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The ion distribution function in a weakly collisional sheath is obtained analytically for arbitrary
electric-field configurations, based on kinetic equations with elastic collisions. In the light of application
to plasma etching and deposition, the distribution function is integrated to derive the angular and energy
distributions of the ion Aux incident at the electrodes. Under the assumption of a constant-sheath elec-
tric field, the simple analytic expressions I 0 ~ 2 sinO cosO( —4 ln sinO+ sin O —1)/(1+ sin O) and

I,„~—ln(1 —g) for the angular and energy distributions of the nonballistic ion Aux are obtained, where

g denotes the normalized ion kinetic energy. For the more realistic case of a self-consistent electric field,
integral formulas for I 0 and I,„, which are amenable to numerical quadrature, are also obtained from
the Boltzmann-Poisson system. These analytic expressions are compared with Monte Carlo sheath simu-

lations under various conditions and are found to be in excellent agreement.

I. INTRODUCTION

Low-temperature, partially ionized plasmas are widely
used in the fabrication of VLSI (very-large-scale-
integration) circuits. As electronic technology advances
and the sizes of integrated circuits diminish, anisotropy
in plasma processing (i.e., unidirectionality of the
cathode-bombarding ions) becomes an increasingly im-
portant requirement. In recent years, high-density, weak-
ly collisional plasmas in state-of-the-art process tools, in-
cluding ECR (electron cyclotron resonance) devices, have
shown promise in improving anisotropy over convention-
al rf (radio frequency) plasma tools. In such fabrication
tools, the outcome of the process depends strongly on the
nature of the plasma sheath located between the bulk
plasma and the processed material. A quantitative un-
derstanding of plasma sheaths is thus of practical impor-
tance in controlling fabrication processes.

In high-density low-pressure processing tools, most
ions impinging on the electrodes are unidirectional or
ballistic, being accelerated by the sheath electric field.
However, the ions that do collide with neutrals give rise
to an off-normal component that can inAuence the shape
of submicrometer features on processed materials. Such
collided ions in weakly collisional sheaths are evidently
far from thermalized and thus far from Maxwellian, so
their distribution may be obtained theoretically only
through solving the kinetic equation describing the sys-
tem.

To date, much effort has been made to measure and
compute the ion distribution functions in sheaths of vari-
ous glow discharges. Davis and Vanderslice [1]made the
first systematic measurements of the energy distribution
of ions striking the cathode and found that the energy
distributions vary considerably according to the col-
lisionality (i.e., the ratio of the sheath thickness to the
mean free path). Taking into account only charge-
exchange collisions, Davis and Vanderslice also proposed
a simple model of the ion distribution and succeeded in

explaining some of the measured energy distributions.
Taking a more microscopic view, Kushner [2] comput-

ed the energy and angular distributions of the impinging
ions in rf discharges, using the Monte Carlo technique.
In his calculations, as in the model of Davis and Van-
derslice, only charge-exchange collisions are taken into
account, which only yield small angular scattering due to
the neutral thermal energy.

More comprehensive Monte Carlo simulations were
presented by Thompson, Sawin and Fisher [3], which in-
cluded several different forms of elastic ion —neutral-
species interactions as well as charge-exchange collisions
in dc and rf discharges with predefined electric fields.
Recent measurements of the angular distribution in rf
discharges by Liu, Huppert, and Sawin [4] have indicated
that some discrepancy exists between the measured distri-
bution and the angular distribution computed by the
Monte Carlo method similar to that of Thompson, Sawin,
and Fisher [3]. Farouki, Hamaguchi, and Dalvie [5] have
recently reported Monte Carlo simulations with self-
consistent electric fields due to space-charge effects, tak-
ing into account both elastic scattering and charge-
exchange collisions, and discussed the Monte Carlo re-
sults in the context of kinetic theory.

In contrast to such considerable efforts in numerical
simulation and experimental measurement of the ion dis-
tributions in sheaths, it appears that analytic treatment of
the sheath ion kinetics has been slow in progress. This is
mainly due to the difficulty in calculating the collision in-
tegral of the Boltzmann equation describing ion-
neutral-species collisions, which generally give rise to
strong anisotropy of ion distribution in the velocity
space. As Druyvesteyn and Penning and several other
authors [6]—[10] have shown, calculation of the distribu-
tion functions involving only colliding particles with a
small mass ratio, such as the electron —neutral-species
scattering, is amenable to expansion about an isotropic
distribution. However, when the mass ratio of two collid-
ing particles is not ignorable, which is the case for most
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ion —neutral-species collisions, such expansion methods
generally fail. Wannier [11]solved the Boltzmann equa-
tion for ions with ion —neutral-species elastic collisions in
the limit of a strong uniform electric field. Lawler [12]
also solved the Boltzmann equation with charge-
exchange collisions and obtained an ion distribution func-
tion whose asymptotic limit is Wannier's equilibrium
solution.

In the present work, we solve the Boltzmann equation
with elastic collisions to obtain the analytic expression of
the ion distribution function in a weakly collisional
sheath. Under the assumption of low collisionality, the
Boltzmann equation is expanded in terms of the small pa-
rameter d/A, M„p (i.e., the ratio of the sheath thickness to
the ion mean free path). Assuming that the lowest-order
solution of the Boltzmann equation be the ballistic ions
passing through the sheath as a beam, we are able to
derive the distribution function of the scattered ions in an
explicit form for arbitrary electric-field configurations, in-
cluding the self-consistent electric field. In high-density
low-pressure processing plasmas, the collisionality pa-
rameter d/XM„p is typically 10 ' —10 . For example,
when the neutral density is n =2.7X10' cm at a gas
pressure p =1 mTorr and temperature T~ =350 K, the
total cross section for elastic collisions in Ar discharges
o.„,= 5 X 10 ' cm [13,14] gives a mean free path

M„p=,(n o.„,) '=73. 5 mm, and with a typical sheath
thickness d =0. 1 mm, we have d /A, MFP= 1.4 X 10
which is typical in ECR discharges. The smallness of the
parameter d/A, M„p required for the theory presented in
this work to be valid is also discussed; it is shown that
when d /A, M„p —-0.2 or less, the analytic angular and ener-

gy distributions are in remarkably good agreement with
the distributions obtained numerically from the Monte
Carlo simulations, and up to d /A, M„p = 1 the analytic ex-
pressions may still be used as good approximations.

The goal of this paper is to treat in a mathematically
rigorous manner a model system that singles out the
physics of plasma sheaths in which ion —neutral-species
elastic scattering dominates. To achieve this goal, we
need to make some simplifications and idealizations,
disposing of such effects as one may treat elsewhere as
separate problems or easily include in numerical codes as
secondary effects. The first idealization that we make is
to consider only hard-sphere elastic collisions in the
sheath. It is generally considered that, for noble gases,
the cross section for charge-exchange collisions is of the
order of, or larger than, that of elastic collisions. Howev-
er, we confine ourselves here to the problem of elastic col-
lisions since large-angle scattering, which is the major
factor in determining the anisotropy of processing plas-
mas, results mostly from elastic collisions. Furthermore,
as shown in [5], the complete ion distribution function is
a simple superposition of the distribution functions calcu-
lated separately with the elastic collisions and charge-
exchange collisions. As stated earlier, the ion distribu-
tion functions with the charge-exchange collisions are
calculated analytically in [12] and numerically in [1]—[3]
and [5]. We also point out that it is reported in [3] that
different types of elastic collisions, such as hard sphere

and soft sphere, do not significantly alter the resulting ion
distributions.

We also assume for the sake of brevity that the sheath
is composed purely of ions, defining the presheath-sheath
boundary as an interface beyond which electrons are
significantly depleted. Technically, as will be shown
later, it would not be a difficult task to include a simple
model of electrons in our kinetic formulation, such as
electrons in equilibrium with the electric field, in order to
incorporate a more realistic model of the cathode fall re-
gion. Discussions on more complex electron distribution
functions are also found, for example, in [15—17]. How-
ever, in view of our goal in this work, we postpone in-
clusion of realistic models for the presheath and other
electron-related phenomena, such as ionization and disso-
ciation, to future studies.

