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Nonequilibrium electron transport near absorbing boundaries
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A modified moment method is used to predict the e8'ect of absorbing boundaries on a continuous
stream of electrons traveling in a gas in a steady, uniform electric field. Theoretical results are shown to
be in good qualitative agreement with published Boltzmann and Monte Carlo calculations for the same

physical problem.

I. INTRODUCTION

A. Overview

This paper deals with what is perhaps the simplest
physical situation in gaseous electronics —the one-
dimensional, steady-state Townsend (SST) discharge with
steady, uniform electric field low enough that inelastic
collisions can be ignored, but high enough that the aver-
age energy of the electrons is much greater than that of
gas atoms. In this situation, it is expected that the cen-
tral region of the SST discharge can be characterized by
electron transport properties that are relatively indepen-
dent of position, provided that electrode separation is

sufficiently great, while regions near electrodes can be
characterized by transport properties that vary with posi-
tion. By custom, regions of space-independent transport
properties are called equilibrium regions, and regions of
space-dependent transport properties are called none-
quilibrium regions. According to this terminology, equi-
librium means that a balance exists between the energy
gained by electrons from the electric field and that given
up to gas atoms by collisions [I].

The purpose of this paper is to assess the validity of an
approximate theoretical method by comparing electron
motion near the absorbing boundary predicted by this ap-
proximate method with motion predicted by published
Boltzmann and Monte Carlo calculations. The
modification consists in making the two-term Legendre
expansion in velocity space before taking velocity mo-
ments of the Boltzmann equation, then assuming an ap-
proximate electron-energy distribution function (EEDF)
different from that normally assumed in moment theory.
In particular, the approximate EEDF is chosen so that
correct equilibrium values of transport properties are ob-
tained in the steady, uniform case, as suggested previous-
ly [2,3]. Because this approximate method is a
modification of the usual method of moments, the theory
of velocity moments of the Boltzmann equation (BE) is
summarized briefly to emphasize the difference.

B. Method of moments

Generally speaking, the words moment method are
used to describe the derivation of conservation equations
for measurable quantities —such as density, momentum,

energy, etc.—based on velocity moments of the BE. The
measurable quantities themselves are defined as certain
velocity moments of the EEDF itself. Therefore, an ap-
proximation for the EEDF is needed to proceed with the
derivation of conservation equations.

In the thirteen-moment approximation [4], for exam-
ple, the EEDF is expanded in Hermite polynomials, the
leading term of which is a so-called shifted Maxwellian
function. In the standard five-moment approach, a
simplification of the thirteen-moment approximation,
only the leading term of this expansion is retained, giving
five measurable quantities —density, three components of
average velocity, and energy. The five equations that
determine the space-time dependence of these measurable
quantities are the particle balance, or continuity, equa-
tion, three components of the momentum balance equa-
tion, and the energy balance equation. Recently, this ap-
proach has been applied to the one-dimensional SST
problem in He at high E/X (where E is the electric field
and X the gas density) and compared with qualitative
success to numerical and Monte Carlo solutions of the
BE [5].

The shifted Maxwellian function can also qualitatively
describe physical situations where the energy of drift
motion becomes large compared with that of random
motion, such as a vacuum diode [6], where the EEDF is
close to a 6 function in velocity. In many physical situa-
tions, however, the shifted Maxwellian function is not the
best approximation to the actual EEDF. For example,
the EEDF in a gas-filled diode can be closer to 5 function
in speed than to a 6 function in velocity. Thus, the as-
sumption of a spherical shell for the EEDF, where the ra-
dius of the shell is random velocity and the displacement
of the shell is directed velocity, can be a better approxi-
mation than a shifted Maxwellian function in certain
physical situations [7]. For another example, the shifted
Maxwellian function gives incorrect equilibrium values
for drift velocity and average energy as functions of E/X
when the momentum transfer collision frequency varies
with electron energy. Clearly, then, the particular as-
sumption made about the EEDF for deriving moment
equations must be tailored to the particular physical situ-
ation being addressed.

