simulation has been per-
formed by Murayama, by making use of a linear array of
real potentials.® Throughout our numerical analyses we
will investigate how elastic and inelastic collisions inside
the detector yield the wave-function collapse, specified by
the condition e=1. A definition of imperfect measure-
ment will also be given, which will be shown to corre-
spond to a partial collapse of the wave function. We will
start by sketching the main differences between the MHS
theory and the conventional Copenhagen interpretation.

II. FORMULATION OF “WAVE-FUNCTION
COLLAPSE” IN THE MHS APPROACH

Let us start by discussing which kind of physical pro-
cesses take place in a quantum-mechanical measurement,
from our own point of view as opposed to the conven-
tional Copenhagen interpretation. For this purpose it is
convenient to consider a yes-no experiment, because most
measurements can be decomposed into a set of many
yes-no experiments. A yes-no experiment is usually di-
vided into two subsequent steps, the first being responsi-
ble for the spectral decomposition and the second for the
detection. We shall show that the so-called “wave-
function collapse” by measurement does not occur in the
spectral decomposition step but in the detection step.

A typical yes-no experiment of the Stern-Gerlach type
is schematized in Fig. 1. The particles are brought into
the measuring apparatus one by one, by a beam of very
weak intensity, or, in other words, the next particle
comes into the experimental setup only after a measure-
ment on the foregoing particle has taken place, and has
been followed by a certain recovery process of the ap-
paratus. The wave function of a particle sent in the
measuring apparatus by an emitter E is decomposed by a
divider V into ¢y=1,+1,, where ¢, and 9, are the two
branch waves running through the two spatially separat-
ed routes I and II. We place a detector D on route II but
no detector on route I. A coincidence detection of E
(with “yes”) and D (with “yes”) means that the particle
has taken route II, while an anticoincidence detection of
E (with “yes”) and D (with “no”) means that it has taken
route I. The former possibility is named case ‘“‘yes” and
the latter case “no.” The latter is sometimes called
negative-result measurement. Let routes I and II be so
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FIG. 1. “Yes-no” experiment.

designed as to correspond to two mutually exclusive mea-
surement propositions 7; and 7,, respectively. In the
Stern-Gerlach experiment to measure the particle spin
o,, P, (P,) corresponds to spin up (down), and ¥, (1,) is
the corresponding spin eigenfunction. The measurement
to observe which proposition is true, ; or 7,, is complet-
ed by the determination of the particle path, I or II, and,
consequently, the corresponding wave-function collapse
takes place.

The negative-result measurement has often been used
as a paradoxical argument against the ergodic-
amplification theory of quantum measurements,”'® be-
cause the corresponding wave-function collapse is real-
ized without resort to any actual thermal-irreversible
processes in D (such as counter triggering). We should
remark that the wave-function collapse (i.e., the deter-
mination of the particle path to be I) is provoked, even in
this case, by the interaction of i, with the constituents of
D. In other words, ¥, interacts with D and does not
disappear even in the negative-result measurement. This
is the only possible solution to this paradox. We must
strictly distinguish the wave-function collapse itself from
the thermal-irreversible processes in D. The latter is only
a secondary process, following the wave-function col-
lapse, which is set in the apparatus in order to display the
result of the measurement. “Triggering” and “no trigger-
ing” should be regarded as displays on an equal footing.
For details, see Refs. 1 and 2.

Suppose that D is an ideal nondestructive detector for
what we will call the first kind of measurement, by which
4, is changed to

=Ty, , (1)

T being a complex number with modulus very close to
(but a little less than) 1. If we follow the conventional
Copenhagen interpretation, we have to accept the follow-
ing transition of the wave function (wave-function col-
lapse):

Y—¢, (¢, disappears) , )
in case ““yes” and
Y—1; (¢, and therefore ¢, disappear) , (3)

in case “no,” under the basic postulate that the probabili-
ties of finding cases “yes”” and ‘“no” be proportional to
P,=|1}]? (very close to |1,|*) and P, =|4,|% respective-
ly. Equations (2) and (3) are sometimes accepted as the
“measurement postulate.” In this paper we shall call this
kind of behavior, characterized by the disappearance of
one branch wave, the “naive Copenhagen interpreta-
tion.”

We know that the process (2) or (3) is an acausal and
probabilistic event and cannot be regarded as any kind of
wave motion in which ¢ is continuously shrinking into ¥,
or 1,. It should also be remarked that quantum mechan-
ics can never predict the definite result of a single mea-
surement on one dynamical system in a superposed state,
but it gives only a probabilistic prediction for the accu-
mulated distribution of measured values obtained by
many independent single measurements on many in-
dependent systems, each of which is described by the
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FIG. 2. Double-slit interference experiment.

same wave function. Hence, there is no way of talking
about the measurement problem except in terms of an ac-
cumulation of many experimental results. We shall
briefly discuss this point again in Sec. XI.

In order to examine the physical effect of the change
¥,—1Y, given by D, let us introduce the Young-type
“two-step” experiment, in which the two branch waves
are recombined, as in Fig. 2.

In this case, both branch waves are forwarded to small
slits in order to make two spherical waves traveling to-
wards the screen. Each particle makes a single spot on
the screen, and can be observed there with a probability
distribution proportional to

[, + 5 |2=P,+ P, +2Re(¢ ) , 4)

in which for simplicity we have used the same notations
¥, and Y, for the spherical waves as for the original
branch waves. We can obtain a particle distribution pro-
portional to (4) on the screen, if we accumulate many
spots, one after another, corresponding to many particles
brought into the experimental setup by a stationary
beam. The last addendum in the right-hand side is the in-
terference term and reflects the coherence between the
two branch waves.

The naive Copenhagen interpretation forces us to ac-
cept that one of the branch waves actually disappears in
each measurement. The disappearance results in the
erasing of the interference term in each measurement, by
which the probability distribution (4) becomes

P, +P,. (5)

As was mentioned above, however, quantum mechanics
never gives us a definite answer for the result of a single
measurement on one system, so that no one can know
whether a branch wave has disappeared or not in a single
measurement. This implies that we can observe (4) and
(5) only on the accumulated distribution over many parti-
cles. Consequently, the wave-function collapse is not to
be considered as the above-mentioned disappearance in a
single measurement, but is rather to be formulated for the
accumulated distribution as follows:
>, Re(yi¢y)=0. (6)
accumul
For this reason, in this paper, we describe the notion of
wave-function collapse by (6) [or equivalently, (5)] instead
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of (2) and (3); this can be realized if the detector gives, for
the ensemble of accumulated particles, a random se-
quence of phase shifts between the two branch waves in
an experimental run. Under this notion of wave-function
collapse, therefore, we do not require a branch wave to
disappear in a single measurement, but assume instead
that both branch waves are still alive after the interaction
with D. The essential ingredient to obtain (6) is not the
disappearance of one branch wave but the decoherence
between the two branch waves. In other words, a perfect
detector is an apparatus that yields (6) by provoking a
perfect decoherence between the two branch waves. By
observing that (5), obtained by erasing the interference
term, is a sum of probabilities of finding one of two mutu-
ally exclusive events, we can easily understand the natu-
ral result, usually referred to as wave-function collapse,
that once we have found one event, another event should
never occur. This is the same result obtained by the
naive Copenhagen interpretation. In this context, one
may say that, in our case, the notion of wave-function
collapse still remains, but within a wider framework than
the Copenhagen one.

