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Guiding-center chaotic motion in three electrostatic waves
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The dynamics of guiding centers in a general configuration of three electrostatic plane waves is studied
in the plane (x,y) perpendicular to a strong magnetic field. The associated Harniltonian is nonauto-
nomous with 1 —' degrees of freedom, and the conjugated variables are the coordinates (x,y). This is the

simplest system that exhibits the onset of chaotic motion in electrostatic plasma turbulence. An explicit
analytical solution is obtained for the unperturbed integrable system consisting of two low-amplitude
waves, by solving a generalized Kepler equation. Chaotic diffusion of guiding centers becomes possible
due to the existence of a third wave. As the amplitude of the perturbation increases, chaotic motion is
first localized, then extended over a network spread over the whole phase space along separatrices, and

finally densely covers the full space.

I. INTRODUCTION

In the community of plasma physicists, the most wide-
ly held view is that anomalous transport [1] over the
main confinement region in a tokamak [1 ~ q(r) ~ 2] is
caused by the motion of electrons across the magnetic
field, due to the EXB drift associated with low-frequency
electrostatic turbulent fields [2]. These modes are charac-
terized by frequencies cu much smaller than the gyrofre-
quencies 0, or 0, of the ions or electrons. When consid-
ering finite-amplitude waves, a complete approach of the
electrostatic plasma turbulence problem would require a
self-consistent treatment: the functional dependence of
the electrostatic fields should be determined by and cou-
pled to the nonlinear motion itself. This is justified name-
ly by the fact that, with the anomalous transport, the sta-
bility of the drift modes depends on the nonlinear motion
of the electrons, which may modify the electron charge-
density response function [3,4].

Because of the extreme complexity of the self-
consistent problem, theoretical and numerical studies
have been undertaken for the simplified problem, consid-
ering particle diffusion in a given turbulent spectrum of
electrostatic fiuctuations [2,5]. Even in this case the non-
linear feature of the problem forces one to consider sim-
plifying statistical assumptions in the theoretical study in
order to make this problem tractable.

Another, even considerably more simplified, approach
has been undertaken by Kleva and Drake [6] and Horton
[7], who consider the stochastic E XB particle transport
in two electrostatic waves, assuming that they depend
only on two transverse dimensions. In these studies, the
parallel motion is assumed to be decoupled from the per-
pendicular EX8 drift motion, neglecting the shear effect
of the magnetic field on the particle motion. The effect of
a sheared magnetic field on the stochastic electron dy-
namics due to drift waves has been considered in Ref. [8].

However, a point, common to these studies, including
a limited number of waves, is related to the description of

the electrostatic waves. The potential associated with the
waves is assumed to depend [by a product of tri-
gonometric functions cos(k x )cos(k y cot)] on th—e two
coordinates x and y perpendicular to the magnetic field:
it propagates generally in the y direction and is stationary
in the x direction, corresponding to the radial equilibri-
um gradient direction of the plasma torus, due to its
boundedness. This last hypothesis implies a mathemati-
cal structure of the potential which makes the guiding
center motion already nonintegrable in the case of two
waves of this kind (which actually amounts to four pro-
pagative plane waves).

In the approach we present here, we consider the
motion of a guiding center in the potential of three elec-
trostatic (plane) waves cos(k, r w, t) which pro—pagate
both in the radial (x) and perpendicular-tangential (y)
directions, with different wave-vector components. This
is justified by the experimental observation that electro-
static turbulence seems to be isotropic in the plane per-
pendicular to the magnetic field [9,10]: one generally
considers that, due to nonlinear coupling between the
waves of the turbulent spectrum, there is an isotropiza-
tion of the different waves in the two perpendicular direc-
tions.

Here we focus our attention on the mechanism respon-
sible for the onset of stochastic motion in a restricted
number of waves (picked, for instance, from a turbulent
spectrum), and on the conditions for the existence of a
chaotic threshold via numerical and analytical methods.
This study was stimulated by a result obtained in previ-
ous numerical studies [5,11—15] in which an observed
feature of the numerical models with many waves (typi-
cally 10 ) is the existence of a threshold in the value of
the turbulent amplitude of the onset of chaos.

It is first shown that the two-dimensional guiding
center motion, in the general case of two electrostatic
waves, appears to be completely integrable. In this case
the constancy of the Hamiltonian of this dynamical sys-
tem takes the form of a generalized Kepler equation in
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two variables. An angle-action-variables approach is ex-
plicitly given for the determination of the exact frequen-
cies. In a modified phase space, invariant curves are ob-
tained, which possibly exhibit resonances with elliptic
points, provided that the amplitudes of the two electro-
static waves are suKciently high. This "phase portrait"
presents saddle connections between hyperbolic singular
points at the separatrix. By adding a third wave of small
amplitude, it is reasonable to expect that this structure
will be destroyed, leading to a chaotic motion.

Indeed, in the case of three waves the time variable
cannot be eliminated in general, and the motion is
governed by a 1—,

' degrees-of-freedom Hamiltonian. In
the specific case of equal frequencies, with a particular
class of orientations of the three wave vectors, it is possi-
ble to reduce the equations of motion to a unique time-
dependent second-order differential equation in one vari-
able. If moreover, the amplitudes are sufficiently large,
this equation reduces to the well-known paradigm equa-
tion [16] corresponding to the motion of a charged parti-
cle in two electrostatic waves with no magnetic field.
Numerous studies have shown the appearance of chaos in
that system, with an analytical estimation of the thresh-
old. Thus, at least in this limit, the guiding-center system
in three waves is proved to be chaotic; the general case is
studied numerically.

For low values of the amplitudes of the first two waves,
we have derived an approximate description of the
threshold of chaotic motion via the standard mechanism
of resonance overlapping. For larger values of the ampli-
tude of the third perturbation wave, we exhibit the mech-
anism leading to large-scale stochasticity in phase space,
as the result of the collapse of two hyperbolic points,
occurring when the amplitude of the perturbation
reaches that of the two first waves. In the domain of
large amplitude of the two first waves, a different mecha-
nism is observed to yield large-scale stochasticity: the
breaking of a resistant S-shaped curve, leading to a com-
plex permeable structure, reminiscent of Cantori result-
ing from perturbation of Kolmogorov-Arnold-Moser
(KAM) surfaces.

This paper is organized as follows. Section II is devo-
ted to the analytical studies and Sec. III to the numerical
simulations of guiding centers.

In Sec. II A we present the general equations of motion
of a particle in three electrostatic low-frequency waves
propagating in the plane perpendicular to a strong mag-
netic field, allowing a drift approximation, i.e., the equa-
tions of motion for the guiding centers. It is first shown
that, in the unperturbed two-wave system, the time
dependence can be eliminated in a reference frame mov-
ing at a resonant velocity with both frequencies, corre-
sponding thus to an integrable system, as expected. In
the three-wave system, the time dependence cannot be el-
iminated: the Harniltonian has 1 —,

' degrees of freedom.
The general equations of motion are given in Eqs. (11)
and (12) in the form of evolution equations for the canon-
ical phases g'& and gz of the two first waves.

We introduce in Sec. II A the specific class of orienta-
tions of the three wave vectors, which will be considered
in what follows. For this class, closed differential equa-

tions are derived for orthogonal phase coordinates
R =g& —

$2 and S =g&+g~, describing the "transverse"
and "parallel" motion, respectively (with respect to the
diagonal).

In Sec. IIB we derive the explicit Chirikov criterion,
obtained by perturbation of the analytical solution de-
duced for the two-wave problem. This analytical solution
is derived in Sec. II 8 1 in a parametric form, by solving a
generalization of the Kepler equation in the "elliptic"
(weak-amplitude) case. Angle and action variables are in-
troduced in Sec. IIB2, and explicit expressions are ob-
tained for the frequencies of the unperturbed trajectories.
The Chirikov criterion is given in Sec. II B 3 in terms of
the Fourier amplitudes V „ofthe perturbation.

The phase-space portrait of the unperturbed two-wave
system is described in Sec. IIC. For equal values and
weak amplitude of the two waves (elliptic case), the gen-
eral structure of the phase space is dominated by two
straight lines and an S-shaped curve, which remain as the
basic structure of the three-wave phase portrait. For
larger amplitudes ("hyperbolic" case), stationary points
appear in phase space and are calculated analytically.

