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Slotted cylindrical shell for use as a compact wiggler
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A compact wiggler offers the opportunity to reach high free-electron-laser frequencies with an elec-
tron beam of modest energy. We analyze here the properties of a conducting cylinder, slotted periodical-
ly on alternate sides, for use as a compact wiggler. In particular, we obtain the current distribution on
the cylindrical surface, from which we obtain the magnetic fields inside the cylinder. We then expand
this field into its multipole components, as well as into its axial harmonics. The resulting orbit dynamics
are explored, leading to preferred choices for some of the design parameters. Finally, we examine the
major consequences of possible fabrication errors, which suggest the tolerances and/or necessary com-
pensation mechanisms required for a satisfactory wiggler design.

I. INTRODUCTION

The early wigglers and undulators for use in a free-
electron laser (FEL) were electromagnetic [1]. With the
availability of high-remanant-field magnetic materials,
most wiggler designs involved rare-earth-cobalt-type per-
manent magnets [2]. Current efForts to design high-field
microwigglers have renewed interest in high-current,
pulsed electromagnetic wigglers, since these should be
capable of reaching higher fields than the permanent
magnet wigglers.

The desire to operate FEL's at higher and higher fre-
quencies creates an incentive to go to higher electron en-
ergies and/or shorter wiggler periods. Clearly a solution
involving a compact or short-period wiggler avoids the
cost of higher-energy accelerators. The challenge is to
see if a design can be developed that generates strong
enough field, is feasible to implement, and achieves the
necessary tolerances.

One possible design involves using helical windings to
produce the wiggler field [3]. Another possible wiggler,
which is the subject of the present paper, consists of a cy-
lindrical shell that is slotted periodically on alternate
sides [4], as shown in Fig. 1. Among the attractions of
this wiggler is that it produces plane-polarized FEL radi-
ation, has high harmonic content in the wiggler field,
which may be important in some applications, and con-
sists, in principle, of tightly packed conductors, which
should generate very high magnetic fields. In the present
work, we derive the magnetic fields generated by passing
a current through the slotted cylindrical shell. In partic-

I

ular, we assume that the shell is thin relative to its diame-
ter and that the slots are thin relative to their spacing.
We then solve the two-dimensional problem for the static
current distribution in an "unrolled" unit cell. The mag-
netic fields within the cylinder that result from this
current distribution on the cylindrical shell are then ob-
tained. The electron-beam orbits in this magnetic field
are then analyzed, including the effects of terms other
than the main planar wiggler field. Finally, we explore
methods to reduce or eliminate the undesired terms, and
try to estimate the tolerances necessary to produce an ap-
propriate wiggler field.

II. CONFORMAL TRANSFORMATION

V on boundary line (3)~(6)
@(x, )= '

0 on boundary line (1)~(5) .
(2.1)

(2.2)

In addition,

If we unwrap the cylinder in Fig. 1, the two-
dimensional current distribution will be approximately as
shown in Fig. 2. The basic cell, which extends —, a period
in the axial and azimuthal directions, is shown in Fig. 3.
The segments (1)~(5) and (3)~(6) are perpendicular to
the current Aow and therefore can be thought of as equi-
potential lines, while the remaining boundary segments
are parallel to the current Row. We therefore wish to
solve the two-dimensional electrostatic problem where

ae =0 on boundary lines (5)~(2)~(3) and (6)~(4)~(l) .
Bn

(2.3)

dz
dw

1

&(w+a )(w )(to b)—
CO 1Z= dw .

&(w+a )(w )(w b)—(2.4)

Let us consider the following conformal transforma-
tion:

The path in the w plane shown in Fig. 4 along the real
axis from (1) (w= oo) to (2) (w=b) to (3) (w=0) to (4)
(w = —a ) to (1) (w = —oo ), corresponds to the rectangle
in the z plane in Fig. 3, with the lower-half w plane corre-
sponding to the interior of the rectangle. Changing vari-
able from w to b /s, the transformation can be written as
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FIG. I. Slotted cylindrical shell.

b/w 1z= c6
0 v's(1 —s)(b+as)
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If we now let s =cos 0, we obtain

2 n/2 1z=
v a+b sin vl —(I /w) v'1 —k2sjn2g

(2.6)

FIG. 3. Unit cell in the z plane.