We have often met some misleading discussion in
which the spectral decomposition itself is identified with
the very measurement process. Note that our wave-
function collapse to yield (5) or (6) takes place in the
detection step but not in the spectral decomposition. The
latter is only a preparatory step of the whole measure-
ment, in which the phase correlation between the two
branch waves is fully kept.

It is, of course, true that the naive Copenhagen inter-
pretation can work well as a simple calculational rule for
quantum-mechanical expectation values, but we know
that it leads sometimes to strange behavior of the wave
function, such as the retrogressive disappearance of a
branch wave in a space-time region. Furthermore, if we
rely upon the idea of disappearance we can hardly under-
stand the negative-result measurement, as was briefly
mentioned above and in Refs. 1 and 2, as well as some of
the neutron-interferometry experiments, as was discussed
in Refs. 2, 6, and 7, and the mesoscopic phenomena’ in-
cluding partial collapse of the wave function, as will be
discussed later.

As an additional reason against the disappearance of
the branch waves, let us introduce a different kind of
gedanken experiment, in the following way. Suppose that
instead of D, we place, in route II, equipment controlled
by a parameter €; the equipment is empty if e=0 but be-
comes a perfect detector in the case e=1, through a se-
quence of intermediate steps, in which € changes continu-
ously from O to 1. As an example, one can consider € to
be proportional to the density of material in the detector.
In the case €=0, of course, we have full coherence be-
tween two branch waves. But what happens for any finite
value of €, smaller than unity? It is natural to assume
that the two branch waves do not disappear and keep the
phase correlation, at least up to a certain extent, even
though the modulus and the phase of 1, are modified by
the interaction with the constituents of the equipment.
On the other hand, we can design the equipment so as to
generate a signal for certain arbitrary values of € smaller
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than unity, through an appropriate physical process. In
this case we are performing an imperfect measurement,
which yields a partial collapse of the wave function, be-
cause the interference term, though reduced, is still non-
vanishing. In an imperfect measurement, the two branch
waves do not disappear, but only lose partially their rela-
tive phase correlation (their coherence). Even when € is
close to 1, we cannot accept that one branch wave disap-
pears in an imperfect measurement. Why must we accept
the disappearance only in the limit e=1? We must not
and need not accept it. What actually happens in this
limit is only the total dephasing or the complete decoher-
ence between the two branch waves, and this is enough to
yield the wave-function collapse, given by (5) or (6). It
would be interesting to invent such equipment controlled
by the parameter €. This is a proposal for experimental-
ists.

This implies that the same equipment can work well as
a measuring apparatus in some cases but simply acts as a
phase shifter or an absorber in other cases, depending on
the condition specified by parameters like the above-
mentioned €. We shall reconsider this situation in detail
when performing numerical simulations for a detector,
modelled with a Dirac comb of complex potentials.

The physical process in an imperfect measurement is
essentially similar to those observed in mesoscopic phe-
nomena, which recently came to our attention.” We have
also analyzed the same kind of phenomenon in the
neutron-interference experiments with an absorber.’

The reason we have a random sequence of phase
differences between the branch waves in an experimental
run is that different incoming particles will interact with
the detector system or with some of its local systems
(with a huge number of degrees of freedom) in different
microscopic states and will then undergo different phase
shifts, because the internal motion of the detector system
will change its microscopic state during each intermedi-
ate time interval between subsequent measurements on
different particles. The whole ensemble of the microscop-
ic states of the detector or of its local systems relevant to
an experimental run cannot be represented within the
framework of a single Hilbert space, so that we are inevit-
ably led to a direct sum of many Hilbert spaces for their
representation.’’? This is the reason we called our theory
the “many-Hilbert space” (MHS) theory. In the limit of
infinite degrees of freedom, our wave-function collapse is
described by a continuous superselection rule.! 3 In Sec.
III we will derive a definite criterion for the wave-
function collapse in terms of a parameter €, named the
decoherence parameter, based on the MHS approach.
The wave-function collapse, finally yielding (5) or (6), is,
of course, considered to be an evolution from a pure state
to a mixed state which is generally described in terms of
density matrices."? We will give an outline of the
density-matrix description of the MHS theory in Sec. IV,
in which the functioning of a destructive detector is also
discussed.

III. CRITERION FOR THE
WAVE-FUNCTION COLLAPSE

Following the line of thought outlined in Sec. II, we
shall try to reformulate a “yes-no” experiment in terms of

many-Hilbert-space quantities, and shall see that when
the MHS structure of the detector is taken into account,
new effects come to light. We shall also find that by re-
casting the quantum-mechanical quantities into “MHS
language,” it will be possible to define a new order param-
eter, that will be named decoherence parameter, in terms
of which a precise quantitative definition of wave-
function collapse can be given.

In a “yes-no” experiment an incoming ‘“‘particle” is
split in two states ¥, and ,, corresponding to two possi-
ble routes. (By ‘“‘particle” we mean, in the following dis-
cussion, a Schrodinger wave function. We will sometimes
make use of quotes in order to remind the reader of the
limits inherent in our terminology.) We will place our
“detector” along the second path, so that the relative
wave function will be modified according to ¥,— T,,
where T is the detector’s “transmission coefficient.” The
total wave function will be

V=9, +T1,, %
and the intensity after recombination
[W12=[9;+ Ty,
=12+ T2, 2+ 2 Re(PF T,) . ®)

So far, the MHS structure of the detector has been
completely neglected. Let us take it into account: Equa-
tions (7) and (8) hold for every single incoming ‘“particle.”
Let wus label the incoming “particle” with j
Gj=1,... »N,, where N, is the total number of particles
in an experimental run) and rewrite the transmission
coefficient as

Ir—T1; j=1,...,N,. (9)

This reflects a fundamental property of our approach:
every incoming “particle” is described by the sum of the
same branch waves =1, +1,, immediately before in-

. teracting with the detector. But after the interaction, the

detector transmission coefficient 7" will depend on the
particular detector state at the very instant of the passage
of the “particle.” Being the detector subject to random
fluctuations (which reflect the internal motion of its ele-
mentary quantum constituents and its MHS structure),
the same macroscopic state of the detector will corre-
spond to many different microscopic ones. Consequently,
different incoming ‘““particles” will be affected differently
by the interaction with the detector, and will be described
by slightly different values of 7. Accordingly, Eq. (8) be-
comes

|¢'(j)|2:|¢1+Tj¢'2!2
=, P+ IT; P9, >+ 2 Re (g} T;,) . (10)