For the purpose of discussion, the moment method de-
scribed above —namely, that based on a shifted Maxwel-
lian EEDF, particularly the five-moment method —is
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called the shifted Maxwellian distribution (SMD). Like-
wise, other moment methods are identified according to
the form of the EEDF assumed. The present paper deals
with a modification consisting of a slightly anisotropic
EEDF having a Druyvesteyn-like distribution in energy
for the isotropic part and an anisotropic part related to
the isotropic part by the two-term Legendre expansion;
this modification is called the modified Druyvesteyn dis-
tribution (MDD). Another modification is called the
shifted shell distribution (SSD) [5]. For all intents and
purposes, SSD is equivalent to the momentum transfer
approximation (MTA) [8,9]. MTA consists in assuming
that the instantaneous energy can be replaced by the
average energy in analytic expressions for elastic and in-
elastic collision frequencies, a result that is derived, not
assumed, in the SSD. The modification proposed in Ref.
[2] cannot be classified according to the type of EEDF
because the EEDF is left unspecified. The modification
proposed in Ref. [3] is based on a modified Druyvesteyn
distribution similar to the MDD of the present paper, but
the anisotropic part of the EEDF is lacking spatial
derivatives of the isotropic part.

C. Modified Druyvesteyn distribution (MDD)

The problem investigated in this paper is nonequilibri-
um transport near absorbing boundaries. The physical
situation addressed is the one-dimensional SST experi-
ment where the following conditions prevail.

(i) Electron density is low enough that both space-
charge distortion of the applied electric field and
electron-electron collisions are negligible.

(ii) E/N is low enough that inelastic collisions can be
neglected compared with elastic collisions, and that the
energy of drift motion can be neglected compared with
the energy of random motion.

(iii) E/X is high enough that the average energy of the
electrons is much higher than that of the scattering gas.

Under these conditions, the EEDF is expected to be al-
most isotropic in velocity space. Therefore, it seems
reasonable to assume that the two-term Legendre expan-
sion of the EEDF is valid. On the one hand, this assump-
tion seems to be supported by good agreement between
Monte Carlo and two-term Boltzmann calculations men-
tioned later. On the other hand, it should be noted that
the MDD has not been fully tested even in the equilibri-
um case.

Use of the two-term Legendre expansion in predicting
electron motion in gases was pioneered by Allis [10]. In
equilibrium, the two-term Legendre expansion leads to
analytic expressions for fo and f„the isotropic and an-
isotropic parts of the EEDF, respectively, when inelastic
collisions are negligible and the momentum transfer col-
lision frequency can be expressed as a power of electron
energy. These analytic expressions do not contain the
average energy explicitly, but implicitly through the elec-
tric field. The MDD approach is based on the premise
that the explicit dependence on the electric field in an
equilibrium situation can be interpreted as an explicit

dependence on the average energy, which remains valid
in a nonequilibrium situation. Consequently, MDD cal-
culations consist of the following steps.

(i) Making the two-term Legendre expansion of the
EEDF, then taking velocity moments of the BE to give
conservation equations for electron density n, average ve-
locity co, and average energy c, as in standard moment
theory.

(ii) Assuming a functional form for the EEDF that de-
pends on n, co, and c in a particular way that ensures
correct values of transport quantities when electrons are
in equilibrium with the electric field. The EEDF of the
two-term Legendre expansion is known to satisfy this re-
quirement.

(iii) Solving the moment (conservation) equations for
n(r), co(r), and E(r).

The MDD has been used recently to investigate non-
equilibrium eff'ects in the SST [ll] and TOF [12] (time-
of-fiight) experiments, with reasonable success. It is
pointed out in these papers that electron diffusion in the
SST and TOF experiments is isotropic, but may appear to
be anisotropic when analyzed by classical diffusion theory
with spatially constant transport coeKcients. In other
words, the MDD predicts different pulse widths parallel
and perpendicular to the electric field even though the
diffusion coeKcient is a scalar quantity.

The MDD falls into the S2 description [2], which in-
cludes all problems where the time rate of change of aver-
age velocity of electrons is small compared with their ac-
celeration due to the electric field. Whereas the MDD
depends explicitly on the functional form assumed for fo,
the general approach taken in Ref. [2] does not. While it
appears that the MDD is similar to the lowest-order solu-
tion of the S2 description in that average collision fre-
quencies are assumed to have the same dependence on
the average energy in nonequilibrium as in equilibrium,
the corresponding moment equations are different unless
the two-term Legendre solution to Eq. (26) of Ref. [2] is
used to evaluate Eqs. (2a) and (2b) of the same reference
in terms of n, co, and c.