In Sec. IID the general features of this phase portrait
are used to derive an approximate solution for the two
wave system, which is then perturbed in order to obtain
an explicit expression of the Fourier amplitudes V „of
the perturbation.

The equations of motion are solved numerically in Sec.
III for a specific case of the wave-vector orientation class
studied in Sec. IIA. By perturbing the elliptic case, we
observe in Sec. IIIA1 the primary islands, the basic
straight-line trajectories, and the S-shaped curve, in
agreement with the corresponding analytical calculations
presented. Other chains of primary resonances also ap-
pear for higher values of the amplitude, above threshold
values predicted analytically.

When the amplitude of the perturbing wave reaches
the value of the amplitude of the two basic waves, we
have found [15,17] a very interesting phenomenon: the
collapse of two hyperbolic points (Sec. III A 2), allowing a
connection between the S-shaped curve and the straight
lines, hence a stochastic feature of the trajectories also in
the perpendicular direction. A first analytical study of
this collapse is given in Sec. III A 3. Further work is in
progress [18].

Beyond this collapse, a thin chaotic zone, extended in
the whole space in both parallel and perpendicular direc-
tions, is obtained, forming a kind of "stochastic web" [19]
along the regions of degeneracy of the unperturbed sys-
tem, which are indeed the S-shaped curve and the
straight line (Sec. IIIA4). The threshold for complete
stochasticity is obtained with a still larger perturbation.
The observed zones of chaotic motion are explained in
Sec. IIIA5 in terms of island overlapping, in agreement
with the analytical criterion.

In Sec. III8 we study the onset of chaotic motion in
the hyperbolic case. Here a different mechanism seems to
be at the origin of large-scale stochasticity: before any
collapse of hyperbolic points, the separating S-shaped
curve is replaced by a permeable structure, allowing a
chaotic diffusion in the whole phase space.
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The conclusions of this comparison between simula-
tions and analytical results are given in Sec. III C where
the various phenomena observed in the onset of chaos are
summarized (collapse, overlapping, subharmonic, sto-
chastic web, permeable structure, etc.).

We report in Appendix A the comparison of the ap-
proximate frequencies (predicted by the approximate
solution of the two-wave problem) with the exact ones.
In Appendix B we report simulation results with different
amplitudes of the two first waves: although the straight
line is deformed, the topology of the phase-space portrait
and the mechanisms leading to chaos are analogous.

n—= k",k~ —k~k'Wo .

The potential N can thus be written as

4& =a, sin(k, r'+ 0, )+a z sin(kz r'+ 0z)

+a3 sin(k3 i rDt+0, )

in terms of only one Doppler-shifted frequency

yD =co3 k3 v=D 3 3

given in terms of

II. GUIDING CENTER MOTION IN THREE WAVES

In the present work, we consider an electrostatic po-
tential including three plane waves propagating in a plane
[r=(x,y)]:

k, k~ co,

y= k2 k2 cu2

k3 k3 6)3

(10)

3

@(x,y, t)= g a; sing;(x, y, t)

with

g; ( x,y, t ) = k x + k,~y co, t + 0,— (2)

corresponding to the electrostatic field E= —VN. The
two wave vectors k& and k2 are assumed to be nonparal-
lel.

A. Equations of motion

We consider the guiding-center motion of a charged
particle in the presence of a constant magnetic field 8 in
the third direction. The drift velocity of the guiding
center is u=(c/B )EXB. The equation of motion can
be written explicitly:

—V N —k~
c 1

a; „cosg;(x,y, t) . (3)

It can be shown that these equations of motion derive
from an Hamiltonian &(x,y, t)=(c/B)N(x, y, t) in which
the coordinates (x,y) are canonical conjugate coordi-
nates.

First of all we note that the explicit time dependence of
two phases can be eliminated by writing the phases

g; =k, .r —cv; t + 0, in a reference frame moving with a
constant velocity v:

g, = —1 —ez cosgz —e3P' cosg3(g„gz, r),
gz

= —vz+ e, cosg, +e,a' cosg3( g'„gz, r ), (12)

where the dot denotes a time derivative with respect to ~,
and the third phase

g3(gi gz, r)—:a'gi+P'gz+r'r+0 (13)

is time dependent. In these equations the normalized am-
plitudes have been defined by

In this reference frame, the potential (8) exhibits an expli-
cit time dependence which is only due to the presence of
the third perturbing wave: the two-wave problem is in-
tegrable. Let us notice that a nongeneric three-wave sys-
tem exists, with wave vectors and frequencies such that
yD =0, corresponding to a time-independent Hamiltoni-
an, and is thus completely integrable. The physical ex-
planation comes from the fact that, in this case, the re-
ferential velocity v is also resonant with the third phase
velocity. In the general case, however, the time depen-
dence cannot be eliminated and the motion is governed
by an effective one-and-a-half degrees-of-freedom Hamil-
tonian.

Let us consider the two first wave phases g, and gz as
two independent variables in the rest frame. Expressing
x and y in terms of g„gz, and t, normalizing the time to
the frequency ai, of the first wave (r =co, t) leads us to the
following equations of motion:

r —=r —vt .

This velocity v is chosen by the resonance condition with
two arbitrary "first" waves:

co =k v1 1

CO2
=k2'V

c 6e;= a;,8 co)

and the parameters are

a'=a/» p'=p/» r'=r/~l&=rD/~l
with the resulting phase

(14)

(15)

(taken for instance to be the dominant waves). The com-
ponents ( v, v~ ) of the velocity v are thus given by

v k& k&
'

co&
&

~&kz —
~zk&

(6)
co~k, —co, k2Vy

where 6 is a measure of the vector product of the first two
wave vectors k& Xk2..

0 = —a'0, —P'0z+ 03 . (16)

p= k~k kk~— —

Here the parameters a and P are defined by the vector
products

(17)
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and take into account the relative directions of the three
wave vectors, in the following expression of the effective
frequency:

JiY

y/co, —= —a —vg+ v35, (19)

V; =CO; /CO~ (20)

k)

X
Equations (11) and (12) can be derived from the follow-

ing Hamiltonian in which the variables g, and g~ are
canonically conjugated:

k3

~(kl k2 r ) 42+ v241 e 1»nki —e 2 sink2

—e3 sin(a'(&+P'gz+y'r+9) . (21)
FIG. 1. Particular example of a three-wave configuration of

the class a' = —P' = l.

Although the g& and gz variables play a symmetrical role
in the expression of &, Eqs. (11) and (12) lead to the
choice of gz as a momentum variable, and the Hamiltoni-
an equations of motion read

(22)

The expression for the parallel component of the
motion S(t) (parallel to these straight lines in the case
e, =e~) can be expressed in terms of the solution of Eq.
(26) for the transverse motion R (t) as

(23)

RS =26(R)—2arccos
R

(27)

where R is the time derivative of the solution R (t), and

It is possible to reduce the system of equations (11) and
(12) to an equivalent system governed by a unique
second-order differential equation in only one variable.
We obtain in this way an exact closed equation for the
transverse motion, appropriate for approximate analysis.

We consider here the special class of systems in which
the orientations of the three wave vectors are such that
a'= —P'= —

A, and v~= 1, hence y'=v3. The general
class A, = —1 is solved numerically in Sec. III. A specific
example of three wave vectors in this class is represented
in Fig. 1. By introducing the variables R =g, —

gz and
S =g, +gz, the equations of motion (11) and (12) read

6(R ) = —arctan
8) 82 Rtan-
e, +e2 2

1.0
2

0.8

A(R)= —(a +2cosR)'=II 2

p
(28)

(29)

S+RS= —2+e cos
1 2

—2e3A, cosg3,

—e2COS
S —R

2

(24)
0.6

R= —e, cos
S+R

2 2
—e cos

S —R
2

(25)
0.4

where g3
= —

A,R +v3r+ 9. Differentiating Eq. (25) with
respect to time, using Eq. (24), and normalizing time r to
p—= (e&ez) ', we obtain the following differential equa-
tion for the variable R:

0.2

R = —sinR+[p+ek, cos(XR vt' 0)]——

X(a +2cosR —R )'~ (26)
0.0

0.0 0.2 0.4 0.6 0.8 1.0

where the dot denotes differentiation with respect to
t'—:rip, and the constants are defined by a —= (e,
+ez)/e'er e=e3 v e'er and v=v3/v e&e2'

2

The system (24) and (25) admits, in the case where
e& =e2, an exact particular solution given by R =++,
which corresponds to straight lines g~=g, +sr in phase
space (see, for instance, Fig. 2).

