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In this paper we describe small-amplitude nonlinear plasma wave solutions to the one-dimensional
Vlasov-Maxwell equations. The methods used to construct these waves rely on the decomposition of the
distribution functions into odd and even parts and on using BGK forms to represent these pairs of func-
tions; further manipulations using dimensional-reduction techniques from nonlinear functional analysis
reduce the problem exactly to an algebraic equation that can be analyzed using bifurcation theory. Us-
ing these methods, we first develop a sufficient condition for waves of a given phase velocity to exist arbi-
trarily close to a given spatially uniform Vlasov equilibrium. Along with this condition we derive
sufficient analytical information for the construction of approximate expressions for the electric poten-
tial and distribution functions, with exact knowlege of the asymptotic behavior of the error terms. These
results have a very surprising physical implication: the Landau damping of small-amplitude waves is not
inevitable. Instead, there exist plasma waves that trap particles even at arbitrarily small amplitude and

do not damp.

I. INTRODUCTION

One of the central efforts in the study of collisionless
plasmas has traditionally been the analysis of plasma
waves, and especially plasma waves that are small-
amplitude perturbations of one of the infinity of spatially
uniform equilibria which collisionless plasmas possess.
Much of our basic intuition about such plasmas is based
on the properties of these small-amplitude waves, and
they have provided the foundation on which much of the
theory of collisionless plasmas is built. Even the non-
linear theories of plasma waves are based on the results of
the linear analysis: we use the dispersion relations from
linear theory to construct nonlinear dispersive wave
equations; we characterize the nonlinear interactions of
waves described by the linear theory; we try to model the
effect of a broad spectrum of linear waves on the form of
the spatially uniform plasma equilibria; we build Landau
damping into theories of plasma turbulence; or we use
the linear analysis to infer the stability of a plasma de-
vice.

Since first posed by Vlasov [1], the problem of small-
amplitude waves has been extensively studied by lineariz-
ing the Vlasov-Maxwell equations. Despite extensive
analysis even of just the one-dimensional problem
[1-12], the basic conclusions of the linear analysis have
not changed since the seminal paper of Landau [2] and
the following developments of Van Kampen [3], Case [4],
Jackson [5], and Backus [6]. When carefully reviewed,
the analysis of the linearized equations that these authors
have developed tells us that the time evolution of the
electric field generated by a smooth initial perturbation
(in fact analytic in a sufficiently wide strip in complex ve-
locity) to a smooth spatially uniform equilibrium de-
scribed by the functions F, will be governed by the Lan-
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dau dispersion relation, which is the analytic continua-
tion of
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from Re(A)>0 to Re(A)=0. From this dispersion rela-
tion the phenomena of Landau damping—the exponen-
tial decay of the electric field of a perturbation to certain
plasma equilibria—can be derived. It is also clear from
this classical analysis, although seldom emphasized, that
initial distributions that are not so smooth (although not
necessarily discontinuous) may lead to electric-field decay
at rates much slower than the exponential rates of Lan-
dau damping. This was recognized by Van Kampen [3],
and Weitzner [7] actually constructed an explicit example
of a perturbation to the Maxwellian which gave rise to
electric-field decay like ¢ 3. Van Kampen’s analysis, and
also Case’s [4], was in fact based on the observation that
very singular distribution functions (in fact, not functions
at all but first-order distributions in the sense of
Schwartz) would satisfy the linearized equations with
periodic spatial and temporal dependence for the electric
field, but without Landau damping.

It is interesting to note that in all of this analysis very
little comment has been made on what exactly ‘“‘small am-
plitude” means. Does it mean small electric potential?
Does it mean distribution functions for wave and equilib-
rium that are close? Close how? The results that we de-
scribe here are based on exact nonlinear analysis of the
equations using an old idea from plasma physics and
some methods from modern nonlinear functional
analysis; the solutions that have resulted from this mar-
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riage raise some interesting new questions concerning the
meaning of small amplitude, the relevance of the linear-
ized equations to nonlinear plasmas, and the validity of
conclusions drawn from their analysis.

II. THE BASIC MODEL

In this paper we shall be concerned with a plasma that
is sufficiently hot and rarefied to admit the Vlasov-
Maxwell description, and we shall further only consider
the one-dimensional form of the Vlasov-Maxwell equa-
tions, which are appropriate for longitudinal waves along
a magnetic field. The density of a species a near a posi-
tion x and velocity u at time ¢ in an N-component plasma
is denoted by f,(x,u,t), while the self-consistent electric
field in the x direction, which the plasma particles gen-
erate, is denoted by E(x,t). These various quantities are
then related by the one-dimensional Vlasov-Maxwell
equations
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Here m, and g, denote the mass and charge of particles
of species a.

If we search for spatially uniform solutions of these
equations we are led to
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Differentiating Eq. (7) with respect to time and evaluating
the resulting integral using Eq. (5) yields
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where the integral has been evaluated by parts under the
hypothesis that f,(u,t)—0 as |u|— . From Eq. (5) we
can easily see that n,= f fo(u,t)du is a constant and so
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where E is the initial electric field and J, is the initial
current. The frequency o, is defined by
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and is well known from linearized fluid descriptions of
the plasma, but in fact appears here in exact solutions to
the nonlinear kinetic equations. In the case of a single-
plasma species (N=1) and a fixed neutralizing back-
ground [modeled by the addition of a constant to the
right-hand side of Eq. (3)] it can be shown more generally
that the spatial average of the electric field oscillates with
the plasma frequency w, [13,14], but this does not hold
for the general multispecies case considered here.

Using Eq. (9) for the electric field in the Vlasov equa-
tion, Eq. (5), we find
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where F,(u) is an arbitrary initial distribution function.
Substituting this into Gauss’s law, Eq. (6), implies that
the functions F, are not quite arbitrary, but are con-
strained by the zero-net-charge relation
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Finally, while the initial electric field is arbitrary, the ini-
tial current must be calculated from the initial distribu-
tion functions; substituting into Eq. (7) we see that
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Thus we can completely solve the spatially uniform prob-
lem and discover that the spatially uniform solutions of
the one-dimensional Vlasov-Maxwell equations simply
describe plasma oscillations.

There are some special cases of these spatially uniform
oscillations that deserve our special attention: the Vlasov
equilibria. When E;=0 and J,=0 we see that the elec-
tric field becomes zero for all time and the distribution
functions become independent of time. It is the dynamics
near these spatially uniform equilibria that the linear
theory attempts to describe, and which we shall study us-
ing nonlinear methods.