The MDD is also different from the method proposed
in Ref. [3], for the same reason as that proposed in Ref.
[2]: diff'erent moment equations. The final moment equa-
tions are different because of a difference in the anisotrop-
ic term of the two-term Legendre expansion: the aniso-
tropic term has spatial gradients of the isotropic part of
the EEDF in the MDD approach, whereas the second
term has no spatial gradients in the approach of Ref. [3].
Consequently, momentum How due to thermal diffusion
and heat Aow due to thermal conduction, both of which
are proportional to the gradient of the average energy,
are not taken into account in the approach of Ref. [3].

D. Plan of paper

The rest of this paper is organized into sections as fol-
lows: first, the MDD theory is outlined, including as-
sumptions and method of solution; next, the MDD pre-
dictions are compared with published Boltzmann and
Monte Carlo predictions [13—15] and shown to be in
qualitative agreement; finally, the MDD results are sum-
marized.
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II. THEORY

A. Equations

where 2) and p are nonuniform difFusion and mobility
coefficients given by the expressions

2e -e fo3/2

3m 0 v E'

2e ~E
dE,

3m o v(e}
(3)

in which m is the electronic mass, e is the electronic
charge, v(e) is the electron —neutral-particle momentum-
transfer collision frequency, E is the electron energy, and
fo(e, r) is the isotropic part of the EEDF.

Expressed in terms of one-dimensional heat Aow H,
analogous to particle Aow I, the corresponding energy
balance equation is

with

dH m=I E—2 v,nc. ,
dz

(4)

The MDD theory is discussed in detail in Refs. [11]
and [12]. The basic conservation equations are the
steady-state continuity equation, sometimes called the
diffusion equation, and the steady-state energy balance
equation.

According to the MDD, the one-dimensional diffusion
equation for electrons streaming with constant current
density I in an electric field of magnitude E is

(nX))+pEn,d

where AI is independent of E. Values of I investigated are
—1, 0, and 1, for comparison with Refs. [13], [14], and
[15],respectively.

2. Energy distribution function

Short of actually solving the scalar equation for fo, a
formidable numerical task, the selection of the functional
form for fo is arbitrary at this point. An intuitively obvi-
ous choice is the modified Druyvesteyn function

( I+2)
n(l+2) e

exp
8 r(3/2(i+2))

where the gamma function I (u ) is defined by the equa-
tion

1 (u)= f x" 'exp( —x)dx,
0

and the quantity 8(r), which is proportional to average
energy s(r), determines the half-width of the energy dis-
tribution. This function is an obvious choice for fo be-
cause it reduces to the exact solution of the scalar equa-
tion for fo in the steady, uniform state, provided that the
steady, uniform versions of Eqs. (1}and (4) are used to re-
late 0 to E/1V.

The complete nonequilibrium EEDF of the MDD is

f(e,p, z)=fo(e, z)+pf)(e, z),
where p is the cosine of the polar angle in phase space
and f, satisfies [10]

fo ~fo+eE
Bz BE

(n 9)+%En,d
dz

(5) 3. Transport coe+cients

2e e fo5/2

dE,
3m 0 v E'

S/2 Qf

3m o v(e) Be

(6)

and v, is the average energy-transfer collision frequency,
also nonuniform, given by the expression

where M is atomic mass and it is assumed that the aver-
age energy of electrons is much greater than that of the
gas. The quantities 9 and S are additional nonuniform
transport coefficients given by the expressions k g

—(I+1)/2P

~—d g(l —1)/2
I

b 6)(1—))/2
I

g g(3 —I)/2

~ g(l+ 1)/2
&I

The corresponding relation between c. and 0 is

(12)

(13)

(14)

(15)

According to Eqs. (2), (3), and (6)—(9), the transport
coefficients have the following dependence on 0 for the
modified Druyvesteyn fo given above:

oo ()
v,n e = —f e [v(e)e f() ]d e .

0 BE' C=aIO . (16)

B. Assumptions

Power law for v(e)

() + 1)/2
IE (9)

For the purpose of comparing results of this work with
results of previous investigators, the energy dependence
of v is expressed by the power law

Values of the constants k), d&, b), g&, f&, and a( are found
by comparing Eqs. (11)—(16) above with Eqs. (19)—(23)
and (25) of Ref. [12].