V'1 (b/w—)=sn E(k) —V'a+b-z
2

(2.10)

Using the standard notation The width and height of the rectangle can easily be
shown to be given by

F(g, k)= J de,
0 1 k S111g

r

IC(k)=F —,k
(2.7)

2I.=m.R =z2 —z) = %[V'a/(a+b )]V'a +b (2.11)

we can write the transformation in terms of the incom-
plete elliptic integral, in the form

K[V'b/(a+b) j .
2

4 1 (2.12)

&a +b —=K(k) F(g, k), —

lt'I=sin 'v 1 (b/w)=co—s 'vblw

The inverse of the elliptic integral is de6ned by

(2.8)

h=z2 —z5= g 1
dw

b V'(w+a)(w)(w b)—(2.13)

Let us now consider points (5) and (6) in the z plane
such that the lines (6)—&(4) and (5)~(2) are "metal
plates" kept at potential V and 0, respectively. The pa-
rameter 6 is given by

y=F(g, k), sinP=sn(y), (2.9)
and

so that we can write the inverse transformation in terms
of the elliptic function in the form Pa=z, -z4= dM—~ V(w+a)( —w)(b —w)

Setting w =b /s in Eq. (2.13), we find

(2.14)
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b/q V's(1 —s)(b+as)
Setting w = —as in Eq. (2.14), we find

I 1
ds

p/~ V's(1 —s)(b+as)
The equality of the two 6's clearly requires

pq =ah

with

0 b

(2.15)

(2.16)

(2.17)

(4) (6) (3) (2)

FIG. 2. Unrolled cylindrical shell with slots, showing current
fiow. FIG. 4. Path in the w plane.
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and

F[sin '&1—(p/a), k]&a +b
(2.18)

Vl —(q/w)=sn K(~)—&p+q ~
2

(3.3)

&1—(p/a)=V1 —(b/q)=sn &a+b—
2

(2.19)

The parameters a and b are determined from L and H by
means of Eqs. (2.11) and (2.12) and the parameters p and

q by means of Eq. (2.19) for specified b, .
We next construct a second conformal transformation

Use of Eqs. (2.8), (2.10), (3.2), and (3.3) allows us to relate
g=g+ig to z=x+iy (via w=u+iu), thereby providing
the potential as a function of x and y and/or the lines of
current Row. Explicit expressions for the field com-
ponents are

CO 1
dw

w w+p
(2.20)

BN V BnE =—
By h Bx

which converts the contour in the w plane into the rec-
tangle in the g plane shown in Fig. 5, where the "metal
plates" are the segments (1)~(5) and (6)~(3).The di-
mensions of the rectangle are

Bg By By Bg
Bu B. Bu BU

BxBy ByBx '

Bu BU Bu Bv

(3.4)

E[&q/(p+q)] .

III. POTENTIAL DISTRIBUTION
AND CURRENT DENSITY

l =$5
—g( = Q [Vp /(p +q )],2

&p+q
2

h =g6 —g, =
&p+q

(2.21)

(2.22)

Be V Bq
By h By

BX B'g B77 Bx
Bu B. Bu BU

Bx By By Bx
Bu BU Bu B.

(3.5)

4&(g) =&&(g,q) =—r) =—Im(g)
V V
h h

(3.1)

The potential function corresponding to the boundary
conditions in Fig. 5 is obviously

Using

dz
dw

1

&(w+a )w(w b)—Bx . By By . Bx
Bu+'Bu BU 'BU '

(3.6)

and the lines of current flow are /=const. The transfor-
mation between g and w is obtained from Eq. (2.20) and
is, in analogy with Eqs. (2.8) and (2.10),

ag . a~ a~ . ag
dw v'(w+p)w(w —q) au au au aU

(3.7)
+q /=I'(a) F(f,a), —

/=sin '&1—(q/w),

2 p
p+q

(3.2)

one can evaluate @(x,y ), E (x,y ), and E (x,y ) with the
help of w as a function of z given in Eq. (2.10).

We shall be particularly interested in the value of
C&(x,y) along the segment (5)~(2). It is obvious from
Fig. 5 that

4(xO)= —g, L —b x L .V (3.8)

l~
(6) ,'

I

I

I

I

I

I

I

(4)t

e=V

We can obtain ri from Eq. (2.20) in the range b ~ w ~ q.
The result for 4&(x, O) is

C&(x,O)=, F[sin '&1—(w/q), ~'],K(a')
(3.9)

p+q
The relation between x and w is obtained from Eq. (2.6)
and is

@=0

FICx. 5. Path in the g plane.

of

L —x= 2 ~F[sin Vl —(b/w), k]&a +b

(L —x )v'a +b
2

(3.10)

(3.11)
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Be BCtJ = —o.t, tJ = —o.t
Bx

' ~ By
(3.12)