Although most processing plasmas are generated by rf
discharges, we consider in this work only steady-state
solutions of the kinetic equations, modeling dc
discharges. However, in certain parameter regimes of rf
discharges, the ion transit time can be significantly longer
than or shorter than the rf period, such that ions experi-
ence essentially time-averaged or instantaneous electric
fields of the rf cycle. Therefore, except for some resonant
phenomena that may occur when the ion transit time
across the rf sheath is close to the rf period, dc sheath
models still play an important role in understanding some
basic rf discharge properties [18,19].

In the light of application to plasma etching and depo-
sition, important quantities to calculate from the kinetic
equations are the angular and energy distributions of the
ion Aux impinging on the electrodes on which processed
materials are placed. It is also of interest to calculate the
angular and energy distributions of the ion density, which
are simple integrations over the magnitude of the velocity
for the angular distribution, and over the angle for the
energy distribution, of the ion distribution function f
which is the solution of the Boltzmann equation. In this
paper we obtain, by solving the Boltzmann equation for
weakly collisional sheaths, analytic formulas for the an-
gular distribution I s(8) and energy distribution I,„(g) of
the ion Aux, namely

(8)
2sin8cos8 41 1 + . 48
(1+sin 8) sin8

and

I,„(g)~ —ln(1 —g),
where g is the kinetic energy of an impinging ion normal-
ized by its maximum value. Although obtained under the
assumption of a constant electric field, these formulas are
also a good approximation for more realistic self-
consistent fields. The general expressions of the ion dis-
tributions in self-consistent electric fields are also derived
in this work. These expressions of the ion Aux serve as an
inexpensive means to predict the effects of the ion born-
bardment on electrode surfaces. For example, the distri-
butions of the ion Aux derived in this work may be used
as input data for shape-evolution calculations, such as
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those described in [20].
The rest of this paper is organized as follows. In Sec.

II, model equations for the sheath are presented based on
kinetic theory. The ion distribution function is derived
from these model equations in Sec. III. The angular and
energy distributions are calculated by integrating the ion
distribution function in Secs. IV and V, respectively, and
these analytic formulas are compared to the Monte Carlo
simulation results. Section VI contains the conclusions
and discussion.

is seen to be independent of z and solely determined by
the conditions at the presheath-sheath boundary, z =0.
The right-hand side of Eq. (6) gives the definition of the
ion stream velocity ( v, ) (z).

In this paper, we consider only uniformly distributed
(i.e., z-independent) cold neutrals, so that

F (V ) =ns5(V ),
where n denotes the neutral number density. Executing
integration of Eq. (4) with F given above, we obtain

II. KINETIC EQUATIONS

Bf q d4 Bf 5f' Bz m dz BU, 5t

d N qn(z)
dz &o

Here the ion density n (z) at z is given by

n(z)= ff(v, z)dv, (3)

and the collision integral (5f l5t)„i may be expressed as

5 I= fF(V')f (v')~v' —V'~ do0 dV'
B(v)col

As a model of a plasma sheath, we consider a steady-
state (8/Bt =0), capacitively coupled planar discharge
with the electric field in the z direction and no magnetic
field. The ion distribution function f ( v, z ) is then
governed by the Boltzmann equation coupled with
Poisson's equation:

4
I

=n o„,u f —f(v') d 0 f (v)—
tot

where v = v~, u'= v'~ and o.„, denotes the total cross
section. In the case of hard-sphere collisions, the
differential cross section of the ions scattered into the
solid angle element d 0 may be written [22] as

od 0= sing, dy, dg,

where g, is the polar scattering angle measured in the
center-of-mass system and f is the azimuthal scattering
angle about the v' direction. The total cross section o.„t
is given in terms of the sum a of the ion and neutral radii
by a„t=m.a . The center-of-mass scattering angle g, is
related to the ion velocities U' and U by

'1/ m +M +2mM cosy,
m+M

—fF(V)f (v)iv Viod Qd—V,
where the Jacobian has the form

3
B(v') iv' —V'i

B(v) iv —V'i

(4)
with m and M being the ion and neutral masses, respec-
tively, and to the scattering angle in the laboratory frame
X by

M sing,
tang =

m +M cosy,

In Eq. (4), o. denotes the difFerential cross section for
ion —neutral-species collisions, 0 denotes scattering solid
angle, F denotes the distribution function of neutrals, V
and v denote the velocities of neutrals and ions, respec-
tively, and the primed quantities v' and V' indicate veloc-
ities before collisions. Here the ion —neutral-species col-
lisions are assumed to be elastic. The z dependence of the
distribution functions is not explicitly indicated in Eq. (4).
The first term on the right-hand side of Eq. (4) represents
the rate of increase of ions in an infinitesimal velocity-
space volume element dv due to scattering into that ele-
ment by ion —neutral-species collisions, whereas the
second term represents the rate of decrease of ions in d v
due to scattering out of that element by ion —neutral-
species collisions. For further details on the collision in-
tegral, the reader may refer to, for example, [21].

It is easy to show that the integral of the collision term
(5f/5t)„, over the entire velocity space v vanishes.
From Eq. (1), therefore, the z component of the ion flux

I o= f u, fdv=n(z)(u, )(z) (6)

In the special case m =M that we shall be primarily con-
cerned with, we have

=2g (O~y~ir/2) and v =u'cosy . (10)

f =fnt/(co, d), n =nnt, C&=gqntd /eo,

v =utvp 8, z =gd
(12)

where nr is the ion density at the presheath-sheath
boundary, nt = n (0), d is the sheath thickness, and
co&,.=(q nt/earn)' is the ion plasma frequency. Using
the dimensionless variables in Eqs. (12), the system of

The system of Eqs. (1)—(3) may be solved with the "ini-
tial" conditions

f (v, O) =ft(v), N(0) =0, and =EtdN
z

given at z =0, where EI denotes the magnitude of the
electric field at the presheath-sheath boundary.

We now nondimensionalize Eqs. (1)—(3) by using the
following transformations:
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Eqs. (1)—(3) may be written as

df dP df
dg au,

4
I

u f f(u') d'0 —f(u)
MFP tot

d2Q' = —n(g),

n(g)= ff(u, g)du,

(13)

(14)

(15)

5(uj )
5(&28—u~) if sgn u, =l and v ~0fp

—— 2m'up

0 otherwise . (20)

ro=nlv, =no(z)vp(z) (21)

Here sgnu, denotes the sign of the function u, (A, g), i.e.,
sgnu, =u, /~u, when ~u, ~AO. As shown in Eq. (6), the
ion Aux j. p is independent of z. From the initial condition
(16) and the lowest-order Boltzmann equation (17), there-
fore, we have

where u = ~u~, u'= ~u'~, and iLM„p=(n cr„,)
' is the

mean free path. The initial conditions in Eq. (11) are also
rescaled accordingly.

III. THE ION DISTRIBUTION FUNCTION
IN A WEAKLY COLLISIONAL SHEATH

We now solve Eqs. (13)—(15) in the limit of weak col-
lisionality, e=d/AMFp « 1. Henceforth the ions and the
neutrals are assumed to be of the same species, so thatI =M. For the sake of simplicity, the ions are assumed
to enter the sheath with a fixed velocity v~ as a beam, so
the "initial" condition for f is given by

d'0o

d g2

ug

Qu g 2fp
(22)

where np is the density of the ballistic ions defined by
no=ni ffodu and vo is the ion stream velocity of the
ballistic ions defined by the equation above. It is easy to
check from Eq. (20) that the ion stream velocity is given
by

Vp
=up(g)=Qua —2go(g) .