C. Method of solution

1. Dimensionless variables

By algebraic manipulation, Eqs. (1), (4), and (5) can be
written in the following form, which is convenient for a
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solution by a Runge-Kutta technique:

dN 3—$ N 1

dS 2 U
(17)

1 —I+
2 U(3 —l)/2

N
U

Q
( 1 NU(l+3)/2)

ds 4—I
(18)

dU 1+ 1 U('+i)n Q
dS Pt PI U(& —t)/2 (19)

b)0, =, I'c,q,
kl Q I

kI aI E
D die,

(21)

(22)

1/( I +2)
k

(23)
2m fia,

The parameter n,, is arbitrary, depending on the strength
of the electron source at the incoming boundary or the
emitting boundary. The subscript eq means equilibrium
value. The symbols 8'and D have their usual meaning of
uniform, equilibrium values of mobility times electric
field and diffusion coefficient, respectively.

2. Boundary conditions

The system of Eqs. (17), (18), and (19) requires three
boundary conditions for a unique solution. The nature of
these equations is such that if each dependent variable N,
U, and Q takes on the equilibrium value of unity at pre-
cisely the same location, then equilibrium prevails every-
where. Therefore, equilibrium conditions cannot be
specified as starting values in a nonequilibrium situation.

Before discussing boundary conditions for the MDD
further, it is helpful to discuss boundary conditions for

where N: n/n, —, Q=H/H, , U=E/E, , S= Wz/D, and
the constants p&, H,q, E,q, and W/D have the following
values:

dlbl I [(4—l)/(2l+4)]I [(8+1)/(2l+4)]
k,g, I [(6+l )/(2l+4)]I [(6—l )/(2l+4)]

(20)

the SMD, because one less boundary condition is re-
quired. The SMD leads to a system of two first-order
equations satisfied by N and U [16] rather than a system
of one first-order and one second-order equation as in the
present work [17]. This situation comes about because
the assumption of a shifted Maxwellian EEDF results in
no momentum fIow due to thermal diffusion or heat Aow
due to thermal conduction, both of which are proportion-
al to the gradient of the average energy. With two first-
order differential equations, two boundary conditions are
required to give a unique solution. In Ref. [16], which
deals with a SST problem similar to the one discussed in
this paper, the required conditions are assumed to be the
following: (i) N=O at absorbing boundary; (ii) U=O at
emitting boundary. The second condition is arbitrary-
any other physically reasonable value of U at the emit-
ting boundary is mathematically acceptable. The choice
U=O at the emitting boundary corresponds to a physical
situation where electrons emitted at the incoming place
have very low energy, such as electrons produced by ther-
mionic emission. For electrons ejected by uv photons
impinging on the emitting boundary, U at the emitting
boundary might be significantly larger than 1, depending
on the value of E'eq.

For the MDD, an additional boundary condition is re-
quired. It seems reasonable to require that heat Aow
H —given by Eq. (5)—be finite at the absorbing bound-
ary. By Eq. (19), this requirement implies that U =p&Q at
the absorbing boundary where N~0. Therefore, bound-
ary conditions for the MDD are the following: (i) N~O
at the absorbing boundary, located at S=0; (ii) U = U~ at
the emitting boundary, located at S=Sz, (iii) dU/dS
finite at the absorbing boundary, implying U =p&Q there.

The Runge-Kutta technique of solving a system of
first-order differential equations requires starting values
for all dependent variables at the same value of the in-
dependent variable S; consequently, integration is started
at the absorbing boundary in the present paper. By
necessity, therefore, the starting value of U at the absorb-
ing boundary is adjusted repeatedly until boundary con-
dition (ii)—U(S&) = U& —is satisfied. Three examples
are chosen for illustration. Case 1 is characterized by
I = —1, the case of constant collision frequency studied in
the infinite half-space [13]and in a finite space [16]. Case
2 is characterized by I =0, the case of constant cross sec-
tion studied in the infinite half-space [9,14]. Case 3 is
characterized by l=1, which was also studied in the

TABLE I. Parameters for cases 1 —3.

Case

' By extrapolation.