If we define P'/'=|¢')|? as the probability of detecting
the jth particle after recombination, then, after many
particles have been detected, the average probability will
be given by

Np

1 ; _ —

Pye=7~ 3 PU=I 2 +714,/*+2Re(yi TY,)

Ny, =

(11)

where we have defined the average transmission probabil-

1ty



44 WAVE-FUNCTION COLLAPSE BY MEASUREMENT AND ITS . .. 43
L % (12) P=[yy[*+1[1,/*+2V1 Re(utey,) , 22)
t = — . > 2 . . .

N, =i J is recovered in the limit e=0. On the other hand, from
dth o . Egs. (15), (19), and (21), we find that interference is lost,
and the average transmission coefficient and hence the wave-function collapse takes place, in the
_ 1 N, limit e=1. For this reason, € will be named decoherence

T= AR (13)  parameter. The condition

pj=1

Note that, in general,
| T|%4T ; (14)
moreover, from Eq. (11), a sufficient and necessary condi-

tion for observing no interference (wave-packet collapse)
is

T=0 or, equivalently, |T|>=0. (15)

In order to better clarify the above considerations, let
us write the jth “particle” transmission coefficient as

T,=To(1+4;), j=1,...,N, (16)

where T is an ideal parameter and A; depends on the
particle. The average transmission coefficient [Eq. (13)]
will be

T=Ty(1+A4A), (17)

where, as usual, a bar denotes an average over j. On the
other hand, the average transmission probability [Eq.
(12)] will be given by

T=to(1+2ReA+|A]?), (18)
where t,=|T,|%. Note that A does not necessarily van-
ish; this can be understood by realizing that A represents
an effect due to the statistical fluctuations in the macro-
scopic detector, which, in general, do not vanish even at
zero temperature.

By combining Egs. (17) and (18), we obtain

|TI?=%(1—¢) , (19)
where

o= _(88)
[1+A]?

Note that the condition €<1 is easily obtained from
Eq. (19). The limit e=1 corresponds to the full fluctua-
tion case, in which, by Eq. (20), A= —1, and, therefore,
by Eq. (17), T=0; this is, by Eq. (15), the condition for a
total loss of coherence between the two branch waves.
Equation (11) can now be rewritten as

>0, (8A)2=|AI>—|A]>=|A—A*. (20)

Py = 2+ 710,24+ 2V T VI eRe(ytePy,) , 1)

where we have written 7=|T|e’’. The meaning of our
approach should now be evident: In Eq. (21), the in-
terference term contains the new factor V'1 —e, which is
absent if the MHS structure of the detector is not taken
into account, namely, if its statistical fluctuations are
neglected. We stress that it is possible to have e=1 ir-
respectively of 7 and, vice versa, T=0 irrespectively of €.

The standard quantum-mechanical formula for the in-
tensity at the screen [Eq. (8), with ¢t =|T|?],

e=1 (23)
is a definite numerical criterion for the wave-function col-
lapse. It will be of great interest, in this paper, to study
all the intermediate cases in which 0 <e <1, and coher-
ence is partially lost or, stated differently, the wave func-
tion is partially collapsed. The parameter € is, in fact, an
order parameter for the wave-function collapse.

We shall conclude this section with an ergodic hy-
pothesis: The average over many particles going through
the detector (denoted hitherto with a bar) will be assumed
equal to the statistical ensemble average over all the possi-
ble detector’s microstates. If we denote the latter with
( - -+ ), our assumption reads

We shall come back to this point in Sec. X. This ergodic
hypothesis leads to a natural interpretation of the formu-
las of the present section. It is worth stressing that our
ergodic assumption makes sense only if N,, the total
number of particles in an experimental run, is very large.
In other words, and this is the main point of our ap-
proach to the quantum measurement problem, it makes
no sense to speak of wave-function collapse for a single
particle. Moreover, we shall see that a random sequence
T, for which T=0 or e=1, can be obtained for a detec-
tor with a huge number of degrees of freedom.

IV. DENSITY-MATRIX FORMULATION
OF THE MHS THEORY

Let us denote density matrices of the total system, the
object particle, and the detector system by p'*', p2 and p?,
respectively. The whole detection process can be written
as follows;

tot — , —iHt/# D _iHt/h
pit=e pfepre

—iH /%
~ e 078

(pPspP)ste ot /" (25)

t—
where we have introduced the S matrix defined by
o —iH/A T Ho /g 26)

t—

H and H,, being the total and free Hamiltonians of the to-
tal system, respectively. Note that H,=H§-+H{ is
given by the sum of the free Hamiltonians of Q and D
without an interaction between them. The density ma-
trices pf and p? represent, respectively, the initial states
of Q and D before the detection and after the spectral
decomposition. In particular, we have
pf= 3 1wl 27
k1=1,2
corresponding to the decomposition ¥— 1, +1,, given in
Sec. II.
Following the discussion in Secs. II and III, we add the
subscript j to all the relevant quantities in (25) and (26),
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because the jth particle in an experimental run will meet
the detector in a (micro)state described by pf ; and will
undergo a transition described by Sj. Hence, the accu-
mulated distribution on the screen, in an experimental

run, is described by the following average of pt"t over j:
p
zot= L S gim plt= 3 ZhI (28)
N, :1’”‘” k1=1,2
where
1 Ny iHqt/# iHt/#
— —i i
:f'IEN_ e ° Sj[|¢k><¢1|®P?j}SjT‘-’ °
pj=1
(29)

As mentioned in Sec. ITI, we can replace the average over
Jj with the statistical ensemble average over all the possi-
ble detector’s microstates on the basis of the ergodic hy-
pothesis (24).

Taking into account the fact that the interaction takes
place only between 3, and D, we can write (by dropping
the index j for simplicity)

Sy (lep?isT=v ) (v lep?

S {1 (wl@pP)S =1y, ) (Wl @p?