COp 8
The lowest-order potential drop Pp may be calculated

through substitution of Eq. (20) into Eq. (18), i.e.,

ni5(v, )
fi(v) = 5(v, —v~ )

27TV y

The exact, closed-form solution of Eq. (22) has recently
been derived in [23], where it is shown that Pp is a non-
positive (Pp 0) monotonically decreasing function for all

g ~ 0. We note that the solution of Eq. (22) in the limit of
v&~0 with fixed ion fiux rp=nzv~ [or, equivalently,
u~ ~0 with Ppu~~ =0 (1)] and the condition EI =0
gives the collisionless Child-Langmuir law [24]

or

5(uj )
f(u, g=O) = 5(u, —u~ ),

27Tu
(16)

N= —6' '(nlvzq—/eo) (m /q)' z4

or
2/3

/3

We now proceed to the first-order equations, which are
given by

dP, Bfo

dg Bu,

af,"'
ag

d0o ~f i

dg Bu,
(23)

d P,
d 2

= —ff, ( gu)du, (24)
~fo dP ~fo"'
ag dg au,

(17)
where

4

with uz=vz/co, d)0. Here v~ and u~ are the magni-
tudes of the components of v and u perpendicular to the z
direction. It is known that the initial ion stream velocity
v~ is typically given by the ion sound speed
v~ =(k~ T, /m)'~, where k~ is the Boltzmann constant,
T, is the electron temperature of the bulk plasma, and m
is the ion mass (this is the Bohm sheath criterion; see
[21]). The initial value for the potential is given by
P( g =0)=0, as before.

By expanding the ion distribution function f and the
potential P in terms of the small parameter e in the form
f=fp+ef, + . and P=Pp+eP&+ . , we obtain
from Eqs. (14) and (15) the following lowest-order equa-
tions for a collisionless sheath:

d Po

d
= —ffo(u, g)du .

With the use of the new independent variable

(18) 8 =u f fo(u') d 0
~tot

(2&)

6'=
—,'u, +go(g),

Eq. (17) becomes

Bfo(u~, 6', sgnu„g)
uz =0

and its solution with the initial condition (16) is given by

5(u~)
u 5(&26 —uz) if sgn u, =l and 8~0

27ru j
(26)0 otherwise .

The component B+ of the collision integral may be eval-
uated as follows:
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B+= f 5(u)B+du
~s

= f du' f u'fo(u')sing, dy, dg
1

=—f du~ f du,' f dy f dg5(u)2vru~u'fo(u')sing cosy
0 0 0 0

—f "du~ f "du' f d8 f dy5(u)5(u~)5[+u' +2&o(g) —u~]u'sin8cos8
0 0 0 0

if cos8) 0 and u' +2$o(g) &0 (28)

0 otherwise .

f "u'du f sin8d8 f d+5(u) 5(+u /cos 8+2$o(P) —u~)
0 0 0 ~u cosO

0 otherwise

if cosO&0 and +2$o(g) & 0 (29)
cos 0

where Eqs. (9), (10), (20), and the relations u =u 'cosy and
(u'/u) =B(u')/B(u) are used. Here Vs is the entire ve-

locity space, 0 denotes the polar angle between u and the
z axis, and y denotes the azimuthal angle about the z axis.
It should be noted that, in deriving Eq. (28) from Eq. (27),
we have used y=8, g=y, and u,'=u' since uI =0, and in

deriving Eq. (29) from Eq. (28), we have used u'=u/cos8
[see Eq. (10)]. Carrying out the integration with respect
to u in Eq. (28) and using cos8= u, /u, we obtain

velocities u, of scattered ions are positive (i.e.,
0 y~n/2) and, therefore, f, =0 for sgnu, = —1. The
initial conditions for f I with sgnu, =1 are then given by

f, =0 on the boundary /=0 for 6' & 0 and on the bound-
ary @=go(g) for 8 ~0, as indicated in Fig. 1. It is con-
venient to split f, as f, =f&++f, in such a way that Eq.
(23) may be written as

Qf +
u

' =B+
8

B+='

5(&h —u~ )
'ITALY

(u2+u2)2
if u, )0 and h = +2$o&0 (30)

Q

0 otherwise .

and

01

dpi ~fo
dg Bu,

1

z
5(&h —uz) if sgnu, =1 and h &0

7T'll

In order to solve the first-order equation (23), we again
transform the variable u, to 6' defined in Eq. (19), so that
the sum of the first two terms on the left-hand side of Eq.
(23) becomes u, Bf&(uz, @,sgnu„g)/Bg. We note that the
domain of the function f& is uz &0, 8—Po=( —,')u, &0,
and $& 0 (see Fig. 1). As shown in Eq. (10), the parallel

0 otherwise, (31)

with u, (6,$)=2[6—Po(g)] and

1 d4'i ~fo
u, dg Bu,

5(ui)
5(&26"—u~ )

27TQ g

if sgnu, =1 and 6~0
0 otherwise,

(32)

where u5(u~)=u, 5(u~) is used. The second term on the
left-hand side of Eqs. (32) may be simplified as

dP, df dP, 5(u ) 5(&2@—u )
(33)

u, dg Bu, dg 2vru~ u~(&28 u~ )—
FICx. 1. The domain on which f, is defined, where

z = —240(0).
where the relation d5(x)/dx = —5(x)/x is used. The in-
itial conditions for f and P require that f,+ =f &

=0 and
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$, =0 at (=0. With these initial conditions, Eq. (32) is

readily integrated and we obtain

5(ui ) 5(ui ) 5(&26 —us )f, = — 5(&26 —us )g—
2 ITu I 2n.ui u~($26' —us)

(a)
= UB /2 —Ui

~~i i r i r ii ZXXrillillJ'lA'g

(34)

if sgnu, = 1 and 6 ~ 0, and f, =0 otherwise.
We now integrate Eq. (31). Since Po(g) is a monotoni-

cally decreasing function, we transform the variable g to
X by

Ug
2

y = —24o(0»

where y ~ 0 and y ~ —2@. Then Eq. (31) becomes

Bf,+ 5(&h —us )

By 2/I)m (26 +y)

(35)

(36)

h = UB

2hyp=UB

if sgnu, = 1 and h ~ 0, otherwise Bf,+ /By =0. Here
Po=dgoldg evaluated at g=g(y) =go '( —y/2), and the
function h, defined in Eq. (31), may be written in terms of
8, ui, andy as

-y/2

8

o UB'/2

J

h =2(ui+8)+
2D+y

which is a monotonically decreasing function of
y() —2@). In integrating Eq. (31), we consider three
mutually disjoint regions, namely, 6' ~ 0, 0) 6 ~ —u i,
and —u', & e.

In the case 6 ~ 0, the range of the function h is

0«2(ui+ 6 ) & h «ho(6, ui) =h (6', ui, y =0)

=2(u i+ 6 )+ u i/2D

for fixed 6 and ui. Therefore, if

u4,
2(ui+8) &us «ho(@,ui)=2(ui+6)+ 26

integration of Eq. (36) over y from y =0 yields

(37)

f+ ug
—m.PI)(g, )[u~ —2(ui+ 6') ]

(38)

when h (6,ui, y) «uii, and f,+ =0 otherwise. If the con-
dition (37) is not satisfied, then also f,+ =0. In Eq. (38),
g, =g, (ui, 8) denotes the g value that satisfies h =uii, or
g, =g(y, ) with

u4,

y, = —2@+
uii —2(ui+ 6 )

(39)

Physically, the variables u j and @ are constants of
motion of the system and the condition h =uz states that
the ion having such u ~ and 8 satisfies the collision condi-
tion u =u'cos8 [Eq. (10)] at the position specified by the
potential Po= —y, /2 of Eq. (39) or, in other words, at
g=g, (ui, 6'). In the case —u i «6 & 0, the function h has
the range 0«2(ui+A') &h & ~. Therefore, if (2ui
+ 6') & us, then integration of Eq. (31) over y from

y = —2A yields the solution f i given by Eq. (38). Other-

FIG. 2. The region on which f,+ is given by Eq. (38): (a) the
region on the y —6 plane with a fixed u j, and (b) the region on
the 8 —u& plane with a fixed y. Outside this hatched region,

f i+=o

wise f,+ =0. In the case 6 & —u i, since
(2ui+6') &h & ~ and 2(ui+6) «0, the solution f i+ is

given by Eq. (38) for any u~, even in the case h «0. In
summary, the region where the solution f i+ is expressed
by Eq. (38) is given by the hatched region in Figs. 2(a)
and 2(b).