FIG. 2. Poincare section over 1000 periods of nine trajec-
tories with amplitudes e

&

= e& =0.9 and e3 =0.1, and
a'= —)33'= 1. Note the appearance of elliptic orbits. The initial
conditions are ($, =0, $,=0), (0,0.5), (0.5,0), (0,0.8), (0,0.2),
(0,0.4), (0,0.6), (0.3,0.5), and (0.7,0.5), modulo 2'
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a +2cosR —R =(Co—pR)z, (30)

Of course, in the case where e3 =0, we recover an exact
first integral of motion, which reads

vzg&
—e, sing& =M,

we obtain a similar expression for gz,

gz+ez singz=M JYp (32)
where Do is a constant of integration, related to the un-
perturbed value &o of the Hamiltonian by 6'0=@&0.

Except for the square-root factor and the constant p in
the square brackets, Eq. (26) has the form of the well-
known equation governing the motion of a charged parti-
cle in two electrostatic waves (in the absence of magnetic
field, in contrast with the present guiding center dynam-
ics), to which a lot of theoretical and numerical works
have been devoted [16]. Note that the latter equation can
actually be obtained in the limit of infinite amplitude
waves. Indeed in this limit p~0, and the invariant (30)
reduces to the energy constant of the well-known non-
linear pendulum. Neglecting the p term in the square
brackets in Eq. (26), and replacing the square root by 6o
[as follows from (30)], we get the announced result.

Since it has been shown extensively that the two-wave
charged-particle problem exhibits chaos under certain
conditions, this equivalence allows us to infer the follow-
ing conclusion for our present problem of guiding centers
in three waves: at least in the limit of infinite amplitude,
the possibility of the existence of chaotic motion has been
analytically predicted. Actually a chaotic solution also
appears at weaker amplitudes, as will be numerically
shown in Sec. III.

where &0 is the constant value of the Hamiltonian
(which is determined by the initial conditions). In the el-
liptic case ez (1 and e, (vz (i.e., elliptic motion in the
Kepler equation), Eqs. (31) and (32) can be inverted
univocally, and g, and g'z can be exactly expressed as a
convergent Fourier series with Bessel coefficients [20]:

+ g —J„
n=

ne1 . nM
sin

V V2
(33)

oo

gz=M —&0+ g (
—1)'—J, (sez)sin[s(M —&o)], (34)

s=1

oo ne,1+ g 2J„
V2 n =1 V2 V2

(35)

where M is a free parameter varying between —~ and
+ ao. These results express the solution of the equations
of motion in parametric form and represent the family of
phase curves depending on the parameter &0. In order
to get the time-law equation for these phase curves, we
have to find an equation for the evolution of the parame-
ter M with time. To this end, we differentiate Eqs. (33)
and (34) with respect to time and get

B. Perturbation of the analytical solution
for the two-wave elliptic system gz=M 1+ g ( —1)'2J, (sez )cos[s (M —&o)]

s=1
(36)

In the case of two electrostatic waves, the Hamiltonian
(21), in which we set e3 =0, is obviously an exact invari-
ant of motion, and therefore the motion is completely in-
tegrable. Two fundamentally different cases are found
according to the values of the normalized amplitudes e1
and e2 with respect to v2 and 1, respectively.

ne1
M 1++ 2J„

v2
L

cos

From Eqs. (11), (12), and (31), we obtain M = —
g&gz, and

thus

1. Parametric solution

It is clear, from the equations of motion (11) and (12)
with e3=0, that no stationary singular point can exist if
e2 & 1, and e, & v2, which implies that no closed periodic
orbits can exist, and therefore, no separatrix. Assuming
these conditions to be fulfilled, it is possible to solve the
equations of motion (11) and (12) in a parametric form.
The Hamiltonian (21) (with e3 =0) appears as a generali-
zation in two variables of the celebrated Kepler equation
[20] of astronomy. Setting

X 1+ g (
—1)'2J, (sez)cos[s(M —&o)] = —vz .

s=1

(37)

By expanding the product of the two series and integrat-
ing term by term with respect to time, we obtain time as a
function of M and &0. As it is clear from the expressions
for g, and gz as given by Eqs. (33) and (34), the motion is
a periodic one if v2 is an integer, and we will only consid-
er the case with equal frequencies (vz= 1). For this case
we obtain

oo

ro —r =M(1+ao)+ g —[J„(ne, )sin(nM)+( —1)"J„(nez)sin[n (M —&o)]+(—1)"—,
' J„(ne& )J„(nez)sin(2nM —n&o)I

1
n

sin[(n +s)M —&0] sin[(s n)M —s&—0]+ g g 2( —1)'J„(ne, )J, (sez) n+s s —nn=1 s=1
sWn

(38)
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where to is a constant of integration and

T = —2lr(1+ao),

and we deduce the frequency of the motion as

(40)

nl(&o) =
T 1+ao(&o) (41)

For the particular case v2= 1, e2 =e1 =—e & 1, and the par-
ticular values &o=+a., we find [20]

ao(&o=+lr) =2 g ( —1)"J„(ne)cos(nn )
n =1

(1 e2) —1/2 (42)

hence a frequency

.(&,=+~)= —(1—e')'"
1 2

(43)

For the case e, & v2 and e2 & 1 which has just been con-
sidered, in spite of the absence of singular points and
especially of any saddle connection separatrix, the intro-
duction of a small perturbation in the form of a third
wave is expected to yield to a stochastic feature of the
trajectories. Indeed, a representative example is given in
Fig. 3, in which we draw the Poincare section of six tra-
jectories over 1000 periods corresponding to six uniform-
ly spaced initially guiding center positions. In this exam-
ple we have e, =e2=0.9 (hence the appearance of the

'l. O

)

ao(&o) =2 g (
—1)"J„(nel)J„(ne2)cos(n&0) . (39)

n=1

If M is incremented by 2lr, the variables g, and $2 in-
crease by 2~ and time by

straight lines $2=pl+sr) with a perturbation e3=0.09.
As it is clearly seen in this figure, some surfaces in the
phase space are destroyed. This result tends to corro-
borate the fact that, even if an unperturbed Hamiltonian
(either linear as in Karney's case [21] or nonlinear as in
the present case) does not have any singular point, the in-
troduction of a nonlinear and resonant perturbation is
able to make the system locally chaotic.

I(&o)=
2 fkdgl,

1
(44)

where g& is the coordinate and g2 the corresponding
momentum. Using the expressions (33) and (34) (in which
v2=1), we get

1
OO

I(&o)= f dM 1+ g 2J„(ne l )cos(nM)
277

2. Angle-action variables

It is clear that the motion of a particle in the present
two-wave system is completely integrable. However, a
simple exact analytical expression for the solution has
been given, in Sec. II 8 1 only for the case e, & 1, e2 & 1.
In this case, it is thus possible to investigate in an analyti-
cal approach the solution of the three-wave system, as-
suming that the normalized amplitude of the third wave
is sufficiently small to be considered as a perturbation,
and so to estimate the threshold for stochasticity in Sec.
II B 3.

To this end, it is necessary to go over from the phase
coordinates g, and $2 to angle-action coordinates. In do-
ing that, it is possible to deduce expressions for the angle,
the action, the frequency of the motion, and the non-
linearity coefficient of the oscillator, along with the
Fourier components of the perturbation corresponding to
the different resonant terms involved in the expression for
the threshold.