The total current Aowing in the y direction in the two
cells which make up the cylindrical circumference is

I=2f tJ~dx = —2atf d. x
0 " o By

But with the complex potential function

(3.13)

The current density is now obtained from J=o.E, so
that the surface current density for a plate of thickness t
and conductivity o. is

IV. FOURIER EXPANSION OF CURRENT DENSITY

We now have the ability to calculate the potential
4(x,y) in the cell shown in Fig. 2. Specifically, Eq. (3.1)
gives N as a function of g, Eqs. (3.2) and (3.3) connect g
and w, and Eqs. (2.8) and (2.10) connect w and z. We now
wish to expand 4(x,y ) into a double Fourier series in x
and y, taking into account the symmetries and periodici-
ties displayed in Fig. 2.

Our first step is to subtract the term linear in y from
the potential. Specifically, we form the function y(x, y)
defined by

ViIr+i &b =—g,
h

(3.14) y(x, y ) =N(x, y )—Vy (4.1)

we have

B%

By

and

Be B~
X Bx

Be
By

(3.15)

I=2crt f dx =2crt[%(L ) —%(0)]=2crt . (3.16)
B% VI

0 Bx h

Thus, the resistance per axial length H is

which is now periodic in x (period 2L) and y (period 2H)
with the following symmetries evident in Figs. 1 and 2:

X( —x,y) =X(x,y),
X(x —y ) = —X(x,y ),
g(L x,H —y—)= —y(x, y) .

(4.2)

(4.3)

(4.4)

If we also require V y(x, y ) =0, y(x,y ) can be expanded
in the region —L +x (L, 0&y &H, as

R~= h
2ao-

and the power dissipation per axial length H is
V~ 2V2~t~

RII h

(3.17)

(3.18)

The power dissipation distribution, of interest in deter-
mining the transient and steady-state temperature behav-
ior, is readily obtained from the conformal map, since

n~ H
sinh

L 2

+ g D„cos
n=1
Qdd

n~x
L

nm H
cosh ——yL 2

n~xy(x, y ) = g C„cosn

(4.5)

leading to

dP, , 2 (w+a)(w b) V crt-=~t E~'=
dA (w+p)(w —q)

P (w+ a )(w b)—
2hl (w+p)(w —q)

(3.20)

EI =(V@) = V dg V Idgldwl (319)
h dz h Idz/dw I

The separation into n =even, odd is required to satisfy
Eqs. (4.2) and (4.4).

The coefficients C„and D„can readily be obtained
from y(x, O)=@(x,O+), where y=O+ designates the
potential on the positive y side of the surface y =0. This
designation is needed because %(x,y) and y(x, y) are
discontinuous on the segments (5)~(2), (4)~(6), etc.
Specifically, we find

The power density in the (x,y ) plane near the spot corre-
sponding to the singularity at z =z6 (w = —p ) is

n m.H
2L

=2Q„V, n even (4.6)

dP
dA

P (a —p )(b+p ) 1

2hl (p+q) w+p
(3.21) D„cosh =2Q„V, n odd,n~H

2L
(4.7)

But the transformation from the z plane to the w plane
near w = —p is, according to Eq. (2.4),

where

Z Z6
W+

&p(b+p)(a —p)
'

so that

dP P &(a —p )(b+p )

d A 6 2hl (p+q )v'p

X
Q(x —x6) +(y —y6)

(3.22)

(3.23)

( I+5„0)Q„= f dx @(x,O+ )cos
LV

(
—1)"f dx @(L—x, O+ )cos

n~x
LV o

(4.8)

are the Fourier coefficients of the expansion of @(x,O+ )
in the region —L +x L. We then have
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y(x,y)=2V g Q„cos
n =2

sinh[(nm/2L )(H —2y )]
sinh(nnH /2L )

nmx cosh[(nm/2L)/(H 2y—)] 2y
8 cos

L cosh(n~H/2L ) H
Qdd

(4.9)

where the last term comes from the n =0 term in the
sum. If we now use Eq. (4.1) to obtain N(x, y ) and write

J3'

o. V

1 —4Qo 4 n~x+—g Q„cos
n=2

ae acJ„=—o. , J = —o.
Bx

' ~ By

we find

(4.10)
8 n~x may+ n cos cos

m~1n~1

J =2
o. V

r

n~Qn . nm.x sinh[(nm /2L )(H —2y )]
n=2 L

sin
L sinh(nmH/2L )

even

m+n
even

(nH/L )

m +(nH/L)
(4.14)

and

n~OQ&f . n rrx

odd

X cosh[( n rr/2L )(H —2y ) ]
cosh( n m.H /2L )

(4.1 1)

By expanding into a Fourier series after taking the gra-
dient of g(x,y ) to obtain the components of the current,
we have avoided the singularity caused by the discon-
tinuity in 4(x,y) at y =0, +H, +2H, etc. , which would
have occurred by first expanding y(x, y) into a double
Fourier series and then taking the gradient.