IV. ANGULAR DISTRIBUTIONS

A. General formulation

We first calculate the angular distribution of the ion
density,

Fs(8,z)= f deaf u du f(u, 8,z)sin8
0 0

2m. "r ni9
du u f,+ ( 6', u i, g),

MFP
(40)

Having derived the ion distribution function in the pre-
vious section, we now calculate the angular distributions
of the ion Aux incident on the electrodes and of the ion
density at the electrodes. The angular distribution of the
ion Aux, in particular, is of practical importance since it
determines the anisotropy of the process plasma. In Sec.
IVA a general formulation giving the angular distribu-
tions of the ion Aux and the ion density is presented. The
cases of a constant electric field and a self-consistent elec-
tric field are discussed in Secs. IV B and IV C, respective-
ly. The ratio of the ballistic ion Aux to the scattered ion
Aux and the ratio of the ballistic ion density to the scat-
tered ion density are calculated in Sec. IV D.
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and of the ion Aux,

I s(8,z) =f dy f u du u,f (u, 8,z)sin8
0 0

2~nice,d sinO cosO
du u f,+(6', ui, g),

MFP 0

where

(41)

6'=
—,'u cos 8+go(g) and u~=u sin8 . (42)

In this section, we are concerned only with angular distri-
butions for 8)0 and do not count ballistic ions (8=0)
that do not sufFer a collision. We note that f, given in
Eq. (34) gives only a ballistic contribution to Fs and I s,
because of the factor 5(u~). The ratios of the scattered
ion density and flux, given by Eqs. (40) and (41), respec-
tively, to those of ballistic ions are also of practical im-
portance, and will be discussed later in Sec. IV D.

In order to carry out the integration of Eqs. (40) and
(41), we need to determine the range of the integration
variable u for which f,+ is given by Eq. (38). As dis-
cussed in the previous section, f,+ is given by Eq. (38)
when

and

u '2g
if ) ( D)0),

cos 0

then

and

Q
0&u &y+ cos 8— vD—B 2 I

2 2

2
~B 2 1

y + cos 8+ VD—& u & (u~+y)cos 8 .
2 2

(48)

u —(2y +uscos 8)u + (y +us )y

(u~+y) —(1+sin 8)u
(49)

It is easy to show that

(us+y)cos 8)y+(u~/2)cos 8+&D /2

for all y ~0 and L9. It should be noted that the term
us/y =mus/2q~@0~ denotes the ratio of the initial ion
kinetic energy to the zeroth-order potential energy N0 at
z =gd and typically takes a small value.

It is an interesting observation to write Eq. (39) as

u~4
h =2(uj+6)+ &us2

2@+y
(43)

where the relation

us —2(u ~+ 6') =(u~+y) —u (1+sin 8)

and

u4,
2(u f +6 )+ )u~

2@
(44)

on the domain y )0, y ) —2A', and u~ )0. From Eq. (42)
and the inequality (43), we obtain the condition

u &(us+y)cos 8 . (45)

Substituting Eq. (42) into the inequality (44) yields the
condition

u —(2y +uscos 8)u +(y +us )y )0 . (46)

The discriminant of this quadratic equation for u is
given by

D =(2y+uscos 8) —4(y+us }y

=us(uscos 8—4y sin 8) .

Therefore, the range of u is given as follows:

2
~B s1n 0

( =D & 0}, then 0 & u & (uz~+y)cos 8
cos 0

(47)

is used. From the inequality (43), it is obvious that the
denominator of Eq. (49) [or equivalently the denominator
of Eq. (39)] is positive, so that the condition (46) [or
equivalently Eq. (44)] requires that y, &0. On the other
hand, with the use of the above expression for y„ it is
easy to show that the condition y, ~y is equivalent to the
condition (45) [or equivalently (44)]. Since the monotoni-
city of the potential Po(g)= —y/2 implies that the ine-
qualities y, ~ 0 and y, ~y indicate that the collision loca-
tion g, satisfies g, )0 and g, & g, respectively, the condi-
tions (45) and (46) ensure that the ions collide where they
are allowed to collide in our model, i.e., 0 & g, & g. (Note
that we are observing the ion distribution function at g
and, in the low-collisionality limit, the ions that have col-
lided with neutrals must have collided before reaching
the position g if the ions have the same or larger mass
than the neutrals m )M [5].) A similar physical interpre-
tation of the conditions (47) and (48) is discussed in the
Appendix.

In the case

u~/4y =mu~/8q~@o~ & sin 8/cos48

where the inequality (47) holds, therefore, the angular
distribution of the ion density is given by

2mdnlsin8 Q '+x o s QBQ dQ
Fs(8,z) =

Hap ~$0(g, )[(us+y) —u (1+sin 8)]

where the relation

(50)

us —2(uj+8)=(u~+y) —u (1+sin 8)
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is used again. Similarly, the angular distribution of the ion Aux is given by

2vrnlco, d sing cosg Q~g+y co~gI pt u&u dur,(g,z) =
~MFP —~$0(g, )[(ug+y) —u (1+sin 9)]2 2 ' 2 (51)

For the small angles satisfying uii/4y ~ sin 9/cos 9, the
range of integration of Eqs. (50) and (51) needs to be
changed according to the inequality (48).

We note that, in deriving the ion distribution function
given in Eq. (38) and, subsequently, the angular distribu-
tion functions given in Eqs. (50) and (51), the potential
Po(g) is treated as a given function; in other words, for
the distribution function f,+ to have the form (38) does
not mathematically require that the field equation (18)
[or, equivalently Eq. (22)] be satisfied by Po. In order to
obtain a physically self-consistent solution, of course, the
potential Po used in those formulas needs to satisfy Eq.
(18). However, it is still instructive to use a simpler form
for the potential $0, which does not necessarily satisfy
Eq. (18), in order to further proceed with the calculations
and obtain simple mathematical formulas for various im-
portant quantities. In the following subsection, we shall
assume a constant electric field, Pa=const, to execute in-
tegration of Eqs. (50) and (51).

B. Constant fields

If the electric field is constant, then the term PO=EI—
may be taken outside of the integration and we have

Fg(g, z) =no(z) Vg(g),
MFP

(54)

2mvg Z («I) .
~~EI~MFP ~MFP

(55)

In most plasma-processing applications, the angular
distribution of the ion Aux is of more practical interest
[20] than the angular distribution of the ion density dis-
cussed above. If the electric field is constant, then, as in
Eq. (52), the integration of Eq. (51) can be easily per-
formed, and we obtain

2nlco,d uii(uii+y)r,(g, z) =
MFP

singcosg dg
—Po(g, )[I—(1+sin 9) ]

d [&a —20o 0 ]
0 E

cosO

0

~MFP
(56)

where we use the fact that nlug =no(z)[uii —2/0(g)]'
Here the condition u~/4y ((1 requires that the range of
z in which the expression (54) holds be given by

2dnl u (guy +y)
'

Fg(g, z)=
~MFP

sing' dg
—(j)0(g, )[1—(1+sin 9)g ]

dni ug [xiii 2(PO( g) ]
&g( 9),

~MFP 2E

where

2 sing 1

I+»n 9 &I+sin 9

(52)

where I 0=nival and

2 sing cosg 41 1 + . 49
(1+sin 9) sing

(57)

which gives the profile of the ion-fiux angular distribu-
tion. As in Eq. (52), g=u/Qug+y. If the initial veloc-
ity v~ is sufficiently small, so that the condition
ug/4y «1 [or Eq. (55)] is satisfied, then Eq. (56) gives
the angular distribution for most of 0)0 correctly, as in-
dicated by inequality (47). In this case, as in the case of
Eq. (52), Eq. (56) may be further simplified with the use of
ug « Po=EIg and g—iven in dimensional form by

Xln
I++I—sin 9
1 —Vl —sin 9

—2 cosO

r~r,(g, z) = C,(g) .
MFP

(58)

(53)

In Eq. (52), g=u/Qug+y with y = —2go(g) is used.
Since we are concerned with the case of small initial ve-
locities where —,'mog (&q l@ol «&g/4y =mUB l
8ql@ol «1, Eq. (52) gives the angular distribution for
most of 0)0 correctly in the weak-collisionality limit. If
uii /4y ((1 holds, Eq. (52) may be further simplified with
the use of uii « go=El( with—

EI =E (z)/(qdni leo) =EI l(qdni/eo)

and given in dimensional form by

Thus, I is seen to be independent of the electric-field
strength EI in the case of a constant electric field.