St (p,lepPisT=1v ) (Ypl®(pPsT ,

S () (| ®pP)ST= 1,0 ) (W@ (SpP) , (30)

where |¢,5), {4,z and p? stand for the corresponding
final states. On the other hand, the general structure of
the S matrix is known to be

S = IOS: I{S] (31)

in the channel representation,’»?!! in which © is a diago-

nal matrix representing the main part of the phase shift
and is proportional to some parameter characterizing the
size of the target (such as, for instance, N, the number of
elementary constituents of the target), and S’ is responsi-
ble for possible channel couplings including the reduction
of the transmission probability. Therefore, if we restrict
ourselves to a simple case consisting of two channels
(“with” and “without” the object particle, in order to in-
clude the case of destructive detector), we can write down
|1, ) as follows:

|$yr ) =T, +T7]0),

with T=e

1(0 sl

ol S’ [)

and T'= (0|79, ,  (32)

where |1,) and |0) (both normalized to 1) stand for one-
particle and zero-particle states, respectively. Note that
T is just the same coefficient given in Sec. III Eq. (7)
(apart eventually from a trivial factor) and that 7" is writ-
ten in terms of {0]S’|¢,) (|{0[S’|¢;)|* being the absorp-
tion probability) and includes the same phase shift as T
(©,), plus another one (©,,,). Needless to say, we have
to add the subscript j to all the relevant quantities in Egs.
(30), (31), and (32), and then take the averages of =%/ in
(29) over j. Since, for large values of N, the previously
mentioned parameter characterizing the size of the tar-

get, the phase shift ©, can become completely random,
the condition €e=1 can be obtained. We can easily under-
stand that under essentially the same conditions yielding
e€=1, and, therefore, T=0, T’ also vanishes. Thus, all
the off-diagonal and cross-correlated components of (28)
and (29) (with respect to the routes and the channels) van-
ish under the condition € =1 because they are proportion-
al to T and/or T’, while all the diagonal and autocorre-
lated ones are kept nonvanishing because they depend
only on |T|? and/or |T’|%. The same discussion can be
applied to the “emulsion” case, if we identify [¢,) and
|0) with the bound and the dissociated states of an AgBr
molecule, respectively.

Thus we obtain from Eq.
e=1,

(28), under the condition

=tot —=1,1 4 =2,2
Zf=g, 4507, (33)
which is an explicit expression for the wave-function col-
lapse. It is interesting to rewrite (33) for the two types of
detector, nondestructive and destructive. Equation (33)
becomes

""Ot“glt®01,+!T|2§2,®0F,+0(1—|T| (34)

for an ideal nondestructive detector, with \lez 1, while
it becomes
Et=¢0 @02, +(1—|T)|0)(0l®c?,+0(T1?) (35

for an ideal destructive detector, with | T|?=~0, where we

have used
—iHE1 /% iHSt /4
— 0 —
R =e [ Xy le ™0, (k=1,2) (36)
and
o :e—iHé’t/ﬁpDeng’t/ﬁ
St F ’
(37)
p _ —iHPi/# o iHDi/A
Orr=¢ pre .

In (34) and (35) we have neglected the possibility of
reflection at D, and have assumed that |T’|?=1—|T|>.
We stress that (33), (34), and (35) give an exact repre-
sentation of the wave-function collapse, which is charac-
terized by the lack of off-diagonal and cross-correlated
components. In order to generalize the previous result to
the measurement of the observable F of a system Q in a
superposed state ¢Q=2k cuy (u; being the eigenstate of
F relative to the eigenvalue A,), let us consider an ap-
paratus A, eventually made up of several different detec-
tors. The final state of the total system after the wave-
function collapse has taken place can be written as

EC=7 [c 1’68, @0 f s » (38)
k

where o £ &), stands for the final density matrix of the ap-
paratus displaying the kth eigenvalue of F. It is exactly
on this point that we disagree with other attempts at for-
mulating the wave-function collapse, in which the disap-
pearance of off-diagonal and cross-correlated components
is not explicitly shown.'? For example, some authors
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have often identified the notion of wave-function collapse
with the asymptotic orthogonality

((I>k,(1>1)=8k1+0(6), € ——0 (39)

(N being the degrees of freedom of the system A), for the
apparatus wave function in the von Neumann-Wigner
measurement processes of the first kind, i.e.,

V=92 0y —>V=3 ¢, T, u; 8D, , (40)
k

where ®, and ®, are, respectively, the initial and final
states of A4, and we may write T, =e¢'"* (with real Y) for
ideal measurements of the first kind. If we decompose
the final-state density matrix into the sum of its diagonal
and off-diagonal parts with respect to k, as
P= |\’I/)<\’il| zﬁdiag+ﬁoﬂ“ ’

we know that by calculating the traces with respect to the
A states before taking the limit for N — oo, we obtain

Tr 4pog=0(€) ,

41)
Tr, 5o5= 3 lex (1= lee D) ug ) Cug | +0(e)
X

This means that even though its trace vanishes, pg itself
does not vanish, even in the infinite N limit. Thus we
conclude that this kind of approach can never give the
exact wave-function collapse as formalized by us in this
section [Eq. (33) or (38)]. We should also remark that the
secondary processes, such as counter triggering, follow-

ing the wave-function collapse, are described in (34) and
(35) through the time evolution of 02,

V. IDEAL CASES

As discussed in Sec. II, the same kind of equipment can
work well or not as a detector, depending on the physical
processes involved. It will be useful to consider some
ideal cases which will help us to understand the role of
the equipment.

Let T; and R; G=1,... Np) be the transmission and
reﬁectlon coefﬁ01ents for the jth particle and ¢; “IT 2,
r.=|R|? the transmission and reflection probablhtles re-

J J
spectively. We define, following Egs. (12) and (13),

(42)

|

N,
as the average transmission-reflection coefficients and
probabilities, respectively. In general, absorption shall be

taken into account. For this purpose, we define the ab-
sorption probability for the jth particle,

a;=1—|T;*~|R;*=1—r;—1; , 43)

and its average value
a;=1—F—7. (44)

J
1

a=

H lvta2

_1_
N,

By deﬁmtlon, a»+rj+tj=1 and @a+7+7r=1. We are

J
now ready to consider some limiting cases.

(a) A phase shifter will be a device for which
F=a=0, =1

and Tj=T(°)=const (independent of j) .  (45)

Moreover, since |T|*=|T|?=|T'"|?=1, we obtain, by
Eq. (19), the value e =0 for the decoherence parameter.
(b) An ideal detector will be a device for which

|T|*>*=T=0. (46)

This means that every particle, by interacting with the
detector, acquires a random phase, so that the average in
Eq. (13) vanishes. In this case, by Eq. (19), we obtain the
value e=1 for the decoherence parameter. Note that the
parameter T, as defined in Eq. (32), must vanish as well,
due to the presence of the random phase. Observe that
nothing is said about the values of 7, @, and 7. We will
define therefore the following:

(c) An ideal nondestructive detector is an “‘ideal detec-
tor” for which

F=a=0 and 7=1. 47)

This means that besides the property in Eq. (46), we must

have, from Eq. (12), ¢;=|T;|*=1, V;=1,...,N,. In

other words, every partlcle is transmltted w1th a random

phase.
(d) A perfect absorber will be a device for which
f=F=0 and a=1. (48)

Note that nothing can be said about the decoherence pa-
rameter € defined in Egs. (19) and (20). We will define
therefore the following:

(e) An ideal destructive detector is a “perfect absorber”
for which the condition

e=1 (49)

holds. The reason for this definition should be clear in
the light of our previous definition (b) and of the discus-
sion of Sec. IV: Indeed, an ideal detector, as defined in
(b), is an object for which the quantities T and T’, defined
in Eq. (32), are such that

T=T=0, (50)

due to the presence of statistical fluctuations; observe
that this effect is completely independent of the value of
the transmission probability 7=|7|%. In the limit 7=0
(perfect absorber), we obtain an ideal (perfectly absorb-
ing) destructive detector.