V. MAGNETIC FIELD
WITHIN THE CYLINDRICAL SHELL

y 1 Qo Qn

oV H H
n L

n~x
L

We now roll the shell back up, assuming that the
current distribution remains as given by Eqs. (4.13) and
(4.14) in the cylindrical coordinate system, where

n vrQ„+2 g cos
L

Odd

X cosh[(n m /2L )(H —2y ) ]
sinh(n m.H /2L )

n~x
L

x~RO, y~z, L =mR,

H=mlk, L/H—:p=kR .

We can therefore write

g~k V ~ mnpQ„
Je = g g sin(n 8)sin(mkz ),

m»n&1 n +m P

(5.1)

(5.2)

X sinh[( n ~/2L )(H —2y ) ]
cosh(nmH/2L )

(4.12)
m+n
even

We now expand sinh[(nor/2L )(H —2y ) ] and
cosh[(nm. /2L )(H —2y ) ] into a Fourier series in y (period
2H), taking into account the approximate symmetry for
J„and J~ corresponding to Eq. (4.3). The result is

J,= — (1—4Qo)+ g Q„cos(n8)
7T 7T n =2

SokV " " " Qn+ g g cos(n8)cos(mkz) .
n +m p

m+n
even

(5.3)

and

nax
sin

m(nH/L )

m +(nH/L)

J„8 g Q„sin
m~1 n~1

m+n
even

(4.13)

We shall proceed by obtaining the scalar magnetic po-
tential inside and outside the cylinder. Since
sin(n8), cos(n8), and sin(mkz), cos(mkz) represent
complete sets in 0 and z, the individual coefticients for
each m and n must match. Moreover, since V %', =0,
the radial dependence of each term must be the Bessel
functions I„(mkr) inside the cylinder and IC„(mkr ) out-
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side the cylinder„with the requirement that
H, =8%', /Br be continuous at r=R. We therefore
write

A,o„sin(n 8)iIi,s= V g 4p

term separately. The discontinuity in H& at r =R is tJ,
and the discontinuity in H, at r=R is —tJ&. The two
condition are consistent with one another, since J in Eqs.
(5.2) and (5.3) explicitly satisfies V J=O. We therefore
obtain

—r R ", r(R
X '

r nR", r)R

8ot 2 nQn
mn P 2 2 2 7

n +vl p
m ~0, n ~1, m+n even . (5.5)

+ V g g mA, „sin(nO)cos(mkz)
m ~1 n~1

m+n
even

I„(mkr)K„'(mp), r (R
X '

K„(mkr)I„'(mp), r )R
(5.4)

where B=pV%', , and where we have written the m =0

We have omitted the uniform current term in Eq. (5.3)
since it produces no field inside the cylindrical shell.
However, it must be included in any calculation of forces
on the cylinder.

The field components inside the cylindrical shell are
obtained by taking the gradient of Eq. (5.4). We will do
this in rectangular coordinates only for the leading terms
in powers of r. Specifically, we write

, (x,y, z)=— o2 V2xy

8
od(i

OO 3k 3 OO 2k 2
+ V g mA, 3cos(mkz)K3(mp) (3x y —y )+ V g mA, 2cos(mkz)K2(mp) 2xy (5.6)

m=1 8
ocici

from which we obtain the dipole wiggler term

a" cos(mkz)mag 0 R ~ m 7

m=1
Qdd

the quadrupole term

g a~ cos(mkz),uad xy

i m=0

and the sextupole terms

(3x —y ) Q3

m=1
Qcid

(5.7)

(5.8)

~02
ai%

=
p'~i iK'i (p)

1+p
p'Ki(p)

q
m

m3p A, 2K2(mp) Q,

m p(1+p )K2(mp)
m ~2 even

(4+m p )K', (p)

m p A, 3K3(mp) Qi
24 A, , iK', (p) Q3

m p (1+p )K3(mp) pl+1 odd.
8(9+m p )K', (p)

(5.12)

(5.13)

(5.14)

( 2+ 2) 2 CQ

+ P g m a cos(mkz)
8R

0(ici

(5.9)

The components of B are obtained by taking the gradient
of Eqs. (5.7)—(5.9). Note that our normalization has been
chosen so that a", =1, and that for p-1, all coefficients
a are of order 1.