Figures 3(a) and 3(b) show angular distributions of the
ion density and the ion Aux, respectively, in the case of a
constant electric field. Here the solid lines represent the
theoretical profiles Vg(g) for Fig. 3(a) and Qg(g) for Fig.
3(b) given in Eqs. (53) and (57), respectively, and the his-
tograms are obtained from the Monte Carlo simulations.
The Monte Carlo simulation code used here is capable of
handling both constant and self-consistent electric fields;
the details of this code are given in [5]. An excellent
agreement between the theoretically predicted profiles
and the Monte Carlo data is evident in Fig. 3. The simu-
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V,= f ""V,(0)d 0=1.39,
0

a, = f"a,(0)d0=1 0..
(59)

(60)

Note also that the ballistic components of the Monte
Carlo simulations in these figures, at 0=0, which corre-
spond to 5 functions, are truncated at I=I &=3 or by
the frames of the figures.

lation parameters are d/A, MFp=0. 14 EI =4.1X10
QB =4.2X 10

us /4y =m Us /8qEI d =5. 1 X 10

and g=z/d =1. In Figs. 3(a) and 3(b), the profiles are
normalized in such a way that the areas under the curves
and the histograms representing scattered ions are equal
to unity. This requires use of the following normalization
factors:

C. Self-consistent fields

&o dPo

Qu,' —2y,
Q B

where the initial condition dPo/dg=EI is used. Carry-
ing out this integration and substituting Po = —y, /2
yields

In the case of self-consistent electric fields, where the
potential Po is obtained by solving Eq. (22), the electric
field Pt is no longer independent of g and the term Po(g, )

becomes a function of Q and 0. The angular distributions
Fe(0,z) and I'&(0,z) then need to be calculated directly
from Eqs. (50) and (51) with knowledge of the dependence
of PIi on u and 0. As discussed in Sec. III, Po(g, ) is the
derivative of Po evaluated at g=g„where the potential

Po satisfies —2$o=y, with y, given in Eq. (39) or Eq. (49).
As we shall presently show, Po may be expressed as an ex-
plicit function of Q and 0.

Multiplying Eq. (22) by dPo/dg and integrating with
respect to g, we obtain

2
1 d0o 1-2
2 dg +2'

PIi(g, ) = —[2(us Quii+y, +u~K) ]' (61)

LL

O

LL

O

co
C)

O

0
0.0 0.2 0.4

8 / (ml2)

(a)

0.6 0.8 1.0

where K =El/2uii —1()—1). It is shown in [23] that
the potential Po is a weak function of E for realistic
values of K ( —1 (K & —,

' ). The function y, is given by Eq.
(49) and satisfies

[(u~+y) —u ]
QB +g~ =

(us+y) —(1+sin 0)u

Equation (61), together with Eq. (49) [or Eq. (62)], gives a
closed-form expression for the dependence of po(g ) on u

and 0.
Introducing

Q max

QB
CX-

Q max
with u,„=Quoi +y, (63)

(b)
we may write —Po(g, ) =&2a u, „g (g), where

g(g)= [V (1—
g ) /[1 —(1+sin 0)g ]+aIC j'~ (64)

&C

LL

0
0.0 0.4 0.6

0 / (m/2)

I

0.8 1.0

From Eqs. (50) and (51), the angular distribution of the
ion density is then given by

Fs(0,z) =nl 9's'(0;a, K),d

MFP

and that of the ion Aux is given by

I s(0,z) = I o Qs'(0;a, K),QB

MFP 2a
FIG. 3. The angular distributions (a) of the ion density and

(b) of the ion Aux in the case of a constant electric field obtained
from the Monte Carlo simulations (histogram), Eq. (53) [the
solid curve in (a)], and Eq. (57) [the solid curve in (b)]. The
ballistic ion component, represented by the first bin at 0=0, is
truncated. The magnitudes of Fz and I z are normalized as de-
scribed in the text. The dirnensionless parameters for these re-
sults are d/AMFp=0. 14 Qg=4. 2&&10 El=4. 1&10 and
=1.

where, in the case of a self-consistent field, we define

Pg'( 0;a,K) =2 sin 0
I~~] g 1 —1+sin 0

3d
Pg( 0;a, K) =2 sin0 cos0f1(~)g(g)[1—(1+sin 0)g ]

(68)
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I(a)=IO&(&cos8I . (69)

Although u~ /4y is generally small and the angular distri-
butions for most values of O are given by the integration
over I(a) above, accurate accounts of small-angle distri-
butions must be given by a different integral range I(a).
From the inequality (48), we have

2 sinO
when a ~

(1+sin 8)

2ua sin O

4g cos O

2

0&/& (1 —a )+ cos 8 D'~ /—2
2

I /2

Here the range of integration I(a) is given as follows:
from the inequality (47),

2
2 sinO sin O

when a &
(1+sin 8) 4y cos'8

is clearly seen in Figs. 4, whereas the theoretical models
based on the constant-field assumption [Eqs. (53) and
(57)—dashed curves] predict distributions shifted slightly
towards larger angles.

Since the analytic form of the ion distribution function
f obtained in Sec. III above is based on the assumption of
weak collisionality (d/A, M„p «1), the question arises as
to how large d/XM„p may become before the "real" an-
gular distributions (for finite d/A, MFp) begin to deviate
appreciably from the analytic expressions derived above.
Figure S shows a comparison of the analytic expression
for the ion-fiux angular distribution Qs'(8) (solid curves)
with the self-consistent Monte Carlo simulation data for
various levels of collisionality: d/iLM„p=0. 1, 1.0, 2.0,
and 4.0. As in Fig. 4(b), the dashed curves represent the
angular distribution Qs(8) for the constant-field approxi-

I(a)= '
j. /2

2

(1—a )+ cos 8+D'i /2
2

(70)

&/&cos8 .

Here

D =a [a cos 8—4(1 —a )sin 8] .

We note that the functions 9z' and Qs' depend on K
through the term aK in the function g (g) of Eq. (64).
Since the value cx is typically small and the dependence of
the potential Po on the parameter K is known to be weak
[23], the parameter dependence of Vz' and Qz' on K is also
weak.

Figures 4(a) and 4(b) show the angular distributions of
the ion density and the ion Aux, respectively: the histo-
grams are obtained from the Monte Carlo simulations
with a self-consistent electric field [5], the solid curves are
obtained by numerical quadrature from Eqs. (67) and
(68), and the dashed curves represent V|i(8) in Eq. (53)
and Q&(8) in Eq. (57). As in Fig. 3, the magnitudes of the
distributions are normalized in such a way that the area
under each curve is equal to unity, and the ballistic com-
ponent is truncated. The parameters used in these calcu-
lations are: d/A, MFp=0. 14, EI =5. 1 X 10, u~ =1.0
X10 2, and g=z/d =1. In other words, u~/4y=2. 1 X 10, a =u ii /u, „=2.9 X 10, K = —0.75, and
O, =0.015, where O, denotes the angle where the two
different regions given by inequalities (47) and (48) meet,
1.e.,

LL

OC
LL

O

L

CO

O

1 --t
l

I

1

I

0
0.0 0.2

0.0 0.2

x I, E~

O

r

0.4

04

0 i (e'2)
0.6

0.6

0.8

(b)

I

0.8 1.0

uz sin O,

4g cos O,

2 sinO,
or

(1+sin 8, )

6 t' {e'2)