Given these definitions and having clarified the mecha-
nism engendering the loss of coherence in quantum
mechanics (wave-function collapse), we are now ready to
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investigate the problem from a numerical point of view.
This will be done by means of a simple model in the fol-
lowing sections.

VI. MODELING THE DETECTOR
WITH A DIRAC COMB

We will study the interaction between the particle and
the ‘“detector,” by making use of a simplified one-
dimensional Dirac-comb model. A particle interacts with
a macroscopic object (a detector), made up of elementary
constituents, according to the laws of quantum mechan-
ics (Schrodinger equation). The particle will interact
with many different elementary constituents, or with
many different bunches of elementary constituents. We
will describe every interacting constituent (or every
bunch of constituents) with a 6 potential and the whole
detector with an array of § potentials (a Dirac comb).
The total barrier will be given by

N
Vix)=3 A8(x —b,), (51)

i=1

where N is the total number of 8§ potentials (‘“elementary
interactions™), A; their (complex) strengths, and b; their
positions. In order to avoid confusion, we shall stick
henceforth to the following convention: the index i
(i=1,...,N) will label the § potentials, while the index j
(G=1,...,N,) will label the incombing particles in an
experimental run.
The wave function will be

. ik(x—b,) —ik(x—b,)
Yo=Ae +Be ,
ik(x —b.) —ik(x —b.)
Y, = Ae "+ B;e N
ik(x—b. ) —ik(x—b, 1)
V=44 UAB; e o
ik(x—b.) —ik(x —b.)
=C;e "+D,e y,
ik(x —by) —ik(x —by)
Yy =Cye Y +Dye M (52)

where we have denoted the wave function between the ith
and the (i+1)th potential as 3, and have adopted the
convention of using the coefficients 4;,B; (C;,D;) to
write the wave function on the very left (right) of the ith
potential. Obviously,

B,=A,R,+D;T;

C,;=A4,T,+D,R; , (53)
where 72 and T are the reflection and transmission
coeflicients of a single § potential (a survey of elementary
properties of the scattering by a 6 potential is given in the

Appendix) and a prime denotes the wave impinging on
the & from the right. By solving for C;,D;, we obtain

T, T:—RR, R
1

A,

1

B.

1

A[
B.

1

I

i

Since our problem is invariant under space reflection,
R;=R;and T,=T}, so that

Z': —ﬁi 1

1
T (55)

and, by making use of the explicit expressions for 2 and
T given in the Appendix [Eq. (A3)],

0, +1 1

-1 w;,—1

s 1

i ) (56)
;

with w; =i%iv /A; €C (the set of complex numbers), where
v is the particle speed and A; the potential strength. The
general formula for the interaction with N & potentials
can be cast into a compact form: By setting

A4,=1, B,=R, Dy=0, Cy=T, (57)
we obtain

T

R

N—-1 .
ikd; T
=Zy [l e "’z
i=1

where 73 is the third Pauli matrix and d;=b, , ,—b,. The
coefficients T and R are the whole barrier’s transmission
and reflection coefficients, and we can define the barrier
absorption coefficient

a=1—|R]>*—|T)*=1—r—:t. (59)

So far, the internal motions of the elementary constitu-
ents of the detector have not been taken into account.
These internal motions will give rise to an intrinsic sto-
chasticity of the parameters describing the constituents
themselves. In terms of our Dirac-comb model, this sto-
chasticity will be modeled as follows: The strength of
every single & potential will vary according to a statistical
(say, Gaussian) law. This means that the A;’s in Eq. (51)
and therefore the w;’s in Eq. (56) will undergo random
fluctuations. Moreover, the interactions between the
detector’s constituents and the particles will take place in
different parts of the detector. This means also that b,
and d;=b; . ,—b; will be subject to statistical fluctua-
tions. Therefore, in Eq. (58) (here rewritten in different
form)

T 1 oy +1 1
0] oy | =1 wy—1
N—1 lkd,-731 a),~+1 1 1
e T -1 o1 |R] €O
there will be several sources of stochasticity:
ifiv ifiv
=m=——T e,
TN T QT
(61)
d;=b; ,—b;,

as well as NV, of course. We will assume a Gaussian distri-
bution for Q;, I';, and d; and will study the global effect
on the outgoing wave as a function of N. Also, we will
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suppress the randomness of N, the total number of &’s
(i.e., the total number of “interactions”). This is a con-
servative approximation: Assuming, say, a Gaussian dis-
tribution also for N would lead to an even stronger
dependence of T on the MHS structure of the detector’s
density matrix.

Our problem is thus reduced to solving Eq. (60) for T’
for many different incoming particles [so that T —T;
(G=1,...,N,) as in Eq. (9)] and then applying the
averaging procedure described in Egs. (12) and (13) in or-
der to obtain information on the average probability P,,.,
in Eq. (21), and on our decoherence parameter €, defined
in Egs. (19) and (20). Notice that, due to our ergodic as-
sumption [Eq. (24)], the above-mentioned averages over
many particles (77 ) will be equivalent to the “ensemble
averages” over the values of the parameters undergoing
the statistical fluctuations ({ - - - ).

VII. LIMITING CASES

Before proceeding to the numerical simulation, we
should investigate whether and how closely the ideal
cases considered in Sec. V can be reproduced by means of
our Dirac-comb model. Let us consider the five cases
separately and make use of the properties derived in the
Appendix for the scattering by a single § potential:

(a) Phase shifter. A good phase shifter should transmit
every particle with probability 1, and should contribute a
constant (i.e., particle-independent) phase to the wave
functions of the different particles. Consider the
coefficients p, 7, and a of Eqgs. (A6) and (A7). These refer
to a single 6 potential. In order to minimize the losses,
we require I'=0 in Eq. (A7), so that a=0. Moreover, for
small Q, Eq. (A6) reads
2

b

v
2 (62)

so that, with every effect on the second order in (), the
conditions (45) can be fulfilled by an array of N 8 scatter-
ers of strength A=Q (Q=0%), if N is small compared to
(Q/#v)"2%, (so that the global reflection is negligible),
and, most important, if the fluctuations of the parameters
in Eq. (61) are ““frozen.”

(b) Ideal detector. In this case the statistical fluctua-
tions of the parameters in Eq. (61) should be wide enough
in order to obtain |7'|>=0 and satisfy condition (46). The
quantitative meaning of the words “wide enough” will be
given in Sec. VIII.