The first harmonic (m = 1) wiggler parameter

Here V

" Pe+0
mock mock R

(5.15)

CXd-
m

m A,K', (mp),

m (1+p )K', (mp)
pl 1 odd

(1+m p )K'i(p)

4Vcrtp K', (p)
q'o= ~ii VKi(p) =

m.(l+p )
Qi (5.10)

(5.11)

is given by

peV& 4pot Ve QiP Ki P
2mc ~ moc 1+p2

(5.16)

where mo is the electron mass. Using Eq (3.16), we can
express K in terms of the current and dimensionless pa-
rameters as
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QiP +i(p) h IE=
1+p2 I Io

(5.17)
The first harmonic wiggler field in Eq. (5.7) has a mag-

nitude %0/R since a" has been normalized so that a i
= l.

The wiggler parameter K is therefore

where ID=bmoc /2eZ0=2. 13 kA, with Z0=377 Q.
Here p

moCk R
pe%'o

mocp
(6.5)

(5.18)

I=2~Rt (1—
4QO ) =2pcr Vt (1—4QO ) .

o.k V
(5.19)

Comparison with Eq. (3.16) allows us to write

—=p(1 —4QO)= —(1—4QO) .
l L

(5.20)

This relation is used to check the accuracy of our numeri-
cal calculations.

where the subscript w has been added to the wiggler wave
number to conform to the usual notation, with
k =2m/1, =~/H. Since our analysis will not involve
the frequency of the radiation, we will once again drop
the subscript m in the next section.

As a final point, we can calculate the total current by
integrating Eq. (5.3) over 0, obtaining

The coefficient on the right-hand side of Eqs. (6.3) and
(6.4) is therefore proportional to

pe +o Xp
moyc R yR

(6.6)

where A is the radius of curvature of the electrons in the
first harmonic maximum wiggler field.

The procedure we shall follow is to solve (6.3) in lowest
order in x for y =0 to obtain the main wiggler motion.
Equation (6.4) will then be linearized in y and solved for
the oscillatory motion, averaging over the main wiggler
motion in x. Finally, we will use Eq. (6.3) with y =0, and
we will include higher-order terms in x/R to determine
the presence of any focusing or defocusing forces in the x
direction.

We therefore start with Eq. (6.3) for y =0, writing

VI. ORBIT DYNAMICS

The electron motion in the magnetic field correspond-
ing to Eqs. (5.7), (5.8), and (5.9) is obtained from the
equations of motion

x II

ocid even

+ g 3a' +m a cos(mkz)R' =, Qi
Qdd

1 d x Q2a cos(mkz)+ — g a'i cos(mkz)
R

x= (yB, zB ), y =— (zB, xB, ) —. (6.1)
moy moy (6.7)

If we change independent variable to z, we can write Keeping only the first term on the right-hand side, we
find

x= (y'8, —8 ), y= (8„—x'8, ),d. e, d. e
dz moy

' ~ '
dz moy

(6.2)

x 1

k AR
Qdc1

a cos( mkz )

m

x"-=(y'8, —8 ),
moyC

(6.3)

where the prime indicates differentiation with respect to
z. Using x=x'z, y=y'z, and z—=c(1—x' /2 —y' /2),
valid for y ))1, it is not dificult to see that the di8'erence
between z/c and 1 is of order y for a wiggler parame-
ter K of order 1. We shall therefore set z =c to obtain

R a cos( mkz )

p A 1 m2

Qc1d

(6.8)

where p=kR and IC are of order 1, and where x/R and
R /A are of order 1/y.

The linearized equation for the y motion is

(6.9)
y
"-=(8 x'8, ) . —

moyC
(6.4)

where

Q2 2xaq cos(mkz)+
m=0 R

3a' +m a cos(mkz)
m=i
odd

pxx Q2+px' g ma sin(mkz)+ — g ma~ sin(mkz)
m=1 R Qi

Qdd

I GO

+ g m 3a' +m a sin(mkz)
R

Odd

(6.10)
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Z d3a' +m a
AR

odd

X —cos(mkz)l .
R

Using Eq. (6.8) we find

(6.11)

where

a3 Q2

AR Q,

a' Q3

w'Q,
Q d

8A
(6.12)

Qo 3 OO QPa= g (a ), a'=
m =1 p m=1 m
odd odd

(6.13)

In calculating the value of G averaged over the wiggler
motion in the x direction, we can integrate by parts, ob-
taining in lowest orders in y

p' "
2 ~( G, ) = — + X m zas —cos(mkz ))AR Qi AR, R

odd

one obtains a"/2A for the negative of (6, ), in agree-
ment with Eq. (6.18).