In dimensional quantities, these calculations correspond
to an Ar discharge with assumed total ion —neutral-
species collision cross section o „,=5.0 X 10 ' cm [13,
14], gas pressure p = 10 mTorr, neutral gas number den-
sity n =2.7 X 10 cm, ionization fraction n; /ng= 1.0 X 10, sheath thickness d = 1 mm, mean free path
A MFp

=7.3 mm, and sheath potential drop —N =30 V.
Good agreement between the simulation results and the
theoretical expressions [Eqs. (67) and (68)—solid curves]

FIG. 4. The angular distributions {a) of the ion density and
(b) of the ion Aux in the case of a self-consistent electric field ob-
tained from the Monte Carlo simulations (histogram), Eq. (67)
[the solid curve in (a)], and Eq. (68) [the solid curve in (b)]. For
comparison, the formulas for the constant-field approximation
[Eq. (53) for (a) and Eq. (57) for (b)] are also presented as dashed
lines. The ballistic ion component, represented by the first bin
at 0=0, is truncated. The magnitudes of Fz and I"@are normal-
ized as in Fig. 3. The dimensionless parameters used here are
d /A, MFp =0.14, u~ = l.0 X 10,El =5. 1 X 10,and g = l.
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mation Eq. (57). It is evident from Figs. 5(a) and 5(b) that
the analytical expression Pll'(8) is a reasonably good ap-
proximation for collisionality d/A, MFF up to almost 1.0,
whereas, as expected, the discrepancy between the analyt-
ic expression for Ps'(8) and the simulation results be-
comes increasingly significant when d/A. MFF) 1. Note
that, since higher collisionality shifts the peak of the an-
gular distribution to larger angles I5], the analytic expres-
sion Qs(8) becomes, coincidentally, a better approxima-
tion to the self-consistent simulation results for a finite
collisionality d /A. MFF = 1 than the expression Qg'(8).

D. The ratio of scattered to ballistic ions

As previously noted, the ratios of the density and Aux
of scattered ions to those of ballistic ions are also of basic
interest in various applications [20]. It is clear from the
expansion we have employed in Sec. III that the density
and fiux of scattered ions are of the order of z/A, MFP
times those of the ballistic ions. In what follows, we cal-
culate these ratios more precisely using the distribution
functions derived in Sec. III.

The number density of ballistic ions at z =gd is given
in dimensionless form by

b ill (0) 0(0)+(d/~MFP)n 1

where

no(g)= f fodu=uIl/+u/l —2/0(g) (72)

and

nl(0)= J "fl du= —no(0)0 (73)

from Eqs. (20) and (34), and thus in dimensional form by

nb, ll;, (z) =no(z) 1—
MFP

(74)

ftl Ug
no(z) =

"(/ 2qElz/I
(76)

We note that n j represents the loss of ballistic ions due to
collisions. The density of scattered ions is given by

n„„(z)=f F//(8, z)d8 . (75)

If the electric field is constant tE (z) =EI ], and the condi-
tion (55) is satisfied, then the scattered ion density (75)
may be calculated from Eq. (54), and the zeroth-order ion
density is given by Eq. (72) as

3,

(a) (c)

2

X

U

d/~mfp= 0

r

4 ' ~—

d / kmfp ——2. 0

(b)

d / ~mfp 1 0 d/k~fp = 4 ~ 0

O

I
—(

I

I

I

I

I

0
0.0 0.2 0.4 0.6

() / (s/2)
0.8 1.0

O

0
0.0 0.2 0.4

() / (x/2)

0.6 0.8

FIG. 5. A comparison of the ion-Aux angular distributions at different collisionalities: (a) d/XMFp=0. 1 (b) d/XMFp=1. 0 (c)
d/A. M»=2. 0; and (d) d/A, MFp=4. 0 for the case of a self-consistent field. The expressions in the low-collisionality limit are also
presented [Eq. (68) for the solid lines, and Eq. (57) for the dashed lines]. The ballistic ion component is truncated except for (d) and
the magnitude of I z is normalized, as in Figs. 3 and 4. The other dimensionless parameters used in these calculations are

us =5.7X10 4, EI=2.8X10,and g= 1.
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Therefore, from Eqs. (54), (74}, (75), and (76), we obtain
to the lowest order the ratio of the scattered ion density
to the ballistic ion density as

n scat

+ballis
f 7 (O)dO=1. 39

MFP 0 AMFP
(77)

I (g)= f ~,fodu=v&
0

(78)

for a constant electric field and a value of z satisfying the
condition (55).

Similarly, the ballistic ion flux at z =gd is given in di-
mensionless form by I »i»s= I 0+ I &, where

A. General formulation

The energy distributions of the ion density I',„(rj,z)
and of the ion flux I',„(il,z) are defined as

F,„(g,z)dg= f dy f sinOdOfv dv,
0 0

I,„(i),z)d7)= f dp f sinOdOv, fu du, (84)

where g denotes the ratio of the ion kinetic energy to the
kinetic energy of the ballistic ions at z, i.e.,

presented. The cases of a constant electric field and the
self-consistent electric field are discussed in Secs. V 8 and
V C, respectively.

I,(g)= f u,f, du= —uiig,
0

from Eqs. (20) and (34), and in dimensional form by

(79) —mu 2
2 u

—,
' muz —q@0 uz +y

(85)

ZI b,&i;,(z)=I 0 1—
MFP

with I 0=nrv~ . (80)
For scattered ions (i)(1), the normalized ion distribu-
tion function is given by Eq. (38) and we have

As before, I, represents the loss of ballistic ion Aux due
to collisions. On the other hand, the z component of the
scattered ion flux is given from Eq. (41) by

2

I „„(z)=f I (sOz) dO= f u.,f, du .
0 MFP

(81)

However, it is clear from the first-order Boltzrnann equa-
tion (23) and the initial condition f, (z =0)=0 that the
first-order flux is zero for every z, i.e.,

u, ,++, du=0 —r„„=—r, ,

dn, (u,'+y)'"
F,„(i),z) =

MFP

I,„(i),z) =

Here we have used the relation

d Ouii sinOV'il

J( ) —P,'(g, )[1—(1+sin'O)i)]

dnI(Qii +y)
~MFP

d OuzsinH cosL9g
X

0 1 —1+sin 0

(86)

(87)

Zr- t= —rl=roA
MFP

(82)

regardless of whether the electric field is self-consistent.
Since expression (34) is the exact solution f, of the first-
order equation (32), we obtain

uii —2(ui+6)=(uii+y)[1 —(1+sin O)il] .

The range of integration J(a} for O is obtained from
the conditions (45) and (56); combining these conditions
yields

from Eq. (80) as the exact scattered ion flux. In fact, as a
special case, if the electric field is constant [E(z)=Ei]
and the condition (55) is satisfied, then we may use the
expressions (58) and Eq. (60) to obtain

I.„„=r, ' f"C,(O)d O= I.„
MFp 0 MFP

or

(cos O( u +(uii+y) z
—2y

u&+y u& u

z i)2+( I —2g)( 1 —a )q&cos 0&

From Eqs. (80) and (82), therefore, the ratio of the scat-
tered ion Aux to the ballistic ion Aux is given to the
lowest order by

r scat Z

r»„,.
for any given or self-consistent electric field and at any z.

V. ENERGY DISTRIBUTIONS

We now calculate the energy distributions of the ion
Aux incident on the electrodes of the ion density at the
electrodes, using the ion distribution function derived in
Sec. III. In Sec. V A, a general formulation to derive the
energy distributions of the ion Aux and the ion density is

The condition that the right-hand side of Eq. (88) be
larger than 1 or

i)+(r) ' —2)(1 —a ))a (il —1)(il—1+a ))0

is given by g ( 1 —0. for g ( 1. In other words, the distri-
bution function has the form (38) only for O satisfying

cos 0&1 when 0 g&1 —o.' (89)

i) +(1—2')(l —a ) 2 &g&cos 0& when 1 —a g(1 .
YJCX

(90)
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The range of integration J(a) for 8 must be chosen ac-
cordingly.