Sg

38
16.5

16.5

Ug

0
4.33

6.33

Uo

1.32
1.67
1.35
1.56
1.8'
1.3
1.67
1.85'

0.462
0.462

0.316
0.316

Method

MDD
BE

SMD
MDD

BE
SSD

MDD
BE

Reference

This work
[13]
[16]

This work
[14]
[9]

This work
[15]
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infinite half-space [15]. In case 1, the average energy at
the emitting boundary is assumed to be near zero and Sd
is assumed to be 38, in correspondence with previous
work [16]. In cases 2 and 3, the average energy at the
emitting boundary is arbitrarily assumed to be 2 eV and
the distance d between absorbing and emitting boun-
daries is arbitrarily assumed to be 5.2 cm. Because
p,qE/D, q=3. 18 cm ' in Refs. [14] and [15], the corre-
sponding value of Sd is 3. 18X5.2=16.5. Likewise, be-
cause e, =0.462 eV in Ref. [14] and 0.316 eV in Ref.
[15], the corresponding values of U at the emitting
boundary are 2/0. 462=4.33 in case 2 and 2/0. 316=6.33
in case 3. These parameters are summarized for all three
cases in Table I. All entries in Table I are input
values —boundary conditions, etc.—except those in the
column headed Uo, the values of which are solution re-
sults. Solution results of previous calculations of Uo are
also given in Table I.

III. RESULTS AND DISCUSSION

In this section, MDD results for density, average ener-
gy, and drift velocity pE, calculated according to the
method outlined above, are compared with the corre-
sponding Boltzmann and Monte Carlo calculations of
Refs. [13—15). It is shown that MDD results are in semi-
quantitative agreement with BE results for the spatial
variation of density in the nonequilibrium region near the
absorbing boundary. Furthermore, MDD results predict
increasing average energy in the nonequilibrium region
near the absorbing boundary where the electron density
goes to zero, in qualitative agreement with BE results. In
case 1, the MDD predicts a nonequilibrium region near
the absorbing boundary that is the same size as that pre-
dicted by the analytic solution of the BE. In cases 2 and
3, however, the MDD predicts a somewhat larger region
of nonequilibrium than that predicted by the numerical
solution of the BE. This result suggests that the influence
of the absorbing boundary extends further than the dis-
tance of 1 cm assumed in the Boltzmann calculations of
Ref. [14] and [15]. It is tempting to speculate that closer
agreement between the numerical Boltzmann solution
and the MDD solution might be obtained with a
Boltzmann calculation extending all the way to the emit-
ting boundary, as was recently done for the SST in He at
high E/N [18].

It is also shown that MDD predictions of N(S) for
energy-dependent collision frequency agree much more
closely with those of the numerical solution of the BE
than do density-gradient-expansion [19] (DGE) predic-
tions. It has been shown previously that DCrE predic-
tions of U($) do not agree even qualitatively with any of
the other methods discussed in this paper [16]. There-
fore, it is suggested that DGE analysis is simply not appl-
icable to nonequilibrium problems of the type discussed
in this paper.
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shown graphically in Fig. 1. Note that the absorbing
boundary is located at S=O in this figure, the emitting
boundary is located at S=38, and U at the emitting
boundary is nearly zero. These conditions are imposed
for comparison with SMD moment calculations made
previously [16]. The results shown in Fig. 1 are hardly
distinguishable from those presented in Fig. 1 of Ref.
[16]. The results of Ref. [16] are obtained by solving the
system of SMD equations consisting of Eqs. (1), (4) and
the following relation for H:
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FIG. 1. Relative density N and average energy U plotted
against dimensionless distance S, measured from the absorbing
boundary. Emitting boundary located at Sd =38. Case 1,
l = —1. Boundary conditions are N(0) =0, U(Sd ) =0, and
Q(0) = U(0).

A. Case 1: I = —1

MDD results for the relative density and the average
energy in the case of constant collision frequency are

FIG. 2. Comparison of MDD results for the relative density
N(S) with the analytic solution of the Boltzmann equation of
Ref. [13] and the DGE result of Ref. [19] near the absorbing
boundary. Case 1, I = —1.
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which follows from the assumption of a shifted Maxwelli-
an EEDF when the energy of drift motion is small com-
pared with the energy of random motion.

Figure 2 shows a comparison of the present results for
N(S) with the analytic solution of the BE [13] near the
absorbing boundary. Shown also in this figure is the
DGE result for N, which is N = 1 —exp( —S ). According
to this figure, the agreement between the MDD and the
analytic Boltzmann solution of Ref. [13] is quite good, as
is the agreement between the MDD and the DGE.