Additional terms in the multipole expansions in Eqs.
(6.10) and (6.16) can be obtained. It is easy to show that
these lead to octupole terms in Eqs. (6.12) and (6.17)
which are proportional to R /3 and decapole terms pro-
portional to R /A . Thus, each higher-order multipole
introduces a term with one higher power of R /2 corn-
pared with the sextupole term. Since R/A -y '&(1,
these terms are neglected.

It is clear from Eqs. (6.12) and (6.16) that the largest
term for A ))R is the quadrupole term. For this reason,
a design in which both the x and y motions are stable can
be achieved if Qz can be made to vanish. We will show
later that [(Ii(x,0+)] is very nearly linear in (L —x) .
As a result, Q2, defined in Eq. (4.8) is very nearly propor-
tional to J, (2nd/L ).. By choosing b, /L =3.83/2m.
—=0.61, we can greatly reduce the impact of the quadru-
pole term in Eqs. (6.12) and (6.16). In fact, we may be
able to choose 6/I. in a way which, taking the sextupole
terms into account, allows us to balance the focusing
forces so that

The focusing in the x direction can be obtained by
writing

(G. ) —=«, ) =—,, (6.19)

p 3
odd

a" cos(mkz )
+u

and linearizing in u. In this way we obtain

u = Gxu

where

(6.14)

(6.15)

where a" is given in Eq. (6.13).
At this point we note that we have ignored terms

which couple the oscillations in the x and y directions.
Their effect is to exchange energy between the two oscil-
lations over a distance which is large compared to 3, and
which is therefore not important for wigglers whose
length is comparable with A.

1
q

2
elm cos plkz

m=0 i

+ g 3a' +m a cos(mkz)
m=i
odd

(6.16)

Averaging over the wiggler motion in the x direction, we
obtain

al% Q2 a' Q3 a'
~R Q, ~'Q, 8~'

Clearly, from Eqs. (6.12) and (6.16), we find

(G. &+(G, &=
2A

(6.17)

(6.18)

The cancellation of the quadrupole and sextupole
coefficients in Eq. (6.18) is related to a consequence of
Earnshaw's theorem [5]. Specifically, the sum of the
force gradients in the x and y directions must be the neg-
ative of the force gradient in the z direction, which comes
from the average of the z gradient of x'B~e/moyc. Us-
ing B from Eq. (5.7) and obtaining x' from Eq. (6.8),

VII. NUMERICAL VALUES

g max

=k K=k f,„Pl pC Io

where

(7.2)

fmax
Qi~ p'&'i(p) Qi p'&I (p)

1+p' p(1 —4Q, ) 1+p'
(7.3)

The choice of parameters depends on many factors,
most of which are beyond the scope of the present work.
We start by selecting a particular radiation wavelength
and an upper limit to the electron energy. Since

A, „(1+1( /2)
(7.1)2r'

and we wish to keep K of order 1, Eq. (7.1) prescribes A.

which is of order a few rnrn in the present plans.
The next parameter to be chosen is R. Clearly, the

smaller R is the larger will be the wiggler field. But the
inner radius of the cylinder must be large enough to con-
tain the beam. The rnaximurn field for a given wiggler
current and fixed k is given in Eq. (5.18). Specifically,
we find
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e (L —x,o)
V

0.5 L
0 4-- p =2.0

0.3"

0.2.~..
0.7
p = 0.5

0.1"

0.0 0.2 0.4 0.8

FIG. 6. [@(L—x,0)/V] vs 1 —x /6 for p=0. 5, 0.7, 1.0,
1.4, and 2.0.

FIG. 7. Equipotential lines and current flow lines in the x,y
plane for L/H=1, 5/L =0.6.

The exponential variation of —K', (p) for p~2 suggests
that p should be in the range from 0.5 to 2.0. Present
plans are to try to use a radius as low as 1 mm, with a
wall thickness of order 0.5 —0.7 mm. Clearly, thermal
effects will control the pulse length and duty factor of the
FEL.