First, let us define as usual the action as

O. B

0.6

QO

~ 2
X M —&o+ g (

—1)'—J, (se2)
s=1

X sin [$ (M &o ) ]

0.4 (45)

Expanding the product of the series and integrating term
by term, we obtain

J„(ne, )J„(ne2)I(~o)=rr &o g( —1)"2— — sin(n&0),
nn=1

0 ~ 0
0. 0 0.2 0. 4 0.6 0.8 1.0

from which we obtain the frequency

(46)

FICx. 3. Same as in Fig. 2, but with e3 =0.09 with initial con-
ditions (,=0.0, with six equally spaced values of (2 ranging
from 0 to 0.5.

co(JVo ) =d &o/dI =
dI/d&o

in the form



GUIDING-CENTER CHAOTIC MOTION IN THREE. . . 3875

co(&o)=
QO

1+ g (
—1)"2J„(ne ])J„(net)cos(n&0)

n=1

(48)

~o )l
0

r»max = -'v ] -e= —,f1- 2

which is identical to (41).
Knowing I(&o) and co(&0), we can calculate the non-

linearity coefficient of the oscillator, as given by

-0.5-

de(&o)
r(&o) = d &o

dI
1

dI dI /d&0
= O. g

d I= —~'(~0)' dyF2
(49)

where

d I
(
—1)"2nJ„(n e)]J„(net)sin(n&0) . (50)

d&0 g =]

It is important to notice that for trajectories with &0=0
or +n, we have d I/d&0=0 and thus 1 =0. For any
value of e, , e2 the nonlinearity coefficient of this oscillator
is vanishing; such trajectories will appear to correspond
to the regions in phase space which, in the presence of
the perturbation, give rise, for appropriate parameters
values, to a thin stochastic zone extending in phase space,
similar to a stochastic web [19].

For equal amplitudes of the two waves, the frequency
co(&0) given by (48) is even in &o, with a maximum on
the straight line &o=+~ and a minimum on the S-
shaped curve &0=0:

FIG. 4. Frequency in the two-wave system with equal ampli-
tudes (e1 =e2 ——e) as function of the Hamiltonian &&, for
e=0.5, 0.8, and 0.9. The critical values of the amplitude at
which subharmonics appear are ez( m =2) =0.866,
ez(m =3)=0.943, ec(m =4)=0.968, ec(m =5)=0.980,
ec(m =6)=0.986, and ec(m =7)=0.990.

3. Chirikov criterion

s =, le, V „rl,2= 32
Q7 m, n

(54)

We now consider the inAuence of the third perturbat-
ing wave, with A, = —1, v3=1, and 0=0, which yield
&=&o+e3&„with &]= —sin(g] —gz+r). By applying
the standard Chirikov criterion for onset of stochasticity,
we obtain the threshold value as [22]

1+2 g J„(ne)
n=1

( 1 2)]/2 (51)

where V „ is the Fourier amplitude of the perturbation
corresponding to the resonance of order (m, n):

f d@f dr&](@,I, t)e ' "' (55)
(2~)'

The integration over ~ shows that n is restricted to the
values n =+1;we obtain

co, , =,(&O=0)=
1+2 g (

—1)"J„(ne)
n=1

(52)
1 2 —'( 4) — (g —

g )]d+e
4~ o

By the change of variables 4—+M, we express

(56)

The frequency takes the particular values su= —1/m,
with m an integer (i.e., "subharmonic" motion) on the
straight line &o=+vr for the following values of the am-
plitude:

d@=co dr= —co(&o)dM 1+ g 2J„(ne] ) cos(nM)
n=1

e (m)=(1 —1/m )' (53) X 1+ g ( —1)'2J, (se2)cos[s(M —&o)]
s=1

The curves co(&0) are represented in Fig. 4 for e =0 5,
0.8, and 0.9. Due to the fact that the maximum frequen-

cy is localized on the straight line &o=+m, a phase curve
having a frequency co= —

—,'(i.e., a "subharmonic 2") will

exist in the system provided that the amplitude is larger
than the minimum threshold value: e +ec(2)=0.866.
Similarly, a curve with frequency u= —

—,
' only appears at

a value ec(3)=0.943 of the amplitude e, and co= —
—,
' at

ec(4) =0.968, etc.

(57)

and
+& ~1 ~2 +& [(1(M) ~2(M) ]

e 1 2

e
—im4

—

imago(

&0)[t (M) —to]

In principle, the problem is solved and the expression for
V, is obtained by the evaluation of the integral on the
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vanable M. However, this integral seems very difficult to
estimate, and we found it convenient to use another ap-
proach, which is presented in Sec. II D.

C. G. General features of the phase-space portrait with two waves

The above analytical solution (33), (34), and (38) of the
equations of motion for the two-wave problem is restrict-
ed to "low" values of the amplitudes (e, (vz and ez ( 1).
The hp ase portrait in the general case can nevertheless be
determined by the curves &o(g&, gz) =const [i.e., Eq. (21)
with e3=0]. Due to the secular combination gz

—
vzg&,

invariant curves are oriented mainly along the direction
of the line gz=vzg, in phase space. From now on, we re-
strict ourselves for simplicity to the case of equal frequen-
cies v&= 1 in which the unperturbed Hamiltonian reads

~0(kl kz) kz+kl el »nki —ez stnk .

In this case the phase portrait exhibits a spatial period-
icity of 2' in each of the coordinates g& and gz. In each
ce11 ofof size 2~, invariant curves are periodically repro-
duced, with an increment of 2~ for the corresponding
value of &o from cell to cell along the directions of the
axis gz and —

g&.

An example is given in Fig. 5 for e, =ez=0.9 and in
Fig. 6 for e, =ez = l.2, with g, and gz represented modu-
lo 2~. In this simple case with equal values of e& and ez,
the strai ht line'g ines gz= ft+m+2nsr are obviously invariant
curves corresponding to &o= m+2nvr. —Another re-
markable invariant curve is the S-shaped curve

0=0+2m' passing through the center and the two op-
posite corners.

The salient feature in Figs. 6 and 7 (with e& ) 1 and
ez ) 1) is the appearance of stationary points (elliptic or

yperbolic points), which obviously correspond to sta-

FIG. 6. Same as in Fig. 5 but with e = =1.2,
' '

yl
—e&= . , perIo ically

reproduced in the unit cells. We note the existence of elliptic
points, separatrices, with hyperbolic points aligned on the lines
corresponding to odd values of —&o/~.

tsonary phases of the waves, and thus to resonances of the
guiding centers with these waves (x and y coordinates
moving along straight lines with constant velocities). The
generic phase portrait, corresponding to different values
of the amplitudes, as given, for instance, by e

&

= 1.2 and
ez =2, is shown in Fig. 7, in which we see that the two
hyperbolic points are not located on the same invariant
curve.

From the equations of motion (11) and (12), the sta-
tionary points are found to be located at

g, =+arccos0

e&

1.5

1.0

0.8

0.5

0.8

0.0

0.%

0.2

-0.5

0.0
0.0 0.2 0.'4 0.8 0.8 1.0

-1.0
—1.0 -O. 5 0.0 0.5 1.0 1.5

FIGG. 5. Invariant curves &o=const for v&=1, e& =e&=0.9,
as a function of the two phases g, and g, .

FIG. 7. Generic phase portrait representing invariant curves
o/vr =const for v~ = 1, e

&

= 1.2, and e~ =2. For different
values of the am litu"p 'tudes el and e~, we note the nonconnection
of hyperbolic points.
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and 1.5

—1=+arccos (60)

The linear stability analysis performed around these four
stationary points indicates the presence of elliptic or hy-
perbolic trajectories in the vicinity of these points, ac-
cording to the sign of the quantity e, ez sing sing& (posi-
tive or negative, respectively). Assuming e„ez)0, we
find the following values for the coordinates of the two el-
liptic points E+ and E

1.0

0.5

0.0

g, (E+ ) =bi, gz(E+ ) =sr bz, —

g)(E ) = b„—g, (E ) =m+bz, . (61) -O. 5

where Iz, —:arcsin[1 —
( I /e, ) ]'~ and bz =—arcsin[1—

( I/ez) ]'~ . The values of the Hamiltonian (21) on the
elliptic points are given by -0.5 0.5 1.0 1.5

&o(E+ ) = vr+bz—+b, —cz —c, ,

&0(E ) = —2' —&0(E+ ),
where ci —= (e i

—I)'~z and cz —(ezz—I )'~z.

Similarly, we find, for the two hyperbolic points H+
and H

g, (H+ ) = b, , g(H—+ ) =~ bz, —

g', (H ) =b „g(H ) =~+bz,
with the corresponding values of the Hamiltonian

&0(H+ ) = m+bz b,——c. z+—c, ,

&0(H ) = 2' &0(H—+ ) . —

(62)

D. Perturbation of the approximate solution
in two plane waves

The difticulty of solving analytically in a closed form
(not in a parametric form as previously done) the equa-

In the particular case of equal amplitudes (e, =ez) we
note that &o(H+)=&0(H )= ~, which m—eans that
hyperbolic points are located in this case on the straight
line g'z=g, +sr (see Fig. 6). The phase portrait of this
two-wave case is similar to the one obtained by Kleva
and Drake [6] for their integrable "one-wave" system;
their system represents the guiding-center motion in two
plane waves in the particular case where e2 = —e &,
co = —co, , k = —k, and k+ =k+.