Before proceeding, one remark is called for concerning
the Vlasov equilibria: usually the spatially uniform
equilibria are described as being arbitrary save for satis-
faction of the zero-net-charge constraint; here we require
not only zero net charge but zero current as well. The
difference comes about because we choose to solve the
one-dimensional Vlasov-Maxwell equations rather than
the one-dimensional Vlasov-Poisson equations, which are
frequently considered in other works. These two systems
are by no means directly equivalent [15,16], indeed the
connection between them is rather subtle [16].

This development of the Vlasov equilibria brings us to
the starting point for the linear theory. We have no need
to review the details of this theory; they are well known.
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But we should like to make one observation concerning
the linearization; to produce a linearized description of
the plasma we would write f,=F,+g, where F, de-
scribes the spatially uniform Vlasov equilibrium in whose
neighborhood we are interested. Introducing this into
the Vlasov equation for f, yields

0g,(x,u,t) + 0g,(x,u,t) 4 9. E( t)dFa(u)
ot " ax m, * du
« 0g,(x,u,t)
+de g, BBl g e
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The linear analysis would now proceed with the assump-
tion that the nonlinear plasma-field interaction term is
small compared to the linear plasma-field interaction
term, namely

og,(x,u,t)
ou

dF,,
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Using this assertion to justify the omission of the non-
linear term then produces the linear equations. Thus, in
order to arrive at the linear description it is necessary to
assume that the velocity gradient of the deviation g, is
small compared to the velocity gradient of the equilibri-
um F,. This assumption—which must in some way con-
stitute a part of the meaning of “small amplitude” as far
as the linear theory is concerned —is certainly not neces-
sary in order to ensure a small electric potential or in or-
der to ensure that the deviation g, itself is small. So, to
derive the linear equations a rather strong assumption
must in fact be made concerning the deviations from the
Vlasov equilibrium; we shall show presently that it is this
assumption which leads to the relative scarcity of un-
damped waves in the linear theory.

It is straightforward to find the undamped periodic
traveling-wave solutions with phase velocity V of the
linearized equations; these solutions are sums, possibly
infinite, over wave numbers k of Van Kampen-Case
modes [3,4]

E, F (u)
ga(xyu’t’k)= 9a _kP =

m, ik u—V
+C§8(u_V) eik(X“Vt) R (16)
E(x,t,k)=Ee*>=") (17)

where P denotes the principle-value distribution and the
nonunique constants E; and C¥ are related by
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While these expressions do provide a traveling-wave solu-
tion of the linear equations in a mathematical sense,
physically they must be suspect. The 2w /k-periodic
traveling-wave distribution function described by these
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solutions would be a linear superposition

folx,u,t)=F (u)+ § A, 8. x,ut,mk), (19)

m=1

where A4,, are some mode amplitudes. But this function
is neither everywhere positive nor absolutely integrable
over velocity. Indeed, it does not even assign a finite
number of particles to finite regions of phase space—in
any range of particle velocities including and to one
side of the phase velocity V there are an infinite number
of particles. Furthermore, the deviation
321 A,8.(x,u,t,mk) is not small in a mean (L' or ab-
solutely integrable) sense for any nonzero value of ampli-
tudes 4,,. It is small only in less physically motivated
senses, such as the weak topology of the space of first-
order tempered distributions, meaning that for every con-
tinuously differentiable function Y(u) with at worst poly-
nomial growth in u

7 Y o, u,0) = F oy (w)du —0 (20)
as 4, —0. But physically meaningful quantities such as
wa[fa(x,u,t)—Fa(u)]du 21

cannot be assigned any consistent and finite value, and do
not tend to zero with the amplitudes A4,,. While the
presence of the principle value in g, (x,u,t,k) provides a
prescription for integrating across the singularity at the
phase velocity u =V, it does so by canceling a positive
infinity of particles on one side of the phase velocity with
a negative infinity of particles on the other side. Given
these rather nonphysical properties, it is rather difficult
to establish that these singular traveling-wave solutions
in fact represent any kind of approximation to an actual
solution of the correct original nonlinear equations.

The trend of the linear analysis is clear: for equilibri-
um distribution functions F, which yield no roots of the
Landau dispersion relation on the imaginary axis or in
the right half plane, the electric field predicted by the
linear equations damps exponentially if the initial distri-
bution function is analytic in a wide strip in complex ve-
locity [2,3], damps at a slower polynomial rate if the dis-
tribution function is smooth but not analytic in a strip
[7], and does not damp only if the distribution function is
unphysically singular [3,4]. The primary goal of this pa-
per is the construction of smooth but undamped small-
amplitude plasma wave solutions of the original non-
linear equations. The existence of such solutions, which
will be smooth but not analytic in velocity, does not im-
ply that Landau’s solution of the linear equations is in-
correct; instead, it supports our contention that the linear
equations do not contain a physically complete picture of
small-amplitude waves, and that there are indeed physi-
cally realizable undamped plasma waves of arbitrarily
small amplitude.

III. AN INADEQUACY OF THE LINEAR THEORY

In this section we shall show that the linear theory is,
in general, incapable of describing undamped waves of
any amplitude, no matter how small or large, with
smooth distribution functions. The implication is that
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the only undamped waves that the linear theory can de-
scribe are those with pathological distribution functions,
such as the Van Kampen and Case solutions mentioned
above, or those few corresponding to eigenvalues embed-
ded in the Van Kampen-Case continuum.

To demonstrate this inadequacy of the linear theory we
must briefly examine the equations describing a
traveling-wave solution: suppose that the particle distri-
bution functions f,(x,u,t), a=1,2,...,N, and electric
field E(x,t) are C! (that is, have continuous first deriva-
tives) and represent traveling-wave solutions that satisfy
the one-dimensional Vlasov-Maxwell equations,
Egs. (2)-(4). Then there are functions f,(x,v),
a=1,2,...,N, and E(y) that represent the distributions
and field in the wave frame, and a phase velocity ¥, such
that

folx,u,t)=f (x—=Vt,u—V), (22)
E(x,t)=E(x—Vt) . (23)
Since, by hypothesis, the functions f,(x,u,t),

a=1,2,...,N, and E(x,t) satisfy Eqgs. (2)-(4), we can
substitute these expressions into those equations to find

afa(X,V) qa = afa(X)V) _
Y + -~ EQn—5—=0, (24)
E N 0 ~
X 47 S g, [ Falxovidv, 25)
dx a=1 -
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Thus, in the wave frame the traveling wave simply
represents a stationary solution of the one-dimensional
Vlasov-Maxwell equations.