In the following two subsections, as in the previous sec-
tion, we shall discuss two difterent electric-field con-
figurations: a constant electric field and a self-consistent
electric field. As in the case of angular distributions, ana-
lytic integrations of the expressions for the energy distri-
butions are easily performed for a given constant electric
field, and simple analytic formulas for energy distribu-
tions are thus obtained. For a self-consistent electric
field, integral formulae for V,„and Q,„will be presented.

cos8 sin8d 8
~~~~ cos 8—(2 —g )

(94)

In Eqs. (93) and (94), the denominators of the integrands
are expressed in terms of cosO, rather than sinO, so it is
clearly seen that these integrations may be carried out by
the substitution of variables t =cos8 for Eq. (93) and
t =cos 8 for Eq. (94). In Eqs. (91) and (92), u, „denotes
the velocity attained by the ballistic ions at z =gd, i.e.,

v,„=QU~ 2q4—&o(z) =co,d Qtiii+y

B. Constant fields

In the case of a constant electric field, we may substi-
tute —

P (og, )=Et into Eqs. (86) and (87). Using dimen-
sional parameters, we obtain

In fact, v,„gives the maximum speed attainable by any
ion (i.e., including scattered ions) at z. For a constant
electric field, Et, U,„and a = v~ /U, „satisfy a simple re-
lation, namely v,„=U~ +2qEI z /m or Et /U
=(1—a )m /2qz. Therefore, we may write

1

2 WUB maxF (r/ z) =nl ~ (i/'a )

2
2 ~U maxI,„(i/, z) =I 0 Q,„(i/;a),

qEI MFP

(91)

(92)

+en('V~z) ='9t
2 &en('9~'z) ~

~MFP (1 tz )

I,„(r/, z) =I o Q,„(r/;a) .z 1

MFP (1 a)

(95)

(96)

where

2 sinOd O

J~~~ cos 8—(2—
i/ ') (93)

As noted earlier, a=v~/U, „ is a small quantity in
most discharge plasmas and the condition 1 —o. )—,

' is
generally satisfied. For such a, the analytic expression
for V,„after integration is given by

2
&I —2q

arctan
1 —2q

' 1/2
71—arctan

1 —2r/
(0&i/&-,')

V,„(7/;a)= . ln

1
ln

v'2q —1

v'2& 1— —
&q+ &2r/ 1 i/—+v'2i/ —1

+(1 r/) a(1 ——2r/) ——a&i/(27/ —1)
+(1—i/) —a (1 2r/)+ai/—r/(27/ 1)—

( —,
' &g& I —a )

i/
—i/2g —1

i/+ v'2i/+ 1
(1—a'&i/&1) .

(97)

If, however, the initial velocity vii is large enough so that 1 —a &
—,', P,„has the form

2
arctan

1 —2g

1/2
7/—arctan

1 —2i/
(0&i/&1 —a )

9',„(7/;~)= 2
arctan

1 —2'
't/( I —i/) —a (1—2i/)

ai/1 —2g
—arctan 71

1 —2g
(1—a &i/& —,') (98)

v'2i/ —1

—ln q —v'2q —1

i/+ i/2g+ 1
ln

V'( 1 —i/) —a ( 1 —2i/) a'i/r/( 2r/ 1)— —
V'( 1 —g ) —a2( 1 2r/) +aug(2r/ —1)— ( —,

' & 7/ & 1 ) .

—ln(1 —i/) (i/& 1 —a )

—lna ( 1 —a & i/ & 1 ), (99)

which holds for any a(0 & a & 1). We note that the distri-

For the energy distribution of the ion Aux 9',„,we have
a much simpler expression after integration:

bution is constant for 1 —a & q & 1.
Figure 6 shows energy distributions of the ion density

and the ion Aux, respectively, in the case of a constant
electric field. As in Fig. 3, the solid lines represent the
theoretical profiles, V,„(g) for Fig. 6(a) and Q,„(r/) for
Fig. 6(b), given above, and the histograms are obtained
from the Monte Carlo simulations with the same con-
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stant electric field. Good agreement between the theoret-
ically predicted profiles and the Monte Carlo data is seen
in these figures, where the simulation parameters are the
same as in Fig. 3. In Figs. 6(a) and 6(b), the profiles are
normalized such that the areas under the curves and the
histograms for scattered ions is unity, and the ballistic
component of the Monte Carlo data at g = 1 is truncated
by the frame of the figure, as in Fig. 3.

h (8)= I +(1—r)) [1—(1+sin 8)q]+aIC I
'~z, (100)

d &s
F,„(rj,z) =nl 9';„(rj;a,K)

MFp 2(x
(101)

Here the function h (8) and the function g (g) of Eq. (64)
are equivalent, with the relation t) =g = u /(u~ +y).
From Eqs. (86) and (87), the energy distribution of the ion
density is then given by

C. Self-consistent Selds

In the case of a self-consistent electric field, the poten-
tial Po is obtained by solving Eq. (22). In this case, the
electric field Po becomes a function of q and 8, as dis-
cussed in the previous section for angular distributions.
The energy distributions F,„(r),z) and I,„(g,z) must then
be calculated directly from Eqs. (86) and (87) with
knowledge of the dependence of Po on q and 8. As
shown in Eqs. (61)—(62), we may write —Po(g, )
=&2a u, „h (8), where

and that of the ion Aux is given by

QgI,„(g,z) =I o P;„(rI;a,IC),
MFP 2CX

where

(102)

9';„(rj;a,It. ) =&r)
J(~) h (8)[1—(1+sin 8)r) ]

sinO cosgd 0
&~~) h (8)[1—(1+sin 8)g]

(103)

(104)

Figures 7(a) and 7(b) show energy distributions of the
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FIG. 6. The energy distribution (a) of the ion density and (b)
of the ion flux in the case of a constant electric field obtained
from the Monte Carlo simulations (histogram), Eq. (97) [the
solid curve in (a)] and Eq. (99) [the solid curve in (b)]. The
ballistic ion component, represented by the bin at g=1.0, is
truncated and the magnitudes of V,„and Q,„are normalized as
described in the text. The dimensionless parameters used here
are the same as those for Fig. 3.
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FIG. 7. The energy distributions (a) of the ion density and (b)
of the ion flux in the case of a self-consistent electric field ob-
tained from the Monte Carlo simulations (histogram), Eq. (103)
[the solid curve in (a)] and Eq. (104) [the solid curve in (b)]. For
comparison, the formulas for the constant-field approximation
[Eq. (97) for (a) and Eq. (99) for (b)] are also presented as dashed
lines. The ballistic ion component, represented by the bin at
g= 1.0, is truncated and the magnitudes of 9,„and 9',„are nor-
malized as described in the text. The dimensionless parameters
used here are the same as those for Fig. 4.
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g (
2sm8cos8 41

1

(1+sin 8)

—ln(1 —g) (g&1 —a )
Q,„(g;a)= ' —lna (1 —a &g&1),

from Eqs. (57), (58), (96), and (99).
In the case of the self-consistent field, we have obtained

the following integral forms for the ion-Aux distributions
[see Eqs. (64), (66), (68), (100), (102), and (104)]:

where

3d
Ps'(8;a, K) =2 sin8 cos8f1(~)g(g)[1—(1+sin 8g ]

g (g) =
I
V'(1 —

g ) /[1 —(1+sin 8)g ]+aE ]
'

and

Qgl,„(g,z) =I P;„(q;a,ll ),
MFP 2A

where

sinO cosOd 0
J~~) h(8)[1—(1+sin 8)g]

h (8)= [+(1—rj) /[1 —(1+sin 8)g]+aK j
'~

entering the sheath, i.e., for z )0. Physically, in the pres-
ence of electrons and neutrals in the presheath and
presheath-sheath boundary regions, the nonsmooth con-
nections of the distributions at 0=0, and g=1 —a are
expected to be somewhat smoothed out. However, a
sharp drop in the electron density at the presheath-sheath
boundary will nevertheless probably cause an effect some-
what similar to that observed in Fig. 9, i.e., different
characteristics for the angular distribution between 0 0,
and 0 ~ O„and of the energy distribution between
g+1 —u and g~1 —a .

Incorporating a phenomenological description of elec-
trons in our models (e.g. , a Boltzmann distribution) is a
relatively simple manner, requiring only a small change
in the Poisson equation (3), and would not alter the form
of the ion distribution function given in Eq. (38). In the
interest of clarity and simplicity, however, we have