(c) Ideal nondestructive detector. Everything should
be identical to case (a), but the statistical fluctuations of
the parameters should make |T|? vanish, as in case (b).
This will be shown numerically to work nicely already for
N =100.

(d) Perfect absorber. Consider again the coefficients p,
7, and a of Egs. (A6) and (A7). The condition a=1 can-
not be fulfilled, but a is bigger if Q=0. Moreover, for I

small (and negative), we have

r
=1+2-——
T fiv ’
2
- |
P 7o ) (63)
—_, I
a= zﬁv .

Observe that p is of second order, while both 7 and a
are of first order in I'; moreover, the absorption effect is
cumulative, when the number of 8 potentials is increased.
Therefore, provided N is big enough, an array of N & po-
tentials of strength A=iI" (I'=0") will reflect very little,
transmit very little, and almost completely absorb the
wave. The conditions in Eq. (48) can thus be fulfilled.

(e) Ideal destructive detector. Everything should be
identical to the previous case, but the stochasticity, intro-
duced via the fluctuations of the parameters in Eq. (61),
should yield a value of € close to unity. The above argu-
ments will be shown numerically to work with great ac-
curacy for relatively small values of N (a>98% for
N =200 and €>99.5% for N =70).

The above discussion should make it clear that the role
played by the statistical fluctuations is of drastic impor-
tance as far as the behavior of the detector is concerned.
It will also be useful to stress that in our picture an ideal
nondestructive detector and a phase shifter turn out to be
different aspects of the same object: If we consider the
statistical fluctuations as a measure of the “noise” or the
“temperature” of the system, then the phase shifter be-
comes an ideal nondestructive detector if the noise level
is high enough. It is at any rate quite peculiar that the
simple Dirac-comb model proposed here be able to repro-
duce correctly so many different ideal physical situations,
ranging from a phase shifter to a “nonabsorbing detec-
tor,” and from an absorber to an “absorbing detector.”

VIII. NUMERICAL RESULTS

We are now ready to proceed with the numerical simu-
lation. We start from Egs. (7) and (8), and assume
infinitesimal slits. The wave function at the screen in Fig.
2 will be given by

eiklzll eikizz\
=y, +T,="——+T—F, (64)
¢ ¢1 ¢'2 Izll |zz|
where |z,,l (n =1,2) is the distance between the nth slit
and the point at the screen and k =2 /A, where A is the
wavelength. The intensity at the screen is

|‘/’|2:l¢1+T¢2|2

2
=L+ﬂ+~—2—Re(Te

z% z% |21H22\

ik(lzli~|22|)

). (65)

For the sake of clarity, in the following discussion, Eq.
(65) will be assumed to hold true even when the condition
L >>A (where L is the slit-screen distance) is not strictly
satisfied. This simplification does not alter our discussion
and final conclusions, and will display the physical mean-
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ing of the process under investigation in a more intelligi-
ble way.

The coefficient T is given by Eq. (60), where the param-
eters in Eq. (61) undergo Gaussian statistical fluctuations.
We will focus our attention on thermal neutrons interact-
ing with a crystal, so that

2 o

A== X =2 A,
o (66)

(d)=4.5 A,

where the brackets denote the statistical ensemble aver-
age defined in Eq. (24), whose meaning becomes now evi-
dent: The average value of every parameter, over the N, f
incoming neutrons, will be given just by the mean value
of the parameter’s Gaussian distribution.
The parameters () and I" are somewhat more arbitrary.
According to the discussion of Sec. VII we require
Q) __«(r) _
7o P =10 (67)
The noise level (the width of the Gaussian distribu-
tions) will always be kept as low as 2% of the average
value, for every parameter. The average transmission
probability and average transmission coefficient of the
detector [Egs. (12) and (13)] are always computed for
N, =5000.
The results are displayed in Figs. 3, 4, and 5. In every
figure, the function

ave |¢1+T¢2|2
T2
1+ le 2
z? T i1z,

is plotted versus the screen coordinate, in arbitrary units.
The interference pattern gradually disappears (wave-
packet collapse) as N, the number of 8 potentials (“ele-
mentary interactions”), increases from O to . In all the
cases considered (real, purely imaginary, and complex po-
tentials), the interference disappears for N ~100. In the

zk(lzll—(zzl))

———Re(Te (68)

FIG. 3. Real potentials: (A)=(Q)=10"%%v. From top to
bottom and left to right, N =0,2,5,10, 20,35,50,70,100,200, .

S

FIG. 4. Pure imaginary potentials: (A)=i(T)
=—i10"*w. From. top to bottom and left to right,
N =0,2,5,10,20,35,50,70,100,200, c .

two latter cases, the particle is (almost) completely ab-
sorbed for N =~200.

In Fig. 3, for N =100, we have, with very good approx-
imation, what we referred to as an ideal nondestructive
detector in Secs. V and VII; Figs. 4 and 5, for N =200,
are good examples of ideal destructive detectors. The in-
termediate cases are relative to the case of “partial col-
lapse” of the wave function: Coherence is only partially
lost, and one can say that an “imperfect measurement”
has taken place.

In order to clarify better the mechanism underlying the
wave-function collapse, we have drawn, in Figs. 6, 7, and
8 the phase diagrams for T. In Fig. 6, for instance, the
transmission coefficients T; of N,=150 particles are
displayed for N (number of &’s) increasing from 2 to 100.
In the undisturbed case, when no 8 is present, the T;’s
would all be equal to T (which has conventionally been
set equal to e'™*). The more potentials the incoming
particles go through (i.e., the more interactions they un-

i /7
(—_— AR /N
,\} ﬂ\ A ”’ \ - - - ~—
A ;
;fli* B // , \
/\ \ / S V\,jwi jTE i{ : E\t:
f
/ ‘\ﬁf\ i \ \ /N
SN / \v& /N
7: \ \N J7 - - T 4 7\\7; o
FIG 5. Complex  potentials: (A)Y=(Q)+i(I")

=(10"2—i10"2)%w. From top to bottom and left to right,
N =0,2,5,10,20,35,50,70,100,200, .
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Im(7)
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FIG. 6. Phase diagrams for 7. The transmission coeffi-
cients T; of N,=150 particles are displayed for
N =2,5,10,20,35,50,70,100 (from top to bottom and left to
right). The parameters are equal to those in Fig. 3. (real case).

dergo), the more their T;’s spread. In the very-large-N
limit, T=0: Coherence is completely lost. An analogous
situation occurs for Figs. 7 and 8, in which also absorp-
tion is present.

Our decoherence parameter is given in Table I for the
various cases. According to Eq. (19), it is defined as

T2
I7E_ 1T (69)
IT|?

e=1—

~

Re(1) ——n—L i

S

FIG. 7. Same as in Fig. 6, but with the parameters equal to
those of Fig. 4 (pure imaginary case).
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FIG. 8. Same as in Fig. 6, but with the parameters equal to
those of Fig. 5 (complex case).