We now want to show that any undamped periodic
traveling-wave solution of the one-dimensional Vlasov-
Maxwell equation has a qualitative property that is at
odds with the assumptions of the linearized theory.
Specifically, we wish to show that for any such solution
the distribution functions must satisfy

of ,(x,V,t)
L_zo , Q7
ou

where V is the phase velocity of the wave. If we can
show that this is the case then the assumption of the
linearization, namely Eq. (15), will be violated because
Eq. (27) implies that
9gq(x,V,t) | |dF,(V)

ou N du

(28)

To show that undamped traveling waves have a zero
velocity gradient at the wave phase velocity, that is, that
Eq. (27) holds, we need only show that the function f «
corresponding to the distribution in the wave frame
satisfies

3f4(x,0)
.IX_=O

3 (29)
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But Eq. (24) makes it clear that this is true for any point
x at which E(y)0, and so we must only verify Eq. (29)
at those points ¥ where E(y)=0. The wave is interesting
only if there is some point Y, where E(y,)#0 and we
therefore assume this to be the case. Those points where
E(x)=0 are then of two classes: (a) either every neigh-
borhood of ¥ contains a point x, where E ()70 or else
(b) there is a closed interval about y on which E is identi-
cally zero (the interval must be closed because E is con-
tinuous). At points of the first sort we know that
3f o /3V(y,0=0 because, by hypothesis, 37, /3v is con-
tinuous and this velocity gradient is zero at some point in
every neighborhood of . To treat a point of the second
class we note that on a closed interval where E is zero the
distribution function must satisfy

7 (X, v)
UL O

o (30)
The continuity of 3f, /3y then tells us that
of(x,v)
_f_XY_ =0 (31)
ax

on any such interval, and this implies that £, must in fact
be independent of ) over any interval of Y where
E(x)=0; it follows that f,(x,v)=f,(Xs,v), where x, is
any boundary point of the interval (which is guaranteed
to exist because we have assumed that E is nonzero some-
where). Since, by definition, a boundary point Y, is of
class (a) [in every neighborhood of it there is a point Y at
which E(x,)#0] we know that

0= afa(Xbio) _ afa(X)O)
B v v

for every point y in the interval over which E is zero.
This completes all possible cases and Eq. (29) is verified.

Hence the linear theory, which requires that Eq. (15)
be satisfied, is inconsistent with undamped traveling plas-
ma waves with distribution functions that are smooth in
velocity, since they must satisfy Eq. (27). The paucity of
physically realistic traveling-wave solutions with constant
amplitude—neither damped nor growing—in the linear
theory is therefore no surprise. However, this scarcity
need not reflect a physical truth; instead it may only
represent a mathematical effect of a crude approximation.
This article suggests that this is indeed the case.

(32)

IV. A REQUIREMENT FOR THE EXISTENCE
OF UNDAMPED PERIODIC WAVES

While in this paper we shall show that there are many
periodic small-amplitude traveling-wave solutions of the
one-dimensional Vlasov-Maxwell equations, it is not true
that such waves can have an arbitrary phase velocity.
Suppose that we consider a fixed Vlasov equilibrium de-
scribed by the spatially uniform distribution functions
F,. We shall examine traveling waves with a phase ve-
locity ¥V that are small perturbations of this equilibrium,
and see what conclusion we can draw about the minimum
“amplitude” of these waves.

A traveling-wave solution with phase velocity V is de-
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scribed by distributions f,(x,u,t )=fa(x —Vt,u—V)
and a field E(x,t)=E(x —Vt), and we are interested in
solutions of this form when the electric field is small and
the distribution functions f, are close to F, in some
sense. By transforming into the wave frame we see that
we are interested in functions f,(x,v) and E(y), which
satisfy Egs. (24)—(26), and for which E(y) is small and
Fa(x,v) is close to

F,(v)=F (v+V), (33)

the Vlasov equilibrium distribution function for species
shifted into the wave frame.

We now introduce the even part of the wave distribu-
tion function in the wave frame f¢, defined by

Fav)=3Fax,v)+Falx, —v)] . (34)
Using Egs. (24)-(26) we see that
LNV | da TSV
v o + m, E(x) 3y =0, (35)
E N o0 ~
di—;gf’=4ﬁ S 4 [ Falevidy. (36)
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It is from these equations relating the even part of the
distribution functions to the electric field that we shall
derive a necessary condition for the existence of plasma
waves of arbitrarily small amplitudes.

To proceed, however, we shall need some hypotheses
on the distribution functions f,. In a previous paper [17]
we have presented our sharpest result in some detail, so
in this paper we shall describe a slightly less refined, and
therefore less complicated, set of hypotheses which will
allow us to derive the desired result more easily.
Specifically, suppose that the functions f¢ are C? (twice
continuously differentiable) and that 9f, /9y is bounded
by an integrable function of v uniformly in ). It then fol-

lows (from the Lebesgue dominated convergence
theorem) that
0 a ’
f Fabewidv=[" /e ;( dv (37)
and therefore, from Eq. (36), we have that
ZE(X) © afa()(’v)
=4 ——dv. (38)
d )( 2 f v
Now from Eq. (35) we see that
afe (x,v) o ~ afs(x,v)
_.L_z(_:__q_E(X)i_,.._X_ (39)

ax m, v ov

for v#0. But since 9f¢ /dvl(y,0=0 [since f§(x,v) is
even in v] and we have assumed that f is C?, we in fact
can conclude that
af a(X,v) 9, .  falx,0)

1' —_— = ———E _— 40

AT oy m, P05 40
is well defined. Therefore the electric field and distribu-
tion functions are related by
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Let us now introduce a decomposition similar to that
used in the linear theory; namely, let us write

fo=F+g;, where F(v)=1[F,(v)+F,(—v)] is the
symmetric part of the equilibrium distribution in the
wave frame. Introducing this into Eq. (41) yields

d’E

==+ E(x)+y(x)E(x)=0, (42)
dx?
where we have defined
N 2 . 1 dF (1/)
K*=4 ik 18V gy (43)
a= 1 m —oo V
and
N gg ro g (x,v)
=ar 3 22 - [ 12 BV . (44)
—0 ¥ dv

a= 1

Note that the integrands appearing in these integrals are
not singular because only the even parts of the distribu-
tion functions are being used.

Suppose that E(y) is periodic with wavelength A and
satisfies Eq. (42); multiplying this equation by E(y) and
integrating from y =0 to A yields, after an integration by
parts and using the periodicity,

% ldE

iy | = f [ +yOONEX) Pdy , (45)
which implies that «?>+y(x)>0 for some value of y.
Therefore we know that in order for there to be a period-
ic traveling-wave solution of the Vlasov-Maxwell equa-
tions it must be that y(y)> —«? for some value of y.