For large and equal amplitudes e, =e2 we obtain mere-
ly confined trajectories in the space gi, gz, along with
"rapid" trajectories making long jumps over several cells
in each period: in Fig. 8 the invariant curves are almost
confined in periodic squares. These squares correspond
to the ones given previously for infinite amplitudes [6].
In the asymptotic case in which the amplitudes are
infinitely large, the Hamiltonian can be reduced to the
Hamiltonian describing a nonlinear pendulum con-
strained to oscillate in a plane rotating with a constant
angular velocity about the vertical line (see, e.g. , Ref.
[23]).

FIG. 8. Same as in Fig. 5, but for "large" amplitudes

e, =e, = 10. We note pathways between trapped regions.

tions of motion for the two-wave system is essential and
can be revealed by the fact that the integral on the vari-
able R [Eq. (30)] cannot be found explicitly in terms of
usual functions or even in terms of elliptic or hyperellip-
tic functions. As a consequence, the evaluation of the
Fourier component V „of the resonant term (see Sec.
II B 3) is also intractable. Thus, in order to give an esti-
mate for the threshold, we have to resort to an approxi-
mate solution of the two-wave system.

For e3=0, the exact invariant of motion leads to the
equation for R [use (30)]:

dR
d7

= e i +e z +2e i e z cosR —(&o—R ) (63)

p =e, +ez+2e, ez cos(&0+p) —p (64)

and, approximating p =2(1—cosp), the equation be-
comes the well-known equation of the nonlinear pendu-
lum:

Now, the condition for the existence of solution in the
real plane (R, r) implies that i/z(R)=(&o —R) should
be less than Pi(R)=ei+ez+2eiez cosR, and thus R
should be limited around the value of &o, due to the fact
that 'Pi(R) is bounded from below by (ei —ez) and from
above by (e, + ez ) .

Drawing the sinusoidal curve Pi(R) independent of
&o in Fig. 9, and the family of parabolas 5'z(R, &o) de-
pending only on &o, we see that R is limited between the
two values corresponding to the intersection points of the
two curves (this corresponds to the finite amplitude of the
oscillations observed in the trajectories in Fig. 5 for in-
stance). This suggests that we make the change of vari-
ables p=R —&o and consider p as a small quantity.
Equation (63) becomes
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y (R) i{
1,2

O. +L,)2

H~ = 0
-3m -7m
10 10

we have @=co(t—to), or @=co,„(s—so), and we get

~O 4K —irn coo(s —so)+ inR (4, I)
V „— dse (72)

where

e'" { ' '=exp(in t&o —8o+2 arcsin[i{ sn(s) ] ] )

in(&0 —00)=e ' '
[ dn( s) +in i~sn(s)]

The integral (72) has been performed in Ref. [22], and we
obtain

I

37K
2

I I

—TL'

2

I

I I

0 7r m
2

I

7r 27'
2

p = —ao+b{)cos(p+80),

with

(65)

a =2 e e

FIG. 9. The intersection of the sinusoidal curve P&(R) with
the family of parabolas P& for the determination of the interval
of variation of R around &o.

/
V

/
=2''/m/e ' =2/co fe (73)

Putting this last expression in the expression for the
threshold as given by (54), we are in a position to com-
pare this theoretical prediction for the onset of stochasti-
city due to overlapping of primary nonlinear resonances,
with the numerical observations of stochastic motion in
the same conditions (see Sec. VI A 5).

The comparison of the approximate frequencies calcu-
lated in this section with the exact ones is presented in
Appendix A.

which is positive in the elliptic case, and

e, e2 siaRo
0O =arctan 1+e,e2 co

bo =4(1+e,e2+2e, e2 cos&o) .

The solution of Eq. (65) is given by

p = —8O+2 arcsin[i{ sn(s, i{)], (66)

b0 —ao &1,
2b0

(67)

where sn is the Jacobi elliptic function of argument ~,
with

III. NUMERICAL STUDY OF THE ONSET OF CHAOS
IN THE THREE-WAVE SYSTEM

In this section, we consider the same class of three-
wave systems as in Sec. IIB, with v3=1 and with the
specific values a' = —P' = 1 (hence y' = 1): a particular
example of a three-wave-vector configuration is given in
Fig. 1.

Numerical simulations have been performed to solve
Eqs. (11) and (12) in this case, with arbitrary amplitudes,
in order to study the inhuence of the third wave. We
have restricted ourselves to the simple case with equal
frequencies (v2=v3=1) and the phase is taken to be
8=0. The equations of motion read

and the time is

s =rambo/2 .

g{= —1 —ez cosg2+e3 cos(g, —f2+~),

g2
= —1+e, cosg, +e 3 cos( g{—(2+r ), (75)

&,= —sin(g, —$2+r)= —sin(R +r) (69)

and we obtain an expression for the approximate value
co

pp
of the frequency of motion

co~&&
—co +bo l2

where

(70)

The inequality ~ & 1 is satisfied in the case e
&
+e2 & 2.

It is now possible to express the Fourier component by
putting in the perturbation term &i of the Hamiltonian
the approximate expression for R. We have

corresponding to A, = —1 in Eqs. (24) and (25). We have
used. a fourth-order Runge-Kutta integration algorithm,
and checked the accuracy by verifying in the two-wave
case the invariance of &o, as given in (58). The figures
presented show the solutions of the equations of motion
using the surface of section method (one point for each
period, with gi and gz modulo 2').

We should note a general symmetry that is apparent in
these stroboscopic sections. The equations of motion
[(58) and (59)] are actually invariant under the transfor-
mation

g', =2' $„$~ =2' —g2,
— (76)

and E (k) is the complete elliptic integral of first kind.
Together with the resonance condition

Ico —+ 1

(71)
This explains why the figures obtained for the stroboscop-
ic sections are roughly unchanged by a rotation of m

around the central point. [The slight difference that can,
however, be observed in various figures between the right
and left parts in the chaotic zones would disappear if we
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had added characteristic points corresponding to nega-
tive values of time (backward trajectories). ]

ing condition between the abscissa g, and the current
time ~ is satisfied:

A. Perturbation of the "elliptic" case: e j,e, & 1 p1+83cos7
cosg— (82)

First of all, let us consider the elliptic case with two
equal amplitudes, i.e., e, =e2 with e &1, in order to
determine the amplitudes of the third wave necessary to
lead to local chaos and to large-scale stochastization of
the trajectories (i.e., difFusion in the whole phase space).

These moving points on the straight line actually general-
ize the two hyperbolic points H+ and H of the unper-
turbed two-wave system, which only appear for e ~ 1 (see
Sec. IV):

1
g, =+arccos —.

e
(83)

Primary I'slands, the S-shaped curve,
and the straight line

For a very low perturbation (e3 =0.01, e =0.9) we ob-
serve in Fig. 2 a set of lines, which are followed in time
by the stroboscopic position of the particle, toward in-
creasing or decreasing values of g, and g2. The effect of
the perturbation can already be observed by the appear-
ance of closed orbits corresponding to the existence of
primary resonances (men=+I ). More generally, we ob-
serve in this Fig. 2 a structure that appears to be generic
for the case e, =e2. the phase space (which is periodic in
the two angles) appears to be divided in two areas well
separated by two characteristic phase curves which are
the most resistent to the perturbation:

(i) an S-shaped curve (corresponding to the unper-
turbed value &0=0) passing through the central point
(0.5,0.5) and the corners (0.0,0.0) and (1.0, 1.0); and

(ii) a straight line $2=/&+0. 5 (corresponding to the un-
perturbed value &o=+~).

The motion along the straight line is analyzed in detail
in a preliminary report [17] and can be described as fol-
lows. Introducing a relative and average phase variables
R =pi

—
$2, and S=g, +$2 is equivalent to rotating the

axis by an angle of m/4, S representing the coordinate
which varies along the direction of the straight line. For
equal values of the two first amplitudes, e& =e2 —=e, the
equations of motion are

S . RS= —2 —2e sin —sin —+2e cos(R +r), (77)
2 2 3

In the three-wave system, however, there do not exist
fixed stationary points on the straight line, but only
points of vanishing velocity: the particle stops, time in-
creases, the condition (82) is no longer satisfied, and the
particle starts again. This particular behavior observed
in the simulations is explained by the formula (82).