Observe that, at fixed N, the value of € does not depend
significantly on the type of interaction inside the detector:
The three cases (real, purely imaginary, and complex po-
tentials) yield the same values of € up to the second
significant digit. This means that, contrary to what is

TABLE I. Decoherence parameter €.

Potential Number of
Type | T 2 € Potentials

Real 0.96 1.0 0.07

Imaginary 0.94 0.96 0.08 N =2

Complex 0.94 0.96 0.08

Real 0.86 1.0 0.26

Imaginary 0.81 0.90 0.27 N =5

Complex 0.81 0.90 0.27

Real 0.72 1.0 0.49

Imaginary 0.64 0.82 0.50 N=10

Complex 0.63 0.82 0.51

Real 0.47 1.0 0.76

Imaginary 0.39 0.67 0.77 N =20

Complex 0.38 0.67 0.78

Real 0.25 1.0 0.94

Imaginary 0.19 0.50 0.92 N =35

Complex 0.18 0.50 0.94

Real 0.15 1.0 0.98

Imaginary 0.09 0.37 0.98 N =50

Complex 0.08 0.37 0.98

Real 0.07 1.0 1.0

Imaginary 0.03 0.25 1.0 N=70

Complex 0.03 0.25 1.0

Real 0.02 1.0 1.0

Imaginary 0.01 0.13 1.0 N =100

Complex 0.01 0.13 1.0

Real 0.01 1.0 1.0

Imaginary 0.00 0.02 1.0 N =200

Complex 0.00 0.02 1.0
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sometimes believed, absorption has no significant effect
on the collapse of the wave function, because the loss of
coherence (of which € is an estimate) stems only from the
noise and the number of elementary “interactions” in the
detector (our parameter V).

The case referred to as perfect absorber in Secs. V and
VII is rather trivial, and has not been simulated. Indeed,
if we “switch off”’ every fluctuation of the parameters in
Eq. (61), we obtain the value e=0 for the decoherence pa-
rameter and Eq. (21) becomes identical to the standard
quantum-mechanical formula (22): In other words, if we
neglect the MHS structure of the macroscopic detector,
we recover the standard quantum-mechanical formulas,
and no wave-function collapse takes place.

This point, seemingly trivial, is far from being obvious:
There may well be cases in which the MHS structure of
the detector cannot be neglected, even in principle. We
shall come back to this point in Sec. IX, in relation to
neutron interferometry and quantum optics.

Let us conclude this section by showing our model
“phase shifter” [see Eq. (45)]. As anticipated in Sec. VII,
a phase shifter can be mimicked by an array of real 8 po-
tentials of low strength ( A=Q=10"* #v) if no fluctua-
tions are present. The phase ¥ can be varied by simply
adding to the barrier other & potentials, one by one.

In Fig. 9(a) the real part of the transmission coefficient
T=e'X of one particle is plotted versus N, for N going
from 100 to 200: The increasing thickness of the phase
shifter is simulated by an increasing number of potentials.
In this case, the noise is “frozen;” what happens if we
“switch on” the noise is shown in Fig. 9(b), in which
everything is analogous to Fig. 9(a), but the parameters
undergo statistical (Gaussian) fluctuations of width 2% of
the average value.

IX. APPLICATIONS: NEUTRON
INTERFEROMETRY AND QUANTUM OPTICS

The above results are easily generalized to some recent
experiments performed in Vienna,* in which an absorber
/
|
{
i
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FIG. 9. (a) Phase shifter; (b) phase shifter with “noise.”

is placed in one of the two arms of a perfect-crystal neu-
tron interferometer. Let us observe first that if ¥, and ¢,
in Eq. (21), are the wave functions corresponding to the
two different paths in the interferometer, normalized to %
and in phase, and if we place a y-phase shifter along, say,
the second route, we obtain, for the intensity of the ordi-
nary ray,’

1) o |ylord|2= 111+ 7+2V TV T—ecos(x +B)] ,

(70)
so that the visibility, defined as
Imax 1 i
V=—r—"--—, (71)
Imax +Imin
is given, in our approach, by
Vimus =VouV'1—¢€, (72)

where Vqoy =2V'F /(1—7) is the standard quantum-
mechanical value. The maximum degree of coherence of
the two neutrons’ branch waves is obtained, obviously,
for €e=0; the wave function is collapsed for e=1, in
which case the visibility is zero.

A similar effect may be shown to be present in some
fourth-order interference experiments performed in quan-
tum optics.!3 If two photons are produced in a process of
parametric down-conversion in a nonlinear crystal, then
superposed on a beam splitter, and finally detected by two
detectors, the number of photon coincidences is given by

Ne=C(t*+r)[1-Vf(a)], (73)

where C is a constant; ¢t and r the transmission and
reflection coefficients, respectively; V=2tr /(t>+r?) is a
“visibility,” and f(a) is a function of some experimental
parameters a and is always less than unity. By following
an analogous reasoning, it can be shown that!*

Vaus = Vom(1—€)*, (74)

where, again, Vom =27F/(F>+7?) is the standard
quantum-mechanical value.

These look like standard situations, from the point of
view of the MHS approach, but a closer look shows that
there is no reason why the limit e=0 should be attainable
in every conceivable case. Indeed, since the decoherence
parameter € is an estimate of the level of noise in a mac-
roscopic system, it may well happen that the value e=0
(the total absence of noise) may not be attainable, even in
principle. It has been recently shown that this is indeed
the case, in neutron interferometry, when a strong ab-
sorber is present in one of the two paths of the inter-
ferometer, and in quantum optics, when the macroscopi-
city of the beam splitter is taken into account. In the
light of our MHS analysis, such a situation corresponds
to an imperfect measurement, in which coherence is only
partially lost, € being an estimate of such a loss. More de-
tails on this approach are given in Sec. X.

X. AN ALTERNATIVE APPROACH

Following the line of thought given in Ref. 7, we give
now an outline of derivation of 7 and T’ based on the in-
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teraction Hamiltonian:

N
H'=73 G Vi—r,)= [drpa—1W(), (75
n=1
where V is the potential between the particle (the neu-
tron) and an elementary constituent of the detector, r,
the position of the nth constituent, and

N

pr)=3 G,8(r—r,) (76)

n=1
the constituents’ density. We can write G,=gl,
+(1—g)o, ,, g being a positive number smaller than 1,
in which 1, and o, , stand for the unity and the first
Pauli matrix associated with the nth constituent. In this
way we can take into account, respectively, simple poten-
tial scatterings by the first term and transitions to anoth-
er channel (|0)) by the second one. In the infinite-N lim-
it, we can discuss the whole problem by replacing o, ,
with a ¢ number representing the transition probability of
the elementary inelastic process and fluctuations around
it. For details, see Ref. 2. Here, for the sake of simplici-
ty, we shall assume G, =1 by which the essential pro-
cedure is not altered.
Let us decompose the density function p(r) as

p(r,t)=(p)+8p(r,t), an

where {p) is a constant background density and 8p is a
“noise”” subject to the following statistical properties:

(8p(r,1)) =0,

(8p(r,1)8p(r',t")) =Fylr—r1',t—1t") .