Figure 3 shows a comparison of the present results for
U(S) with the analytic solution of the BE [13] near the
absorbing boundary. As listed in Table I, the value of U
at the absorbing boundary is 1.32 for the MDD, whereas
the analytic solution of the BE gives 1.67 [13]. However,
the extent of the nonequilibrium region next to the ab-
sorbing boundary is the same for both calculations. In
cases 2 and 3 discussed below, the extent of the nonequili-
brium region based on the MDD is somewhat larger than
that based on the numerical solution of the BE.

B. Case 2: I =0

CASE 2
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I
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/
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FIG. 4. Relative density N and average energy U plotted
against dimensionless distance s, measured from the absorbing
boundary. Emitting boundary located at Sd=16.5. Case 2,
l=0. Boundary conditions are N(0)=0, U(Sd)=4. 33, and
Q(0) = 1.273 U(0).

MDD results for the relative density and the average
energy in the case of a constant cross section are shown
graphically in Fig. 4. As before, the absorbing boundary
is located at S=O, but the emitting boundary is located
at S=16.5. In addition, the value of U at the emitting
boundary is 4.33, while that at the absorbing boundary is
1.564.

Figure 5 shows a comparison of the present results for
N(S) with the numerical solution of the BE [14] near the
absorbing boundary. Shown also in this figure is the
DGE result for N, which is N=1 —exp( —2S). Accord-
ing to this figure, the agreement between the MDD and

the numerical Boltzmann solution of Ref. [14] is much
better than the agreement between the MDD and DGE
calculations. The inhuence of the absorbing boundary
extends over a somewhat larger distance for the MDD.
Clearly, the DGE solution is not a very good approxima-
tion.

Figure 6 shows a comparison of the present results for
U(S) with the numerical solution of the BE [14] near the
absorbing boundary. As listed in Table I, the value of U
at the absorbing boundary is 1.564 for the MDD,
whereas the numerical solution of the BE gives 1.8 [14].
Consistent with Fig. 5, the nonequilibrium region extends

1,8

CL
LLJ

LLI

C3
1.4—

LLJ

1.2—
Ld

LLI
CL

CASE 1

REF. 13

MDO

1.5

V)

LLJ
C5

O
I—

Ld
0.5—

LLJ

CASE 2
REF. 14

MDD

DGE

0.8 I I I

2 4 6
NORMALIZED DISTANCE S

I I

2 3
NORMALIZED DISTANCE S

FIG. 3. Comparison of MDD results for the relative average
energy U(S) with the analytic solution of the Boltzmann equa-
tion of Ref. [13] near the absorbing boundary. Case 1, I= —1.
Note that the extent of the nonequilibrium region is about the
same, even though agreement for U(0) is poor.

FIG. 5. Comparison of MDD results for the relative density
N(S) with the numerical solution of the Boltzmann equation of
Ref. [14] and the DGE result of Ref. [19] near the absorbing
boundary. Case 2, l=0.
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1.8 C. Case 3: I = 1

1.6—
CL
LLJ

LLJ

LLJ

1.2-
LLj

LLj

0.8 I I

2 3
NORMALIZED DISTANCE S

over a somewhat larger distance for the MDD.
Figure 7 shows a comparison of the present results for

the relative drift velocity 'N(S) —=pip, q
with the numeri-

cal solution of the BE [14] near the absorbing boundary.
Clearly, the numerical Boltzmann solution for the rela-
tive drift velocity does not follow the relation

FIG. 6. Comparison of MDD results for the relative average
energy U(S) with the numerical solution of the Boltzmann
equaton of Ref. [14] near the absorbing boundary. Case 2, 1=0.
Note that the extent of the nonequilibrium region is larger for
the MDD.

MDD results for the relative density and the average
energy in the case of a cross section proportional to the
square root of the electron energy are shown graphically
in Fig. 8. As in case 2, the absorbing boundary is located
at S=0 and the emitting boundary is located at S= 16.5.
Now, however, the value of U at the emitting boundary is
6.33 and that at the absorbing boundary is 1.67. The gen-
eral features of nonequilibrium regions near the boun-
daries are the same as in case 2.