By increasing the perturbation (Fig. 3 with e3=0.09,
e=0.9), we observe an enhancement of the size of the
two vortices located to the right and to the left of the
central S-shaped curve; this causes a larger deformation
of the S-shaped curve. In both parts of the phase space
some lines are already destroyed, leading to thin chaotic
zones localized around the separatrices. This structure,
consisting in di6'erent chains of /arge primary islands lo-
cated on both sides of the S-shaped curve (corresponding
to &o=2nm), repeats itself in the full phase space.

By increasing further the perturbation (e3 =0.2 with
e =0.9 in Fig. 10), we observe the appearance of a pair of
other primary islands (symmetrically repeated on both
sides of the straight line). For this value of e, the reso-
nance condition mcoo=+I, with integer values of m (see
Sec. III), is indeed fulfilled for two and only two values of
&0, corresponding to coo= —1 and —0.5, thus implying

0 8

~ S R
R = —2e cos—cos—.

2 2

The straight line

k=ki+~
corresponds to

R= —~,

(78)

(79)

(80)

0. 6

0.4

I ..L
L

~ ~ )
.~

and Eq. (78) ensures that this value is an exact invariant
of the perturbed three-wave problem, whatever the value
of the perturbation e3. The straight line is thus an exact
trajectory for e

&

=e2, whatever the value of e3.
The motion along the straight line is described by

g, = —1+e cosg, —e3 cosr, g2=g, +sr . (81)

0.2

0. 0
0. 0 0. 2

. y' Jg

~ ~

pd-
i+

0.6 O. 8

One clearly sees from Eq. (81) that the velocity of a guid-
ing center on the straight line vanishes when the follow-

FIG. 10. Poincare section over 1000 periods of 16 trajectories
with e& =e2 =0.9 and e3 =0.2.
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the existence of the two primary resonances seen in Fig.
10.

The number (m) of primary resonances is determined
according to the value of e in the range

ec(m)(e (ec(m+I), (84)

where ec(m)—:(1—I/m )'( [see (53)]. For values of e
approaching unity from below, the number of primary is-
lands increases indefinitely: smaller and smaller islands
appear in chains, with separatrices accumulating on both
sides of the straight-line phase curve. For instance, for
e=0.96) ec(3) and e3=0.05, the stroboscopic section
exhibits the different resonances co= 1, —,', and —,'.

Chains of secondary islands can be seen in the Fig. 10,
close to the separatrix of the main resonance m =+1.
We note that their size could be larger than the size of
primary islands corresponding to large values of m when
e is close to unity.

For a perturbation e3 =0.45 (with the amplitude
e =0.9), the chaotic zones become very large [Fig. 11(a)],
with an increased size of the secondary islands. We note
that the straight lines and the S-shaped curve are still
resistant, along with other nearby trajectories, forming
"pathways. "

For a perturbation e3=0.81, the chaotic sea is very
large [Fig. 11(b) with e =0.9], but remains confined at
some distance from the straight lines and from the S-
shaped curve which still correspond to regular motion
(the thin lines in the figures). The separatrix can be
recognized by a small chaotic zone around the hyperbolic
point (g, -0.05, $2-0.65). The motion along this chaot-
ic zone allows a particle to diffuse in the direction S
parallel to the straight line, but does not allow crossing
this line: there is no diffusion in the perpendicular direc-
tion R.

Beside the primary islands and their destroyed separa-
trix, we see in Fig. 12, for e =0.7 (i.e., m =1), several
chains of secondary islands, along with their own des-
troyed separatrices.

2. Two hyperbolic points and the separatrices

~tth a low value of e (e =0.2) stochastization is very
weak and the numerical simulation of particle dynamics
allows us to draw thin curves, even close to a hyperbolic
point and so for relatively high values of the perturba-
tion. Figure 13 (e3 =0.18) represents the typical situation
corresponding to values e3 & e & 1, with four fundamental
curves characteristic of the structure of the phase space:
the straight line, the S-shaped curve, and the two separa-
trices.

Around the straight line and the S-shaped curve, limit-
ed phase areas filled with nonclosed phase curves consti-
tute pathways in which particles circulate. These path-
ways are confined by the separatrices and become tangent
in two hyperbolic points. We note that trajectories can-
not cross the straight line and are confined in the R direc-
tion.

For increasing values of the perturbation e3, the S-
shaped curve deforms itself, with more pronounced maxi-
ma and minima. We observe an important phenomenon:
two hyperbolic points, which remain between the S-
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FICi. 11. {a) Poincare section over 1000 periods of 14 trajec-
tories with e& =e2=0.9 and e3=0.45. There are 10 equally
spaced initial conditions on the axis g, =0, and 4 initial condi-
tions on $, =0.3 at g'2=0. 6, 0.63, 0.65, and 0.7. (b) Same as in
{a),but with el =e, =0.9 and e3 =0.81.

shaped curve and the straight line, come closer and closer
to each other and finally collapse on the point (0,0.5)
when e3 =e. Figure 14 represents different periodic cells,
in order to illustrate the exact structure of the curves
around the point (0,0.5). At this threshold value of the
perturbation (e3 =0.2), the point (0,0.5) is actually a dou-
ble hyperbolic point, connecting the straight line and the
S-shaped curve. In the case of low amplitudes e (1, we
will see that this seems to be the mechanism allowing a
connection between different cells to be built and allow-
ing a chaotic diffusion in the R direction perpendicular to
the straight line.
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FIG. 14. Same as in Fig. 13, but with amplitudes
e&=e2=e3=0.2. The arrows along the separatrices indicate
the collapse of the two hyperbolic points which were separated
for lower values of e3.

FIG. 12. Same as in Fig. 11(a), but with e& =e2=0.7 and

e3 =0.35.

3. Analytical description of the double hyperbolic
point at the threshold e3 =e & 1 in the elliptic case

In terms of the variables

u =g, +r, w =g, (z+rr, — (85)

1.0

the equations of motion (74) and (75) can be written in
the symmetrical form

u =ez cos[u —(w+r)] —e3 cos(w+r),

w = ez cos[(u —( w+ r) ]—e, cos(u r) . —(86)

u =2n~, w =2m~

We clearly see the following: (i) for e3 =ez the quantity
u =2nm. is invariant of the motion. In the phase space
g„gz this means that the vertical sides of the periodic cell
(see Fig. 14) are invariant of the stroboscopic section
(r=0, 1,2 times 2'). (ii) For e, =ez the quantity
w =2m'. is invariant of the motion. In the phase space
g„gz, this means that the straight lines gz=g, +m. +2m'
are invariant of the stroboscopic section. As a conse-
quence, at the threshold e3 =e ( —=e, =ez ), the points

0.8 L';

correspond to fixed points in the stroboscopic section
(0,0.5):

r+2nrr, gz=g, +—sr+2m~, (88)

0.6

0.4

~ ~ /
.r/

vJ

0.2—
\

\'
I ~

r
J

0.00.0
I

0.2 0.4

r

0.6 0.8 1.0

FIG. 13. Poincare section over 1000 periods of 5 trajectories
with e& =e2=0.2 and e3=0. 18. The vortices obtained in the
left- and right-hand sides of the periodic cell are indicated by
letters "L"and "R",respectively.

i.e., a point of periodically incremented phase on the
straight line: during each period, g, and gz are decreased
by 2m. Physically this periodically incremented phase
point, however, corresponds to a stationary point in the
physical space. [The conservation of u =0 means indeed
k

&
r =0, i.e., the only particle motion is perpendicular to

k&. On the other hand, the conservation of m =0 means
(k& —kz) r=const, i.e., that the only particle motion is
perpendicular to k3. For a general wave-vector
configuration in which k&.k3%0, we easily see that this
forbids any motion in the plane. The physical meaning of
the double hyperbolic point in (0,0.5) for e3 =e thus corre
sponds to a axed point r=const in the physical space
(x,y).]