chosen to neglect the electrons in this study. More realis-
tic presheath-sheath boundary conditions, together with
the effects of a finite electron density and other electron-
related phenomena, are planned to be considered in fu-
ture studies.

(a)

Here the ranges of integration I(a) and J(a) are given
by Eqs. (69) and (70), and by Eqs. (89) and (90), respec-
tively.

The analytic expressions for the ion Aux given above
offer an inexpensive means of describing the angular and
energy distributions of ions bombarding the electrodes, in
the limit of weak collisionality, and may be used as input
to shape-evolution calculations such as those described in
[20]. We have also derived analytic expressions for the
distributions of the ion density, given by Eqs. (52), (53),
(95), (97), and (98) for constant electric fields, and by Eqs.
(64), (67), (101),and (103) for self-consistent fields.

It is interesting to observe the shape of the angular and
energy distributions of the ion Aux for non-negligible
values of e. Figure 9 shows results for a self-consistent
electric field with the value +=0.32. The parameters
used in these calculations are: d/XM„p=0. 14, u~ =0.34,
Ei =0.17, g=d/AM„p= 1, K = —0.75, and —pc=0. 50.
In dimensional quantities, these calculations correspond
to an Ar discharge (o„,=5.0X10 ' cm ) with gas pres-
sure p = 10 mTorr, neutral gas number density ns =2.7
X10' cm, ionization rate n; In =9.0X10, sheath
thickness d = 1 rnrn, mean free path A,MFp=7. 3 mm, elec-
tron temperature T, =5 eV, and sheath potential drop
—@=22V.

The nonsmooth behavior observed at 8=8, =0.16 [Eq.
(71)] and at g= 1 —a =0.90 in these figures is an artifact
of the assumption of a sharp presheath-sheath boundary
at z =0; in our model, the ions are assumed to have a
given distribution function [i.e., the 6 function (20)] for
z ~ 0 and suffer from collisions with neutrals only after
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FIG. 9. The angular and energy distributions of the ion flux
in the case of a self-consistent electric field (histograms and solid
curves) with a finite a=0.32 for a. The parameters used in
these calculations are: d /A, MFp

=0. 14 Qg =0.34 Ei =0. 17,
g=d/AM„p= 1, X = —0.75, and —$0=0.50. Nonsmooth con-
nections of the distributions curves are observed at 0= 6I, =0.16
and at g=1 —a =0.90. For comparison, the formulas for the
constant-field approximation [Eq. (57) for (a) and Eq. (99) for
(b)] are also presented as dashed lines.
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APPENDIX: AN AI.TERNATIVE DERIVATION
OF THE ION DISTRIBUTION FUNCTION

In Sec. III, the ion distribution function was derived
directly from the Boltzmann equation, making use of the
small parameter d/AMpp. Although the mathematical
procedure presented there is straightforward, not much
attention was paid to clarifying the physical meaning of
the derived distribution function. In this appendix we
shall employ a more heuristic method to rederive the ion
distribution function that gives a clearer physical picture
of colliding ions in a weakly collisional sheath. For sim-
plicity, we consider only the distribution function f* of
ions that have suffered a single collision with the neutrals.

The number of ballistic ions that collide with neutrals
per unit time between z, and z, +dz, and are scattered by
a polar angle between 0, and 0, +d 0, is given from Eqs.
(9) and (10) by

dX =I on o.„,sin20, dO, dz, , (Al)

if the ions and neutrals have the same mass (m =M). As
previously noted, the ion Aux is conserved: I o
=n~v~ =no(z)vo(z) is independent of z. Since the nor-
malized speed of the ballistic ions travelling in the z
direction at g, =z, /d is given by uo=+ug 2ljko(g ),
the ion velocity just after the collision is given from Eq.
(10) by

u~=Qu~ —2go(g, ) cos8, sin8,

sin 0,
u~ —2(e+u~)=u~ —[u, +2u~ —2/0(g)]=u~

cos O~

we obtain from Eqs. (A6) and (A7)

, (rv~,&)' ug

r ~Mpp [ nP—'(g, )][u —2(6+u )]

which is equivalent to (d /AM&p)f &+ [see Eq. (3Q)].
The derivation of the distribution function presented

above, however, does not clarify possible values of the ion
velocity ( u ~, u, ) [or equivalently (u ~, 6 ) ] that the ions
may attain at g. In fact, as we have shown in Sec. III, the
distribution function f, is given by Eq. (38) only inside
the hatched region of Fig. 2 (which corresponds to possi-
ble values of ion velocities at g) and f,+ takes the value 0
outside this region. Starting from Eqs. (A2) —(A4), there-
fore, we now examine the region in which Eq. (112) is val-
id and rederive the hatched region of Fig. 2. In particu-
lar, we are interested in demonstrating by following an
ion motion given by Eqs. (A2) —(A4) that the range of u
given by the inequalities (47) and (48) (or equivalently the
hatched region in Fig. 2) corresponds to possible values
of the speed of an ion that has undergone a single col-
lision.

Writing u~=u sinO and u, =u cos0, where 0 denotes
the velocity angle at g, and eliminating 8, from Eqs. (A2)
and (A4), we obtain the following quadratic equation for
u

and u —(A cos 8+2%)u +(%+X)%=0, (A9)

u, =Qu~ —2/0(g, ) cos 8, . with C =A+%=u~ —2/0(g) being independent of g, .
The two solutions of this quadratic equation are given by

u~ =A. cos O, sin 0, ,

u, =A cos 8, +%,
u =A cos 8, +%,

(A2)

(A3)

(A4)

These ions are then accelerated in the z direction by the
electric field and attain the following normalized velocity
(u~, u, ) and speed u =Qu~+u, at g() g, ):

u =
—,'A cos 8+ ,'QD„+%, —

where the discriminant is given by

D„=A cos 8—4ASsin 8

=%[A(1+sin 8) —4C sin 8] .

(A 10)

(A 1 1)

dN =u,f *2mvidvidv, . (A5)

Comparing Eq. (Al) with Eq. (A5), we obtain an ex-
pression for the distribution function:

Io d sin20,
f*(ui, u, )=

( d)4 A, „2vru u, ~B(u, u, )/B(8„$, )
~

where A = uz —2PO(g, ) and X= —2[$0(g) —$0(g, ) ]. On
the other hand, dN is related to the distribution function
through

Since A, %)0, it is easy to see that 0 (cos 8,
=(u —%)/A (1, so that if D„)0, the two solutions
given in Eq. (A10) are in fact physically meaningful and
there are two different scattering angles 0, for a given
combination of the collision position g, and the final an-

gle 8 at g. By varying g, from 0 to g or, equivalently, A
from u~ to C, we can determine the range of variation of
u. Since D„ is a monotonically increasing function of A.
for uzi (A (C, the minimum value of D„ is given by

D;„=u~[u~(1+sin 8) —4C sin 8]

From Eqs. (A2) and (A3), the Jacobian in Eq. (A6) is
found to be

at A =u~. Thus we obtain

B(u~, u, ) ujsin 8,
B(8„$,) u, cos8,

Using the relation

(A7)

2 2

if ( ~ ( D„(0) then 0 u (u~+y)cos 8
ua sin 0 2 2 2

4g cos 0

and
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Q
if ) ( D„)O)

cos 0
then

2

0(u (y+ cos B '&—D-
Qg

2 2

2

y+ cos 8+ —,'&D (u ((u~+y)cos 8,Qg 2

2

which are equivalent to the inequalities (47) and (48).
We have thus shown that the distribution function of

the ions that undergo a single collision is obtainable by
following the motion of a single ion together with the
scattering probability given by Eq. (Al) and, in fact, this
matches the ion distribution function obtained from the
Boltzmann equation under the assumption of weak col-
lision ality.
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