If it should happen that k? is negative, then this means
that ¥ cannot be too small. Thus, for those phase veloci-
ties such that «? is negative it is not possible to have
periodic traveling-wave solutions of the Vlasov-Maxwell
equations which are arbitrarily close to the Vlasov equi-
librium F,, at least in the sense that y¥(y) cannot be too
small. By contrast, when k2> 0 there is no lower bound
forced on y for a traveling-wave solution and it might be
possible to find undamped traveling-wave solutions, with
phase velocity V, arbitrarily close to the equilibrium F,,.
Thus «*>0 is a requirement for the existence of un-
damped spatially periodic traveling waves of velocity V
to have arbitrarily small amplitude.

V. THE CONSTRUCTION OF TRAVELING WAVES
OF BGK FORM

In this section we should like to show that when the
quantity «? is positive it is possible to explicitly construct
families of periodic traveling-wave solutions of the
Vlasov-Maxwell equations with phase velocity V, and
that these families of traveling-wave solutions include
waves of arbitrarily small amplitude. In order to accom-
plish this construction we shall exploit the decomposition
of the distribution function into its odd and even part (in
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the wave frame) and use the standard Bernstein-Greene-
Kruskal (BGK) representation [18] to describe the even
part. The distribution of particles in energy which arises
in the BGK representation can then be treated as a “pa-
rameter” and a bifurcation analysis undertaken to con-
struct periodic traveling waves of all wave numbers near
K.

To begin this analysis recall that if the distribution
function and electric field are of the form

Feov)=g; —‘;— 46)
Eo="GX @)

for any smooth functions g, and ¢, then the Vlasov equa-
tion, Eq. (24), will be automatically satisfied. Therefore,
in order to determine the even part of the distribution
function and the electric potential in the wave frame we
need only satisfy Eq. (25), which can be written as
—"5—+47r 2 [ ¢

) |dv=0. (48)

To use this equation as the basis for a bifurcation analysis
of the potential we can treat the arbitrary functions g¢ as
parameters, and examine how 27 /k-periodic solutions of
this equation change as the functions g{ are varied.
However, our goal is actually more specific; we wish to
study only those solutions corresponding to waves near
the equilibrium F,. We shall therefore need the func-
tions g¢ to capture the essential features of F¢, so that
when the potential is small our local nonlinear analysis
will be describing the waves of interest. To achieve this,
let us define the function

Go(m=Fo(V2n), (49)
which has the property that
Fi(u)=G} > (50)

Our desire is then that the functions g, should look much
like the function G{. There is one difficulty however; the
functions g¢ () must be defined for negative values of 7
because the electric potential of the wave might be nega-
tive, while the functions G¢, are defined only for n=0.
However, G¢, is a smooth function having at least half as
many continuous derivatives as F, itself; there is there-
fore a smooth (having any finite number of continuous
derivatives) extension of G¢, to negative values of 7.
Hence we can use

ge=01+un)g, (51)

where §¢ is any smooth and non-negative function that

satisfies §5(1)=G¢(n) for n=0. Then when u=0 and

¢=0 we have that
Fabov)

=9, =F(v),

V2 .
2 ]_G“

L i
2 2

(52)
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and so for small values of the parameter u and potential
¢ we expect that the even part of the wave distribution
function will be close to F&(v). Using this form in Eq.
(48) we find that the potential should satisfy

b | 3441)=0 53
% (d,u) , (53)
where
N o0
How=4ar3 [7 |
a=1 ~*®
9
+u8; o(x) |dv

a

(54)

This is then a nonlinear equation for ¢ depending on the
parameter u; it has one known solution when p=0,
namely ¢=0. Our task now is to explore the 2w /k-
periodic solutions of this equation for small values of the
parameter u.

By varying the parameter u in the appropriate way we
shall be able to exactly adjust the distribution function so
that its spatial wavelength is 27/« independent of the
wave amplitude. In a previous paper [17] we treated this
problem differently; in that paper we did not use a pa-
rameter, and instead we set g =9, to describe the even
part of the wave distribution function. This led to a case
in which the wave number of the waves was dependent on
amplitude and only tended toward k as the amplitude
went to zero. The analysis here, in which the wave num-
ber is independent of amplitude, complements that earlier
analysis and emphasizes an important point: there is no
exact dispersion relation for small-amplitude nonlinear
plasma waves. Indeed, another analysis, sketched in
Buchanan, Holloway, and Dorning [19] shows that for a
fixed phase velocity there is actually a range of allowable
wave numbers and that the size of this wave-number
band grows with amplitude.

An exact nonlinear analysis of 27 /k-periodic solutions
of Eq. (53) begins with an examination of the derivative

N qi w d9
a=1 a

—Vz— dv . (55)

— d’T]

Because &, is a smooth extension of G¢, to negative argu-
ments, we have that

dge 2 dG¢ dF¢,
@ |V | =Ze v i1 (56)
dn | 2 dn |2 v dv
and so #£,4(0,0)=«>. Equation (53) can therefore be writ-
ten as
2
4D L+ Mg,p)=0 (57)
dx
where
N(p,u)=F (1) —r*p (58)
and
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N(g,00=0(]|¢]]) as [|$||—0 . (59)

With the equation written in this form we can apply
the Liapunov-Schmidt method [20-22] to reduce the
nonlinear differential equation to an algebraic problem.
In the present case the application of this method is
based on an orthogonal decomposition of ¢ into two
parts: those functions that are a linear combination of
sines and cosines, and their orthogonal complement. The
reason for this particular choice is that the nonlinearity
of the problem is only nontrivially involved in that part
of ¢ that looks like sine and cosine; the remainder of ¢ is,
we shall presently discover, uniquely determined by its
projection onto the sine and cosine.