Finally, the slot length 5 must be chosen. Figure 6
shows a plot of [N(L —x, O)/V] versus x /5 for
b, /L =0.6, p =L /H =0.5,0.7, 1.0, 1.4, 2.0, suggesting
strongly the proportionality

current flow lines (for p =L /H = 1 and b /L =0.6).
Table I lists the values of I, h, Qo, Q„Qz, Q3, F,„ for
5/L =0.58, 0.60, 0.62, 0.64, 0.66 and p=L/H
=0.5, 0.7, 1.0 1.4, 2.0. Table II lists the values of
K

& (p), a, a$, a' for the same values of p. These two
tables provide all the necessary information to calculate
the focusing and defocusing terms in Eqs. (6.12) and
(6.17) as well as B~

'" in Eq. (7.2). At each value of p it is
clear that one can make Q2 =0 by the appropriate choice
of 6/L.

N(L —x,O)/V-+I —x /b, for 0&x & b, . (7.4)

Corresponding curves for other values of 6 show the
same approximate linear behavior. If this is approxi-
mately correct, Q„ in Eq. (4.8) will be proportional to

Q„——f dx')/I —(x /b, )cos
L o L

1 nmA

2n L
(7.5)

We now recall the need to make Qz vanish in order to
maintain focusing in both the x and y directions. This
implies

27TJsmL
3 8

L
(7.6)

the first zero of J, (p ), corresponding to 6/L =0.61. The
fact that the a$ term in Eqs. (6.12) and (6.17) is much
larger than the other terms (by a factor 2 /R =y/Kp)
suggests that the tolerance on the factor b, /L must be
very tight. Specifically, since the term involving Q2 is of
order 3 /R times the other terms, and since K and p are
of order 1, the accuracy required for b /L, on which Q2
depends, must be a small fraction of y '. It will prob-
ably be necessary to provide some sensitive tuning
scheme to achieve the required tolerance on Q2.

Figure 7 shows a typical plot of the equipotential and

VIII. CYLINDRICAL WALL THICKNESS

t -=to[1+@cos(8—8o)] . (8.1)

We shall assume that e is small and that the current den-
sity continues to have no r dependence. When we now
determine the coefficients X „by matching the discon-
tinuity in Ho to to[1+ecos(8—8o)]J„with J, given in
Eq. (5.3), it is clear that we introduce terms proportional
to e for m + n odd. The most serious of these is the term
for m =0, n = 1 which we now write in the form

q)01 Ao, sin(8 —8) r /R, r &R—
m~g 4p R/r r &

(8.2)

Equating the discontinuity in BN ', /RBO to the m =0,
n = 1 coefficient of to [1+e cos(8 —8o) ]J„we find

Our analysis clearly assumes a wall thickness t, which
is small compared to the average radius R. In the practi-
cal case, the ratio t/R may be between —,

' and 1. More-
over, we take the current distribution to be uniform in
the r direction, which is only an approximation, particu-
larly if the skin depth is comparable with t. Nevertheless,
we assume that the small t /R results are a good first ap-
proximation.

In some copper tube samples which have been studied,
the wall thickness turned out to be nonuniform with an
approximate dependence on azimuth
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5/L

TABLE I. Values of I,h, Q„,f,„ for different p, 6/L.