As seen in Fig. 14, the straight line and the S-shaped
curve are connected on this hyperbolic point. A simula-
tion of the trajectory starting in the center of the S-
shaped curve at the threshold e3=e indicates that the
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4. Large perturbation e3 )e: stochastic network
and large-scale stochasticity

For higher values of e3 )e, we can see on Fig. 15(a)
that the double hyperbolic point (the "crossing" between
the straight line and the S-shaped curve) is split in both
directions of larger and smaller values of g, (e =0.6,
e3 =0.8). A more complete picture is given in Fig. 15(b)
where we have repeated the unit cell. One can see that
the S-shaped curve and the straight line become stochas-
tized and go through these hyperbolic points. This thin
chaotic zone actually forms an extended network which
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point is approaching the hyperbolic point in time with a
smaller and smaller velocity.

allows a trajectory to go over the entire phase space, but
only on this restricted stochastic structure (analogous to
a stochastic web [19]). It is important to note that this
stochastic network is localized in the regions of degenera-
cy of the unperturbed system Bcoo/&So=0, which are
indeed the S-shaped curve and the straight line. We note
that in the present system a stochastic web with an
infinite extension in phase space is obtained by perturbing
a nonlinear Hamiltonian in its regions of degeneracy.

The whole importance of the collapse observed of the
two hyperbolic points at the threshold value of the per-
turbation e3=e (as described in Sec. IIIA2) consists in
allowing the transformation of the stochastic zone of Fig.
11(b) into an infinite network in both directions S and R
[Fig. 15(b)], i.e., in allowing two nonvanishing com-
ponents of the asymptotic (tensorial) diffusion coefficient.
We note that there still exist invariant curves, surround-
ing localized chaotic zones which remain confined around
primary islands, thus with no asymptotic diftusion. The
large-scale stochasticity is obtained only along the chaot-
ic network.

Even for a perturbation e3 =0.85 with e =0.6, one tra-
jectory fills a chaotic zone, which remains in one half-
space. But on a longer period of time (4000 periods) Fig.
16 indicates that no clear separation persists between the
two half spaces The .threshold for large scale stoch-asticity
in the whole phase space seems to be reached (for e =0.6)
around a perturbation e3 =0.85, beyond the collapse of
the two hyperbolic points at e3=e. For a larger value of
the amplitude (e =0.8), invariant curves still persist for a
perturbation e3=0.9: the threshold for large-scale sto-
chasticity at an amplitude of e =0.8 is thus beyond
e3 )0.9.
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FIG. 15. (a) Poincare section over 1000 periods of a sing e
trajectory with e, =e2 =0.6 and e, =0.8. The initial condition
is g& =0.25, $2=0.75, a point on the straight line $2=/, + '+n. —

Sarne as in (a) repeated over four unit cells, showing the spacial
pattern of the stochastic web.

FIG. 16. Poincare section over 4000 periods with

e, =e2 =0.6 and e3 =0.85 with five initial conditions. One
(0.5,0.5) is on the central S-shaped curve, and four others in the
different zones of Fig. 15 (a): (0.025,0.6), (0.975,0.4), (0.2,0.6),
and (0.8,0.4).
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For a larger value of the perturbation (e =0.9, e3 = 1),
Fig. 17(a) represents a solution starting from the straight
line: the S-shaped curve still exists and is connected to
the straight line by the chaotic zone. Even for a higher
precision (1000 time steps per period), the chaotic zone
exists and remains of finite width on the S-shaped curve.
Starting on the S-shaped curve, however, and for a
longer period of time, we observe that the characteristic
point fills a large chaotic sea around the left vortex [Fig.
17(b) with 10000 periods represented]. We conclude

that, for the amplitude e =0.9, the threshold for filling
the whole phase space (large-scale stochasticity) can only
be reached with a larger perturbation of e3 & 1.

5. Theoretical values for resonance overlapping

We analyze here different chaotic zones observed in the
simulations, and compare the value of the perturbation e3
with the analytical values deduced from preceding sec-
tions. Let us consider the large primary island in Fig. 12
corresponding to m =1 [e =0.7 (ec(m =2)]. This
means that &@=+1 are the only primary islands in the
system. The position of the fixed point can be evaluated
to be roughly g, /2m=0. 28 and $2/2m. =0.45. For this
point the unperturbed values of the Hamiltonian (58) and
frequency (41) and (48) are &o= —0.314 and
coo= —1.002. For the island (co= —1) the threshold for
resonance overlapping as given by (54) is predicted to be

0.6
e3(e =0.7;to= —1)~0.69 . (89)
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This value corresponds rather precisely to the collapse of
the hyperbolic points, which occurs for e3=0.7, as de-
scribed in Secs. VI A 2 and VI A 3.

Another example can be taken in Fig. 10
[e3 =0.2, e =0.9)ec(m =2)], corresponding to m =2.
The fixed elliptic point of the primary resonance co- —1

can be evaluated to be roughly g, /2m. =O. 3, g2/2m. =O. 55.
On this point we have &o= —0.342, too= —1.012. For
this island (co- —1) the threshold is predicted to be
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FIG. 17. (a) Poincare section over 7000 periods with

e, =e2 =0.9 and e, = 1.0 of a single trajectory with initial condi-
tion (0.25,0.75) on the straight line gz=g, + —'+n. (h) Poincare
section over 10000 periods with e& =e2=0.9 and e3=1.0 of a
single trajectory with initial condition (0.5,0.5) on the central
S-shaped curve.

e, (e=0.9;co- —
—,') 0.094 . (91)

This can possibly be explained as due to the overlapping
between m = —

—,
' and +—,

' modes, which occurs even for
very low amplitudes of the perturbation.

These results show that the values obtained from Eq.
(53) for the threshold of resonance overlapping can be ex-
plained according to the number, nature, and sizes of the
primary resonances present in the system for this value of
the amplitude e. Of course, secondary islands can also be
important [as seen in Figs. 10 and 11(a)] and could be re-
sponsible for overlapping between primary and secondary
resonances of the same size. On the other hand, the
threshold for large-scale stochasticity in the whole phase

This value is clearly much smaller than the value e3 =0.9
where the collapse of hyperbolic points occurs. This
lowering of the threshold for e =0.9 can be understood
from the appearance at this value of the amplitude e, of
the other primary resonance m =2 (co=+—,

' ), and is due
to the overlapping between I=1 and 2 modes. The pre-
dicted threshold gives an approximate value of e3, which
corresponds indeed to an intermediate case between Figs.
10 and 11(a), as expected.

On the other hand, if we search for the threshold of
overlapping of the island m =2 in Fig. 10, we consider
g&/2' =0.06 and gz/2m =0.48 and find &o= —0.491 and
coo= —0.476. The threshold obtained for this m =2
mode is found to be very low:
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space depends on more global processes like the destruc-
tion of the S-shaped curve, as discussed in Sec. III B.

B. Perturbation of the hyperbolic case e &, e2 & 1:
breaking the S-shaped curve
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0.00.0 0.2 0.4 0.6 0.8 1.0

FIG. 18. Poincare section over 1000 periods with

e, =e&=4.0 and e3=2.0 of two trajectories with initial condi-
tions (0.5,0.5) on the S-shaped curve and (0.25,0.75) on the
straight line.

By perturbing here also an equal-amplitude two-wave
system, we ensure that the perturbation of the trajectory
&0=+m remains a straight line. We note on Fig. 18 that
the S-shaped curve still exists for e =4 with e3 =2. [The
chaotic sea in the right part represents a single trajectory
initiated on the straight line. This is not a numerical er-
ror: the straight line can easily be proved to be unstable
in some specific points, at some specific times given by
Eq. (82) (see Ref. [17]).] For e3=2.5, the chaotic sea
comes closer to the S-shaped curve which still exists.
But for e3 =2.80 large-scale stochasticity is reached even
when starting from the S-shaped curve: the S-shaped
curve has thus been destroyed.

On Fig. 19(a) we observe an interesting phenomenon:
for an intermediate value e3=2.65 we observe an en-
largement of the S-shaped curve in the region of low
values of g, . This enlargement is probably responsible for
the filling of the left half-space at this value of the pertur-
bation. A longer run would probably fill the whole space.
In other words, for values of the perturbation e3 around
this transition value, the S-shaped curve has been re-
placed by a permeable structure. An enlarged picture of
this region is represented on Fig. 19(b) for 2 particles ini-
tially located on the S-shaped curve: for a few hundred
periods the characteristic point describes some structure

around the S-shaped curve, but finally the point escapes
into the chaotic sea.