With these ideas in mind, we write every 27 /k-periodic
function ¢ in the form

¢(x)= A cos(ky)+B sin(ky)+¥(x) , (60)

where v is 277 /k periodic and orthogonal to cos(ky) and
sin(ky). Multiplying Eq. (57) by cos(ky) and sin(ky) re-
spectively, and integrating over the y interval [0,27 /K]
reveals that, for a function ¢ that satisfies Eq. (57), 4, B,
u and ¥ must be related by

Hy (A,B,pu,1)
= f Ozﬂ/Kcos(K)()N( A cos(ky)+ B sin(ky)

+y(x),u)dx=0, 61)
HOS(A’B’,U’IIJ)
= OZﬂ/KSin(KX JN( 4 cos(ky)+ B sin(ky)

+y(x),u)dx=0 . (62)

If we now also consider the problem

2
T8 k= — (A costiox) B sin(iex) +9(0).0)
X
+COS(KX)£HOC( A,B,u,)

+sin(Kx)£HOS(A,B,,u,¢)=O, (63)

we see that Egs. (61)—(63) are equivalent to Eq. (57), and
hence to Eq. (53). At first glance it is not clear that this is
progress: we began with one nonlinear differential equa-
tion and we now have one nonlinear differential equation
coupled to two algebraic equations. However, for the
purpose of showing that solutions do exist and under-
standing their nonuniqueness, this new formulation is
perfect. The right-hand side of Eq. (63) is orthogonal to
both cos(ky) and sin(xy) and for (A4,B,u)=(0,0,0) is
o(||¥||) as ¥—0. The linear operator on the left-hand
side can therefore be uniquely inverted and the resulting
equation used as the basis of a convergent iterative pro-
cedure to prove the existence of a smooth function
W(A,B,u) such that Y(x)=W(A4,B,u)(x) is the unique
solution of Eq. (63) for each (A4,B,u) near zero; the de-
tails of this procedure are formalized in the well known
implicit function theorem [21] (see Holloway and Dorn-
ing [17] for a detailed application to the present prob-
lem). Note that this result deals with Eq. (63) alone and
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is independent of the question of the existence of a non-
trivial solution. It is Egs. (61) and (62) that contain the
essential nonlinearities of the problem for the potential,
and which must be examined to determine the existence
of the desired nontrivial solutions.

Before taking up Egs. (61) and (62) we should explore a
few useful properties of W. Notice first that for each u
near zero and (A4,B)=(0,0) there must be (again by the
implicit function theorem) a constant value of ¢ which
satisfies Eq. (63). But since W( 4,B,u)(x) is the unique
solution of this equation, it must therefore be that
W(0,0,u)(x) is independent of . Thus, if the small po-
tential does not have a sine or cosine part [i.e.,
(A4,B)=(0,0)], then the potential is constant and has no
electric field; in this case the corresponding equilibrium
of the Vlasov-Maxwell equations is just another one of
the infinity of spatially uniform equilibria. As a special
case also note that ¥(0,0,0)(x)=0. Indeed, by using Eq.
(63) we can compute the derivatives with respect to A4
and B as V¥ ,(0,0,0)(x)=¥;(0,0,0)(x)=0 and hence
conclude that W(A4,B,u)(x)=O0(|(4,B)|?) as (A4,B)
—(0,0); thus ¥ is a unique second-order correction to
the sine and cosine part of the potential.

We can now substitute the function W( 4,B,u)(y) into
Egs. (61) and (62), leaving us with two algebraic relations
among the three quantities 4, B, and u, namely

H,(A,B,u)=H,,[A,B,u,¥(A,B,u)]=0, (64)
H(A,B,u)=Hy[A,B,u,¥(A,B,1)]=0 . (65)

This algebraic problem can be further simplified, howev-
er, by using the symmetries of the problem; solutions
with B0 can in fact be recovered from solutions with
B =0 by phase shifts y— y+6 and/or spatial inversions
X— —X. These symmetry properties also imply that
H(A4,0,u)=0 and that H.(A4,0,u)=—H_(— 4,0,u), as
may be verified by an examination of Egs. (61)-(63).
Thus, since H,( A4,0,1)=0 is automatically satisfied, we
really only need to examine one algebraic relation
H(A,u)=0 between A and pu, with H(A,u)
=H_(A,0,u).

We are already familiar with one solution of
H(A,u)=0, namely 4 =0 for any value of u. Again,
this solution corresponds to a spatially uniform potential.
But if we use ¥(0,0,0)=0 and ./V¢(0,0)=O to compute

3H(0,0) _
a4

we immediately realize that the trivial solution 4 =0
may not be the unique solution near ( 4,u)=(0,0). Non-
trivial solutions are most conveniently separated from
the zero solution by considering the equation
A "'H(A,u)=0; for a given value of u, 4740 is a solu-
tion of H( A,u)=0 if and only if 4 "'H(4,u)=0. Con-
sider therefore the equation H(A,u)=0, where H is the
smooth function defined by

J 7 eos(ix )N (0,0)cos(rx)dx =0, (66)

Hdpw o
BA.=1 35(0,0) o (67)
a4 > 7
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We see that #(0,0)=0 and that
8H(0,0) _ 3’H(0,0)
au 3A9du

= J 77" e0s2 X )[W44(0,0)¥,(0,0,0)x)
FN,(0,00[dy  (68)

or, using ¥,(0,0,0)(x)=—k *N,(0,0) for all y and
evaluating the derivatives of WV,
BHO0.0) _ 20 . (69)
o

Thus H,(0,00%0 and the implicit function theorem
guarantees that there is a smooth function M ( 4) with
M (0)=0 such that A( 4,u)=0 if and only if u=M(4).
Therefore, for any (sufficiently small) value of 4 we can
find the corresponding value of the parameter p which
makes H(A,u)=0. Since this implies the existence of
small nonzero solutions 4 to H(A4,u)=0, we can im-
mediately conclude that there are small solutions of Eq.
(53) which are 27 /k periodic and spatially nonuniform.

We now know that such nontrivial solutions exist and
that for the parameter value u=M(A4) they can be ex-
pressed (modulo the symmetries that allow the recovery
of the sine terms from the cosine terms) in the form

d(x, A)= A cos(kyx)+¥(A4,0,M(A4))x), (70)

where all of the functions are smooth—and hence Taylor
expandable—in A, and where W(A4,0,M(A4))x) is or-
thogonal to cos(ky). We can therefore justify and explic-
itly solve for the coefficients in the expansions

¢= A cos(ky)+ A%, (x)+ A3y (x)+0(43), (71)
pu=Au,+ A*u,+o(A?) . (72)

The implicit function theorem has assured us that ¥,(y)
and ¥;(x), orthogonal to cos(ky), exist, and we can use
this fact to determine the coefficients u; and pu, by apply-
ing the appropriate solvability condition to the right-
hand sides of the linear equations which ¥,(x) and ¥;(x)
will satisfy. Thus the elimination of secular terms, which
is commonly applied when making such expansions, is
rigorously justified in this case by the nonlinear analysis
embodied in the implicit function theorem. Performing
the analysis to find the coefficients in these expansions
yields

$00= 5 H gy 0,00~ 1+ oos(260)] (73)