Here the brackets denote the statistical ensemble average
over all the possible constituents’ states, and F is, in gen-
eral, an increasing function of temperature 6 of the detec-
tor as well as a function of other variables and parame-
ters. Note that the ¢ dependence of the density function
comes from the internal motion of the constituents’ posi-
tions, r,(¢), generated by H (l)’ , the free Hamiltonian of the
detector.

By writing #8=HS+Y and #'=H'—Y (with
V={p) f Vd’r) and rewriting the total Hamiltonian as
H=%8+HP+ 7, we obtain the S matrix,

S=S,U/(T), (79)

(78)

in the interaction representation, where 7T is the transit
time of the particle in the detector D, S is a scalar, and
U,(t) obeys

—_ 1 t ’ ’ ’ ’
U,(t)——H—;%fodt H4 (Ut

(i/0H, —(i/M)H

with #}(1)=e "Ft'e (80)

Thus, via Eq. (78), we have given a definite meaning to
the statistical average { - - - ), introduced in Eq. (24), and
we can identify S, and (,|S|¥,) [Eq. (79)], with T, and
T [Eq. (17)], respectively. Moreover, Eq. (80) allows us to
follow a perturbative approach, by writing

(Y| U(D))=1+A=14+AV+A P+ ... | (81)

For more details about this perturbative solution for
U, (T), see Ref. 7.

In a similar way we can describe the interaction be-
tween a photon and a beam splitter by starting from the
total Hamiltonian
2

+V(r,)

P Alr,) +3 fiwgala
k

Ne 1
H=2 om
(82)

where N, is the total number of electrons in the beam
splitter, V is a binding potential for the electrons, and the
notation is standard. The density function of the elec-
trons in the beam splitter is written as

p(r,t)=pg(r)+6p(r,t), (83)

where pg is a “static” electron density and is a function
of r, in this case. An analogous calculation based on the
ansatz (78) yields the perturbative expansion

(6, 9| U (D, ) =(1+B)=(1+A+A,+ --+), (84)

where ¢ is the photon wave packet and 3 the wave func-
tion of the electrons in the beam splitter. More details
can be found in Ref. 14.

XI. CONCLUSIONS

We have shown that the MHS approach to the quan-
tum measurement problem explains in a natural way the
loss of coherence in quantum mechanics. Coherence is
lost at a statistical level, when many interfering particles
interact with a macroscopic object: This is ascribable to
the effect described by Eq. (14), which is de facto respon-
sible for the loss of coherence and which allows us to
define the parameter € of Egs. (19) and (20) and Eq. (69).
In terms of this decoherence parameter it has been possi-
ble to formulate a definite quantitative criterion for the
wave-function collapse, which is obtained in the limit
€=1. We wish to stress that our approach differs radical-
ly from the original theory of von Neumann, in which the
wave function is collapsed due to the intervention of an
external observer who is supposed to provoke an acausal
change of the wave function by simply observing the
quantum system. No external observer is needed in our
case, in order to explain the collapse of the wave func-
tion, for the evolution from a pure state to a mixture is
simply a statistical effect due to the macroscopicity of the
detector. It is just this macroscopicity which is responsi-
ble for the difference between the coefficients |T|? and
7=|T|% A careful analysis shows indeed that |T'|? and T
do not depend on the noise in the same way: T is more
influenced than 7 by the statistical fluctuations, because,
by definition, it depends on the phases acquired by the
different particles, and this is, in conclusion, the reason
why the reduction of the wave packet takes place, in our
approach.

Against the above argument, however, one may
wonder whether a mean value obtained statistically, by
performing an experiment many times, reflects a property
of reality. According to a classical picture of reality, the
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answer to this question should be negative. However, the
dynamical laws of quantum mechanics are known to give
quantitative predictions when the data relative to many
repetitions of the same experiment are accumulated, and
no prediction for single events (except in the special case
in which the quantum system is in an eigenstate of the
observable to be measured). This is the essential origin of
the uncertainty principle, by which the very concept of
reality is blurred. It is the authors’ opinion that a new
description of reality has to be sought, which should be
based on quantum mechanics and will probably turn Sut
to be very different from the classical one. The problem
of the meaning of “reality” is much too philosophical to
be addressed and resolved by the present paper. In this
sense, we preferred to limit our purpose to the much
more humble task of understanding whether the evolu-
tion from a pure to a mixed state (a quantum-mechanical
“measurement”) can be derived within the existing
theory, instead of being simply postulated.

Note added in proof. An exact evaluation of the
decoherence parameter € was recently given for a solv-
able model of one-dimensional emulsion by M. Namiki
and S. Pascazio, Found. Phys. Lett. (to be published).
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APPENDIX: SCATTERING
BY A COMPLEX 6 POTENTIAL

Let us recall some properties and formulas relative to
the one-dimensional scattering of a plane wave by a 6-
shaped potential. Assume the potential to be centered
around x =0, and the wave to be normalized at 1 for
x =—oo. Then,

1I}*=eikx_|__ﬁe—ikx
¢+:7’eikx , (A1)

where /2 and T are the reflection and transmission

coefficients, respectively. The potential barrier will be
given by

V(x)=Ab(x) (A2)

(A=lim,;_,q Vg o 1V, where [ is the barrier “thickness”

and ¥V, the barrier “height”). In this approximation, we

have
-1
fiv
= |—1+i— R
R lA
-1 (A3)
_ A
T= I_H_fzv R

where v is the particle’s speed.
We will be interested in the general case in which A is
a complex number. It will be useful to remember that the
Schrodinger equation
2
ih%"é —— T vytry,

2m (Ad)

when V=V, +iV;EC, yields the following continuity
equation:

oP _2
S TVS=2VP,

where P=|[4|? and
S=(#/2im)(Y*Vy—yVy¢™*)

(AS5)

are the probability density and current, respectively. If
V; >0 the r.h.s. of Eq. (A5) acts as a “source;” if V; <0 it
acts as a “sink.” We will mainly be interested in the
latter case.

If we set A=Q+iT, in Eq. (A3), we obtain for the
reflection (p) and transmission (7) probability, respective-

ly,

r’+q?
=|RP=—m—
p=I7l (Hiv —T)>+Q? A6)
'r:|‘ﬂ2=“‘——(ﬁv)2
(iv—T)+Q? "’

so that it is possible to define the absorption coefficient
2w
a=l—p—7r7=—"""——. (A7)
P (o —T P+ 07

By definition, p+7+a=1and a>0if I' <0 (“sink”).
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