Qo

0.5
0.5
0.5
0.5
0.5

0.7
0.7
0.7
0.7
0.7

1.0
1.0
1.0
1.0
1.0

1.4
1.4
1.4
1.4
1.4

2.0
2.0
2.0
2.0
2.0

0.58
0.60
0.62
0.64
0.66

0.58
0.60
0.62
0.64
0.66

0.58
0.60
0.62
0.64
0.66

0.58
0.60
0.62
0.64
0.66

0.58
0.60
0.62
0.64
0.66

0.307
0.294
0.282
0.268
0.255

0.434
0.416
0.397
0.379
0.359

0.640
0.613
0.585
0.556
0.527

0.964
0.919
0.874
0.827
0.780

1.607
1.517
1.426
1.335
1.244

0.806
0.789
0.770
0.751
0.730

0.895
0.880
0.865
0.847
0.828

1.067
1.057
1.045
1.030
1.013

1.399
1.394
1.386
1.372
1.355

2.195
2.195
2.185
2.164
2.134

0.0595
0.0633
0.0672
0.0712
0.0753

0.0769
0.0814
0.0859
0.0904
0.0950

0.1001
0.1051
0.1101
0.1151
0.1200

0.1270
0.1323
0.1374
0.1424
0.1472

0.1585
0.1636
0.1684
0.1729
0.1771

—0.0759
—0.0780
—0.0799
—0.0814
—0.0827

—0.0982
—0.1003
—0.1021
—0.1035
—0.1045

—0.1283
—0.1302
—0.1317
—0.1326
—0.1329

—0.1638
—0.1652
—0.1659
—0.1660
—0.1654

—0.2060
—0.2064
—0.2060
—0.2048
—0.2029

0.004 84
0.001 45

—0.002 05
—0.005 60
—0.009 15

0.006 48
0.002 13

—0.002 32
—0.006 77
—0.011 17

0.009 40
0.003 86

—0.001 71
—0.007 20
—0.012 54

0.01400
0.007 31
0.000 70

—0.005 70
—0.011 80

0.020 41
0.012 76
0.005 40

—0.001 55
—0.008 03

0.015 01
0.014 80
0.01406
0.012 79
0.01104

0.01928
0.018 91
0.017 86
0.016 17
0.013 87

0.024 65
0.024 02
0.022 54
0.020 28
0.017 32

0.030 34
0.029 33
0.027 33
0.024 44
0.020 79

0.036 75
0.035 14
0.032 43
0.028 79
0.024 40

0.1690
0.1771
0.1851
0.1929
0.2005

0.1440
0.1510
0.1579
0.1646
0.1711

0.1094
0.1149
0.1203
0.1256
0.1307

0.0744
0.0785
0.0824
0.0862
0.0900

0.0414
0.0439
0.0464
0.0488
0.0512

2eo. t0
Ao, cos(8 —8)= p [(I—4Qo)cos(8 —8o)

VA01 e'a t0 VEg01
4pR 2~Rh 4' (8.6)

—4Qzcos(8+ 8o)j, (8.3)

which determines both the magnitude and orientation of
the new term. If we neglect the term in Q2, which we
have arranged to vanish, we find 0=00 and

where the final form is exactly what is expected from a
cylindrical shell without slots for which the centers of the
inner and outer circles are a distance eR apart.

The order of magnitude of the deflection caused by this
constant field is determined from Eq. (6.19). Specifically,
we have, for the balanced focusing condition,

2m~to
Aoi= p (1 4Qo) (8.4)

ea01tl +
4A2 m0yc

ceo.t0 VE

m0yc2mRh
(8.7)

Using Eq. (5.20) we find

2eoto p
h

(8.5)

so that the beam must enter the wiggler offset by

4A'ea01
X0=

Pl 0QC
(8.8)

The potential in Eq. (8.2) represents a constant defiecting
field whose magnitude is Using Eqs. (8.6), (6.6), (5.10), and (7.3), we finally obtain

AeXp=
2pf max

(8.9)

0.5
0.7
1.0
1.4
2.0

—4.237
—2.161
—1.023
—0.473
—0.184

1.116
1.035
1.007
1.001
1.000

1.180
1.407
1.955
3.194
6.800

TABLE II. Values of IC&lpla, a(,a'for different p.

K)(p)

4.674
2.698
1.687
1.219
0.961

Rg(( ~y
A

(8.10)

That is, the wall thickness must be uniform to an accura-
cy very much smaller than y '. If such copper tubing is

Since p and f,„are of order 1, we must have A e (&R in
order that the offset be small compared with the radius of
the cylinder. This requires



SLOTTED CYLINDRICAL SHELL FOR USE AS A COMPACT %'IGGLER 3899

not directly obtainable, some correction scheme will be
necessary to compensate for a nonuniform wall thickness.

IX. SUMMARY

We have analyzed the current distribution on the sur-
face of a thin slotted cylinder and obtained explicit ex-
pressions for the multipole expansion for the magnetic
field near the axis of the cylinder. The terms in this ex-
pansion include (I) the main planar dipole wiggler field,
(2) a large quadrupole term which causes focusing in one
transverse direction and defocusing in the other, and (3)
two somewhat smaller sextupole terms which also cause
focusing in one transverse direction and defocusing in the
other. The large size of the coefficient of the quadrupole
term suggests that the slot length be chosen so as to make
the quadrupole term vanish, or be such as to compensate
for the sextupole focusing or defocusing effects.

Graphs and tables are given for the current distribu-
tion on the surface of the cylinder, and for the various
multipole coefficients as a function of the two parameters:

p=(circumference)/(wiggler period)

and

b, /L =(slot length)/(circumference) .

We show that the slot length is an extremely sensitive pa-
rameter, most likely requiring some appropriate tuning
or correcting mechanism.

We have also analyzed the effect of nonuniform thick-
ness of the cylinder wall and find that additional mul-
tipole terms are generated, including a zeroth harmonic
(in the axial direction) transverse magnetic field capable
of deflecting the beam transversely. Once again the effect
is extremely large, suggesting the need for as uniform
thickness as possible, together with some mechanism for
reducing this term to an acceptably small level.
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