=1 L[ 9,,00,001
1/}3()()*@ m[ 46(0,0)]

+ 357 444(0,0) |cos(3ky) , (74)
and

©w;=0, (75)
py= e [ =3[ 9,,(0,0) 2= 1%£,,,(0,0) | .
P H4,(0,0) | 2424 S

(76)

The derivatives of # can be explicitly evaluated as

2 2
w A9 2

N qa vV

H 44(0,0)=41r q — |dv, (7
¢ agl a « — dnz 2

3 3pe
N 9da © d ga V2
F 444(0,0) =41 q X ldv,

$96 a§=‘.l |, | d=a T |2

(78)

F4,(0,0)=x> . (79

At this point we know that there exist pairs (¢, ) near
(0,0) which satisfy Eq. (53), and that these can be
parametrized by an amplitude A; furthermore, we have
approximate expressions for these quantities, given by
Egs. (71)-(76). From these solutions we know that a
corresponding distribution function has its even part
given by Eq. (46) with g (n)=95(n)+M(A4)9%(n), and
that this distribution function tends toward F¢ as 4 —0.

To complete our construction we must now develop
the odd part of the wave distribution function; we can
represent this function in the BGK form

2
0 ”7+ 9a d(x) |, v=0
Fov)= ) (80)
__ 40 L+_‘IE_¢( ) v<0
8o 5 o, x) |, v<0.

To make certain that the distribution function will be
close to the spatially uniform background we first intro-
duce

F{=1[F,(v)—F,(—v)] (81)
and
Fo(V2m), 120
go(m)= 0, 7<0 (82)

which have the property that

2
Fo(v)=9° % (83)

We must now describe families of smooth functions
g%(n, A), parametrized by the wave amplitude A4, that
approach $%(7) uniformly in 7= 0 as 4 —0. There is no
unique way to describe such a family, although they are
constrained by various requirements.

(i) g4(n, 4)—>GS%(7n) as A —0, uniformly in 7.

(ii) |g2(n, 4)| <g&(x). This will ensure that the result-
ing distribution function is everywhere non-negative.

(ii) gg(n, 4)=0 for n=®F*=sup,[(q,/my)p(x)].
This ensures that the distribution function is well defined
and that the distribution of trapped particles is even in
velocity, as it must be for a solution of the stationary
Vlasov equation.

(iv) In order to ensure that the net current of the wave
is zero as required by Eq. (26) we need

N 0
o =
agl qafo go(n, 4)dn=0.



3864

We shall now describe a particular choice of g2 that
satisfies all of these requirements. This will not be the
only possible family—indeed a slightly different descrip-
tion was used in Buchanan, Holloway, and Dorning
[19]—but it will suffice. Let R(7n) be any infinitely
smooth function that satisfies O0=<R(7n)=1 for all 7,
R(n)=1 for =1, and R(7)=0 for n=2. As an exam-
ple of such a function, we mention

1, n=1
3—27
R(n)={i|1—tanh | ——F"—— 1=9=2
(n) 2[ n 2(n—1)(n—2) K
0, n=2
(84)

lgo(m, AN S[1+M(A)]{[1—B,A)]| 8
SI+MA)[1—B,A4)]197

where we have used the positivity of the spatially uniform
equilibrium to note that |9%(7)| < 9. Thus condition (ii)
is satisfied. The second factor in the expression for gJ en-
sures that condition (iii) is met, and if

B )= [ "Rn/@m)55mdn |
x| [ 1R

X[&n)—

’)’] /(Dmax ) ]

el ldn

then we can readily verify that

2 qaf gao(n, A)dn

a=1

N 0
=[1+M(4)] S qafo 9%, A)dn=0 (88)
a=1

because the spatially uniform equilibrium has zero
current; thus condition (iv) is accommodated. Unfor-
tunately, this value of 3 is only positive if the numerator
in its definition is also positive. If this is not the case then
instead we can define

A)=[1+M(A)][1—R(n/Py*")]
X{[1—=B,(A)]8Un)—B(A)F )} . (89)

galm,

and

B A)= [—waR(n/d>g“"‘)9§(n)dn}

X

S = R/om)

> (90)

X[ &)+ 8% ]ldny
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which we have actually used in the numerical calcula-
tions described in Sec. VI. This function has derivatives
of all orders—even at the points =1 and 2—but it is
not analytic in any strip about the real 7 axis. Indeed, it
is not possible to construct an analytic function with the
properties required of R(7); we shall say more on this
point later. With these prescriptions in mind, consider
the function gg(n, A ) defined by

ga(n, A)=[1+M(A)][1—R(n/PT*)]

X{[1—B( A)]SUM+BLAGD} . (85)

For A so small that |[M(A4)| <1,
0<B,(A4)<1, we see that

and provided that

(M| 4B A4)9(n)}
)+B(A)G ()} =

ga(n), (86)

f

and thereby again satisfy conditions (ii)—(iv). In order to
verify the limit in condition (i) we need only note that
M(A)—0 and B,(A4)—0 as 4 —0, and that this limit is
uniform in 7 because $(0)=0.

We have now proven that if k2> 0, then there exist ex-
act 2 /k-periodic solutions to the nonlinear Vlasov-
Maxwell equations in the wave frame. These solutions
are smooth functions and remain so as the amplitude of
the wave tends toward zero. Thus, in the original labora-
tory frame there exist exact nonlinear undamped spatially
periodic traveling-wave solutions arbitrarily close to the
sg)atially uniform Vlasov equilibrium F, used to compute
K-

The manner in which these undamped wave solutions
approach the spatially uniform equilibrium is of interest.
Assuming polynomial decay of the equilibrium functions
F_(u) at large velocity, the waves are small amplitude in
the sense that for any p, 1<p =< 0,

fz”/"|¢ )ledyx=0, 1)

im [*7 [ |7 00v)—F(lPdy dv=0 . (92)
A—0%Y0 — o0

Physically the case p =1 in Eq. (92) means that the wave
distribution functions represent only a small rearrange-
ment from the equilibrium distribution of particles. This,
it seems to us, is all that it is physically appropriate to re-
quire.

Conversely, the undamped Van Kampen-Case waves
that follow from the linearized equations describe posi-
tive and negative infinite numbers of particles above and
below the phase velocity. Hence they cannot provide a
qualitatively accurate picture of the distribution function;
as described in Sec. II, they can approximate the distribu-
tion function only in unphysical topologies such as the
weak topology of the space of distributions. Physically
this means that individual Van Kampen—Case modes do
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not approximate the distribution function of undamped
waves, although they may generate smooth velocity mo-
ments that approximate those of the distribution func-
tion.