Figure 9 shows a comparison of the present results for
X(S) with the numerical solution of the BE [15] near the
absorbing boundary. Shown also in this figure is the
DGE result for N, which is X= 1 —exp( —3.45S). As in
case 2, the agreement between the MDD and the numeri-
cal Boltzmann solution of Ref. [15] is better than that be-
tween the MDD and the DGE. Likewise, the nonequili-
brium region extends over a somewhat larger distance for
the MDD.

Figure 10 shows a comparison of the present results for
U(S) with the numerical solution of the BE [15] near the
absorbing boundary. As listed in Table I, the value of U
at the absorbing boundary is 1.67 for the MDD, whereas
the numerical solution of the BE gives 1.85 [15]. Con-
sistent with Fig. 9, the nonequilibrium region extends
over a somewhat larger distance for the MDD.

Figure 11 shows a comparison of the present results for
the relative drift velocity 'N(S) —=pip, q

with the numeri-
cal solution of the BE [15] near the absorbing boundary.
As in case 2, the numerical Boltzmann solution for the
relative drift velocity does not follow Eq. (24).

P U
—(I+ I)/2

Peq

which is inherent in the MDD.

(24)
IV. SUMMARY AND CONCLUSIONS

A modified-moment method, called the MDD, is used
to predict the effect of absorbing boundaries on a con-
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FIG. 7. Comparison of MDD results for the relative drift ve-
locity 'N(S) with the numerical solution of the Boltzmann equa-
tion of Ref. [14] near the absorbing boundary. Case 2, 1=0.
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FIG. 11. Comparison of MDD results for the relative drift
velocity %'(S) with the numerical solution of the Boltzmann
equation of Ref. [15] near the absorbing boundary. Case 3,
l =1.
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age energy U(S) with the numerical solution of the Boltzmann
equation of Ref. [15] near the absorbing boundary. Case 3,
l=1. Note that the extent of the nonequilibrium region is
larger for the MDD.

tinuous stream of electrons traveling in a gas in a steady,
uniform electric field. Theoretical results for the density
variation in the nonequilibrium region near the absorbing
boundary are shown to be in semiquantitative agreement
with published Boltzrnann and Monte Carlo calculations
for the same physical problem. Furthermore, the average
energy increases in the nonequilibriurn region near the
absorbing boundary where the electron density goes to
zero, in qualitative agreement with published Boltzrnann
and Monte Carlo calculations.

The MDD prediction of the spatial extent of the none-

quilibrium region near an absorbing boundary is in good
agreement with that predicted by the analytic solution of
the Boltztnann equation [13] for constant collision fre-
quency. The MDD results for the variation of the elec-
tron density in the nonequilibriurn region are in close
agreement with the analytic solution and with the DOE
solution of the Boltzmann equation, while results for the
variation of the average energy do not agree as well with
the analytic Boltzmann solution.

The MDD prediction of the spatial extent of the none-
quilibrium region near an absorbing boundary agrees
somewhat less with that predicted by the numerical solu-
tion of the Boltzmann equation for the energy-dependent
collision frequency [14,15]. These results suggest that the
inAuence of the absorbing boundary extends further than
the distance of 1 cm assumed in the Boltzmann calcula-
tions of Refs. [14] and [15].

The lack of more quantitative agreement can be as-
cribed to the approximate nature of the moment methods
on the one hand, and to the possible incompleteness of
the numerical Boltzmann solutions on the other. It
should be noted that closer agreement is obtained be-
tween the MDD and the analytic solution of the
Boltzmann equation than between the MDD and the nu-
merical Boltzmann solutions. It is speculated that the
numerical Boltzmann solutions may be misleading be-
cause of the assumption that the equilibrium conditions
prevail 1 cm away from the absorbing boundary.

It is concluded that the modified-moment method de-
scribed in this paper is adequate for qualitative predictive
modeling of nonequilibrium effects near absorbing boun-
daries. Furthermore, it is simpler and far less time con-
suming to explore nonequilibriurn behavior with moment
equations than with either Boltzmann or Monte Carlo
calculations. It should be kept in mind, however, that
the main assumption regarding the form of the EEDF in
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the nonequilibrium region has not been formally justified.
Therefore, it is not clear just how much significance can
be placed on the predictions of the MDD method. A
self-consistent Monte Carlo simulation amplifying the

work of Ref. [15], a complete Boltzmann analysis similar
to that of Ref. [18], or a complete analysis based on the
theory outlined in Ref. [2], might provide a better test of
the MDD method.
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