A more detailed picture is drawn in Fig. 19(c) by tak-
ing 10 initial values on a line across this zone. Obviously
the permeable structure replacing the S-shaped curve in-
volves holes (islets) and sets of lines in this chaotic zone.
This structure is probably the result (for an increasing
value of the perturbation e3) of the overlapping of secon-
dary islets from both sides of the previous S-shaped
curve.

We conclude that for this value of the amplitude e =4,
the S-shaped curve is thus destroyed for a perturbation
amplitude around e3=2.65 and is replaced by a perme-
able structure which is reminiscent of Cantori [24], which
usually results from the perturbation of KAM surfaces.
This mechanism of transition toward large-scale stochas-
ticity actually occurs at a value of the perturbation e3 & e,
i.e., before any collapse of hyperbolic points (as the one
which has been found to occur in the elliptic case e & 1

for a perturbation amplitude e3 =e).
We report in Appendix B the results of the simulations

with different amplitudes for the two basic waves
(e, Wez). Although the straight-line trajectories are de-
formed in this case, the topology of the phase-space por-
trait is globally the same.

C. Summary

The numerical simulations of the dynamics of guiding
centers has allowed us to elucidate some mechanisms
governing the appearance of chaos in the three-wave sys-
tem, and to check some predictions of the analytical
theory.

The general structure of the phase-space portrait with
equal amplitudes of the first two waves (e, =e2 =—e) is

dominated by the existence of two oblique straight lines
separated by a S-shaped curve. The motion of a guiding
center along the straight line is observed to be in agree-
ment with the analytical formulas (81,82).

In a typical case (Fig. 13) trapped trajectories are ob-
served on each side of the S-shaped curve, with separa-
trices and hyperbolic points, and open trajectories are
found along pathways on both sides of the straight lines.

Concerning the transition to large-scale diffusion in the
three-wave system we reach the following conclusion. By
perturbing an equal-amplitude two-wave system, we ob-
serve two different mechanisms leading to large-scale sto-
chasticity.

(i) Ivor low amplitudes (elliptic case: e (1) the perturb-
ing wave is responsible for the appearance of elliptic
points corresponding to fundamental modes co=+1, lo-
cated on both sides of the S-shaped curve. With higher
and higher values of the amplitude e, other primary is-
land chains appear in the form of subharmonics
co=+I/ mabove threshold values ec(m) of the ampli-
tude, in agreement with the analytic formula (53). The
localized chaotic zones observed can be explained by the
overlapping between such islands, which occurs for
values of the perturbation amplitude e3 which are in
agreement with the prediction (54).

When the value of the perturbation e3 reaches the
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value e, the structure of the S-shaped curve becomes an-
gular: the two hyperbolic points collapse on the straight
line, allowing a direct connection with the S-shaped
curve on a double hyperbolic point (Fig. 14), as predicted
analytically in Sec. IIIA3. Beyond this threshold, for
e3 )e, we observe a notable feature of the present three-
wave system: the appearance of an extended stochastic

web in the whole phase space, obtained by perturbation of
a nonlinear system, but found only along the degeneracy
regions (the straight line and the S-shaped curve).

The appearance of this stochastic network of chaotic
trajectories is very important, as it allows diffusion in
phase space. This process takes place not only inside lo-
calized chaotic zones (vanishing asymptotic diffusion), or
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FIG-. 19. (a) Poincare section over 1000 periods with e =e3 =4.0 and e3 =2.65 of a single trajectory with initial condition (0.5,0.5)
on the S-shaped curve. (b) Part of the Poincare section over 2000 periods with e& =e2 =4.0 and e3 =2.65 of two trajectories with ini-
tial conditions (0.0,0.0), (0.5,0.5) on the S-shaped curve. (c) Part of the Poincare section over 1000 periods with e& =e&=4.0 and
e3 =2.65 of 16 trajectories with initial conditions gz=0. 822 and 16 equally spaced abscissa between 0.125 and 0.140 around the S-
shaped curve.
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along pathways parallel to the straight lines (anisotropic
diffusion tensory with only parallel nonzero element), but
also perpendicularly to these straight lines, i.e., in the
whole phase space, yielding a nonvanishing asymptotic
diffusion tensor.

(ii) For higher amplitudes (e ) 1) we did not observe
any stochastic web in the same sense. Large scale sto-
chasticity is reached for a "lower" perturbation ampli-
tude e3 (e at which the central S-shaped curve is re-
placed by a permeable structure, reminiscent of Cantori.

IV. CONCLUSIONS

The EXB guiding-center motion of particles in the
field of two or three electrostatic waves propagating in a
plane perpendicular to a uniform magnetic field has been
investigated. We have shown that the motion in the case
of two waves is completely integrable since the corre-
sponding Hamiltonian has the form of a generalized
Kepler equation, which can be solved exactly in the ellip-
tic case.
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FIT+. 20. (a) Poincare section over 1000 periods with e& = 1.2, e2 =2.0, and e, =0. 1 of five trajectories with initial conditions: one
on the S-shaped curve (0.5,0.5), the others at (0.0,0.5), (0.45,0.5), (0.0,0.68), and (0.0,0.32). (b) Poincare section over 1000 periods with

e, = 1.2, e2 =2.0, and e3 =0.1 of a single trajectory with initial conditions (0.0,0.68) ~ The chaotic zone originates from the perturba-
tion of the hyperbolic point H+ of the two-wave problem. (c) Same as in (b), but with initial condition (0.0,0.4). The chaotic zone
originates from the perturbation of the hyperbolic point H of the two-wave problem.
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&p/2~ COp CO ap p

TABLE I. Precision of the approximate frequencies for

e& =e2 =0.3.
APPENDIX 8:

GENERAI. IZATION OF THE RESISTANT
STRAIGHT LINE FOR e

& We2

0.1 or 0.9
0.2 or 0.8
0.3 or 0.7
0.4 or 0.6

0.5

—1.035 542 14
—1.016 605 55
—0.989 906 97
—0.964 696 00
—0.953 939 04

—1.016 107 80
—1.000 341 02
—0.979 466 98
—0.961 256 03
—0.953 939 04

1.88%
1.60%
1.05%
0.36%
0.00%

We also consider here the more general case of two
basic waves with different amplitudes e, &e2 in which no
straight-line trajectory can exist anymore. The topology,
however, remains the same, and we see in Fig. 20(a) that

In the hyperbolic case, corresponding to strong ampli-
tude waves, an approximate solution (which reduces to
the motion of a charged particle in two waves without
magnetic field) has been deduced, from which an approxi-
mate determination of the threshold for onset of stochas-
ticity can be derived in the presence of a third perturbing
wave. In this simple system describing the onset of
chaotic guiding center motion in three electrostatic plane
waves, we have identified and checked numerically a
variety of elementary processes (collapse of hyperbolic
points, island overlapping, subharmonics, stochastic web,
etc. ) and threshold values predicted by the analytical
treatment.
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APPENDIX A:
COMPARISON OF THE APPROXIMATE
FREQUENCIES WITH THE EXACT ONES
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FIG. 21. (a) Same as in Fig. 20(a), but for a perturbation
e3=1.0. (b) Same as in Fig. 20(a), but for a perturbation
e3 =1.2.
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the straight line is actually replaced (for &o=+rr, as in
the unperturbed problem) by another curve which ap-
pears to be also resistant to the perturbation.

This curve can be seen to pass through g, = —,
' and

and to go down through two "bubbles. " The
chaotic zone inside the right bubble actually comes from
the perturbation of the hyperbolic point H+ of the un-

perturbed problem; this chaotic zone extends along the
previous unperturbed separatrix [see Fig. 20(b) where the
chaotic zone originated from the point g &

=0, gz =0.68].
In a symmetric way, the left bubble corresponds to the
unperturbed hyperbolic point H and extends along its

separatrix [see in Fig. 20(c) where the chaotic zone ori-
ginated from the point g't =Q, g'~ =Q. 32]

We note that even a small perturbation e3 =0. 1 in the
case e& =1.2, ez =2 gives a large chaotic sea, approach-
ing the generalization of the straight line. For a higher
value of the perturbation e3 = 1, this curve has been des-
troyed [see Fig. 21(a)] but the S-shaped curve is still
resistent. Finally, for e3=1.2, a full chaotic sea is ob-
tained [Fig.. 21(b)]; the S-shaped curve has also been des-
troyed, probably by a mechanism involving a Cantori-like
structure around the threshold, as observed in Fig. 19(c).
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