In order to establish how the Van Kampen-Case
modes do not approximate the distribution functions we
examine the rate of change of f,(x,v) with wave ampli-
tude A4 as A goes to zero. Because $%(7) is a smooth
function we easily compute

a4 Fe(x,v) = dg‘—’ -V— 9a cos(kx)
da’ X 4= dn |2 |m,
dF¢(v) q,
— 1Y 4 cos(kx) (93)
v dv

a

for all values of Y and v. A similar derivative of the odd
part of the distribution will not exist for all of phase
space, but, for the form of g%(n, A) defined in Egs. (85)
or (89), will be well defined for those y and v satisfying
v2/24(q,/my)(x) = 2PT*. For these values we have

1 dFy(v) g,

A=0 v dv

d To
dAfa(X cos(kx) . (94)

a
These derivatives lead to a first-order expansion of the
distribution function

1 dF,(v) q,
F, (v)+A——
dv

Faltov)= cos(kx)+o(A) (95)

a

7 YwFovdv= [ TW[FLv)+ 4= =

9, 1 dF

3865

valid well outside the trapped particle region [strictly for
v /24+(q,/m)¢(x)>20™]. Thus, referring to Egs.
(16) and (19) shifted into the wave frame, we see that the
first-order correction derived from the nonlinear analysis
agrees with a Van Kampen-Case mode outside of a
phase-space region around the phase velocity whose
width is proportional to V' 4 in velocity. However, in-
side the trapped particle region and a layer surrounding
it the exact solutions—which are locally integrable, posi-
tive, and locally even in velocity—differ significantly
from the undamped linear theory modes—which are
singular, negative and not even.

Although the distribution function that results from
the linear theory is qualitatively incorrect, it nevertheless
contains quantitatively correct integral information. In
particular, it leads to the correct small-amplitude behav-
ior for smooth moments. To show this we follow a pro-
cedure similar to that used by Bernstein, Greene, and
Kruskal [18], but we exploit our more precise results on
the electric potential to show that smooth moments are
independent of the details of the trapped particle distri-
bution at first order. Let Y(v) be any C' function and

deﬁne, for fixed X v, 20 by v: /2
+(g,/my)P(x) =27 and v, 20 by v:/2
+(g,/my)d(x <I>"‘a", respectively; v, is the speed of a

particle on the separatrix between trapped and untrapped
particles at y, while v,, is a somewhat larger speed out-
side of which Eq. (95) holds. Then

costix ) +o(A)Jdv+2 [ "YU Fo (0, vIdv

m, v
® - dF(v)
+2 [ "YU Fo )+ Ao L ostex) +o 4)1dw (96)
Y m, v dv
[
where Y%v) and Y°v) are the odd and even parts of as 4 —0. Therefore, as 4 —0,
Y(v), respectively. We now show that the second term f o 7 ( '
2["Y(FS(xv)dy is 0( 4) as 4—0. To do this we vif (X vdy
use the differentiability of Y(v) to note that there is a = f ® Y(v)F (v)dv
constant C such that |Y’(v)| <Cv for 0<v<w,,, and so _
max 1 dF,(v) told)
‘2 "V FO (X, v dv‘<Cf lgo(n, A)ldy . Y T av © ’
(97) (100)
Now observe that for ®F**=7=<207** we have where the principle-value integral follows from the limit

|1_ n/(bmax 1<1 ‘90(17)|<K\/27}<K(4(I)max)1/2 and
g¢(n) =K’ for some constants K and K'. Therefore, us-
ing either Eq. (85) or (89) to describe g¢, we find that

2], w7y
Schg‘a"[1+M(A)]
X[|1—B( A)2K(®™)12+K'|B (A4)]] . (98)

Since PT*=0(A4), M(A)=0(4)
A —0 it follows that

and B,(A)—0 as

2 " P vidv=o( 4) 99)

v,,—0 as 4 —0 and from the fact that the even part of
F, does not contribute to the principle-value integral.
But, to first order in 4, Eq. (100) is equal to the corre-
sponding integral of the Van Kampen-Case solution of
the linearized equations. Hence the linear theory Van
Kampen-Case modes with k =k and C4 =0 in Eq. (16) do
correctly describe the small-amplitude behavior of
smooth velocity moments of the distribution functions,
although they do not correctly describe the distribution
function itself. These developments show that the linear
theory does capture some quantitative features of exact
undamped traveling waves, but nevertheless its predic-
tions are incomplete because it does not describe the dis-
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tribution function well and cannot quantify the number
of particles in all regions of phase space.

VI. AN EXPLICIT CASE

Using the approximate expressions for the potential
developed above it is possible to explicitly, but still only
approximately, write down the wave distribution function
in the wave frame by using the functions g, and gJ just
described. In this section we shall present a concrete ex-
ample of the waves described in the preceding section,
with the aim of showing graphically how the wave distri-
bution functions tend towards the spatially uniform equi-
librium distribution functions. In particular, we shall
consider a two species plasma in which —g,=m ;=1
and, formally, g,/m,=0 so that the second species is
merely a neutralizing background. The spatially uniform
distribution of species 1 will be

1 u?/2
Varo
so that the plasma is essentially an electron-heavy-ion
plasma with the electrons in thermal equilibrium. If we
numerically compute «? as a function of phase velocity
we find that k?> <0 for | V| < V,, where V,~1.3; therefore
there are no small-amplitude undamped plasma waves
with phase speed below this value. But for |V|>V, we
have k*>0 and according to our nonlinear results there
will be undamped plasma waves with wave number k.
Let us fix our attention on a phase velocity of V=2, at
which k2=0.2799 /A% (A, =1/V/47 is the Debye length).
For this phase velocity the nonlinear analysis has provid-
ed periodic traveling-wave solutions of wavelength
27 /k=11.87A,, whose amplitude can be made arbitrarily
small.

Figure 1 shows the distribution function of one species
for a wave for 4 =0.1. The trapped-particle region at
the phase velocity V=2 can be seen clearly. Indeed,
while the potential at this amplitude is dominated by the
cosine term, it is difficult to justify labeling this a small-
amplitude wave because the disturbance to the back-
ground distribution function seems so significant; this
rather large amplitude was chosen for this figure so that

Fy(u)= (101)

SR
ORI

SRR

St

OO\
SRR f7
1
)
SRR

FIG. 1. Wave distribution function f,(y,u—V) for
—4<u<4and 0=y =<2w/k.
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it would be possible to see the influence of the trapped
particles on the distribution function; at this scale a
smaller amplitude would have made the figure indistin-
guishable from the spatially uniform equilibrium. But
even at a smaller amplitude the trapped particles have a
major influence on the velocity gradient of the distribu-
tion function, producing a rather flat shoulder —actually
a crater—on the side of the distribution function. This
region of trapped particles and the zero velocity gradient
at the phase velocity cannot be avoided at any amplitude,
no matter how small. The trapped-particle region be-
comes narrower and the deviation from the spatially uni-
form distribution F,;(u) becomes smaller as 4 —0, but
9f1/9ul(x v y=0 at all amplitudes, no matter how small,
while dF, /0u|,#0. Figure 2 shows a sequence of plots
which illustrate this point, and shows how the wave dis-
tribution function can nevertheless approach F(u) as the
amplitude goes to zero; Fig. 2(a) shows f,(7/k,u) for a
series of decreasing values of 4 and Fig. 2(b) shows
gi(m/ikc,u)=f(m/k,u)—F (u) for these same values.
The slope 9g,(m/k,0)/3u represents the deviation of the
velocity gradients at the wave phase velocity and is seen
to be essentially independent of amplitude 4. Neverthe-
less, as A —O the deviation g; does not diverge or devel-
op larger derivatives. The deviation is clearly most
significant within the trapped-particle region and under-
goes a fairly rapid transition to almost zero just outside.
This transition is effected by the function R (7) described
in Sec. V, and while the velocity distribution function was
thereby constructed to have continuous velocity deriva-

I

FIG. 2. (a) Wave distribution function f,(7/k,v) vs v for a
series of amplitudes: 4 =0.01, 0.001, and 0.0001. (b) deviation
g1(m/k,v)=f(m/k,v)—F(v) vs v for a series of amplitudes:
A=0.01, 0.001, and 0.0001.



4 UNDAMPED PLASMA WAVES

tives of all orders through this transition, it is not analyt-
ic in velocity. But because of the influence of the trapped
particles the linear equations [at least the equations
linearized about F,(u)] are not valid, and the wave, no
matter how small its amplitude and no matter how close
to F,(u), will not damp. This prediction has been
confirmed recently by numerical simulations [23] of the
one species thermal equilibrium plasma by using initial
data derived from Egs. (43), (46), (71), (72), and (85) or
(89).

VII. APPROXIMATE DISPERSION RELATIONS

In this section we shall present a few calculations of «?
as a function of phase velocity for some electron-proton
plasma equilibria. Such calculations reveal over what
range of phase velocities these equilibria support un-
damped waves, and recognizing « as an approximation to
the wave number of the corresponding waves also pro-
vides an approximate dispersion relation for the waves.

The first example, whose dispersion relation has ap-
peared before [24], is a thermal equilibrium electron-
proton plasma in which the electrons and ions have equal
temperatures. A plot of «x* versus phase velocities is
shown in Fig. 3. We see from this that, again, x*> <0 for
V <V,~1.3v!h, indicating that undamped waves of such
low phase velocities are not possible (v is the electron
thermal velocity). In contrast for ¥ > ¥V, we have x*>0
and such waves do exist. Using o =«V we can convert
this figure to a dispersion diagram such as that shown in
Fig. 4. This dispersion diagram shows a branch of waves
which are essentially Langmuir waves, but unlike the
traditional Langmuir waves for such a plasma they do
not damp, not even slowly. Another branch of waves at
low frequency and long wavelength call to mind the ion-
acoustic waves, which are predicted to be strongly
damped in this plasma, but here this branch describes un-
damped, small-amplitude nonlinear waves. It will be ob-

0.20

FIG. 3. Function «* vs positive phase velocity for an

electron-proton plasma in thermal equilibrium with equal elec-
tron and ion temperatures. The scale for « is the inverse-
electron Debye length and the scale for the phase velocity is the
electron thermal velocity.
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0.1 0.2 0.3 0.4 0.5 0.6
k

FIG. 4. Dispersion diagram for undamped nonlinear longitu-
dinal waves for an electron-proton plasma in thermal equilibri-
um with equal electron and ion temperatures. The scale for the
wave number is the inverse-electron Debye length and the scale
for the frequency is the electron plasma frequency.

served that these two branches are in fact connected, so
that there is both a frequency cutoff and a wave-number
cutoff; apparently it is not possible to produce the neces-
sary population of trapped particles in a small potential
unless the potential well is sufficiently long and oscillating
sufficiently slowly.

As a second example Fig. 5 shows «? for a system
which consists of a Maxwellian beam of electrons injected
into an electron-proton plasma in thermal equilibrium,
the entire system being charge neutral and having zero
current. For this plasma «?> is positive for
1.3v" S ¥V 5 19v!* and for 210! S ¥, but it becomes nega-
tive for phase velocities in the neighborhood of the beam
velocity. The corresponding dispersion diagram, shown
in Fig. 6, therefore has additional branches due to the
presence of the beam.

5 10 15 20 25 30
14

FIG. 5. Function «* vs positive phase velocity for an

electron-proton plasma with a high-energy electron beam at
20v". The beam and both of the main distributions are
Maxwellian with equal temperatures, and n,=0.01n,. The
scale for « is the inverse-electron Debye length and the scale for
the phase velocity is the electron thermal velocity.
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w=kV

0.1 0.2 0.3 0.4 0.5 0.6
k

FIG. 6. Dispersion diagram for an electron-proton plasma
with a high-energy electron beam at 20v!". The beam and both
of the main distributions are Maxwellian with equal tempera-
tures, and n, =0.01n,. The scale for the wave number is the
inverse-electron Debye length and the scale for the frequency is
the electron plasma frequency.

VIII. CONCLUSIONS

In this paper we have presented some exact nonlinear
analysis of small-amplitude nonlinear plasma waves. The

results of this analysis show that the standard linear
theory does not capture the physics of all small-
amplitude plasma waves, and demonstrate that the non-
linear effects of particle trapping can arise at arbitrarily
small amplitudes in the electric potential. While these re-
sults do not invalidate the linear theory—nothing done
here disallows the Landau damping of the electric field
generated by some perturbation of the Maxwellian for
example—they do explicitly exhibit solutions which
behave differently. These solutions include appropriately
smooth physical distribution functions and show that un-
damped small-amplitude waves are not the result of un-
physical singularities, as the linear theory might suggest.
Finally, since the results of the linear analysis have pro-
vided many of the foundations upon which collisionless
plasma physics is constructed, the implications for basic
plasma theory of the failure of the linear theory to ac-
count for these small-amplitude effects should be exam-
ined.
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