PHYSICAL REVIEW A

VOLUME 44, NUMBER 6

15 SEPTEMBER 1991

Molecular-dynamics study of a supercooled two-component Lennard-Jones system

Goran Wahnstrom
Institute of Theoretical Physics, Chalmers University of Technology, S-412 96 Goteborg, Sweden
(Received 28 March 1991)

Molecular-dynamics (MD) simulations have been carried out on a two-component Lennard-Jones sys-
tem, quenched into supercooled and amorphous states. Two different regimes of viscous behavior are
found in the time window accessible in MD simulation studies (of the order of nanoseconds if units ap-
propriate for argon are used). The results for the time dependence of the self-intermediate scattering
function F*(q,t) show two different slow relaxation processes, where the slowest (« relaxation) can be
represented by a stretched exponential, a exp[ — (¢ /7,)?]. In the frequency domain this gives rise to a
quasielastic peak, and it is found that its area, the nonergodicity parameter f*(q)=a, shows an anoma-
lous decrease when increasing the temperature towards a critical value T,. This happens in the
supercooled-liquid regime, and it is one of the basic predictions of the recent mode-coupling theory for
the liquid-glass transition problem. In the strongly supercooled-liquid regime the diffusion is of the hop-
ping type, and it is found to be strongly cooperative in nature.

I. INTRODUCTION

If a liquid is cooled rapidly enough below the freezing
temperature, it enters the supercooled-liquid regime. If
cooled further, the dramatic increase of its viscosity
causes the system to reach a state of such high viscosity
that it acts effectively like a disordered solid, a glass. The
occurrence of a liquid-glass transition is believed to be a
more or less universal behavior of matter [1]. A glass
transition temperature T, is conventionally introduced
and defined as the temperature where the viscosity
reaches the value 10'® poise [2]. The relevant structural
relaxation times are then macroscopic, of the order of
hours. For practical purposes this is a relevant time
scale, but there is no evidence for any deeper significance
for this particular value. The glass transition tempera-
ture T, only indicates the temperature below which the
system behaves like a solid over macroscopic times.

Recently, the dynamics of glass-forming systems on a
much shorter time scale has gained considerable interest
[3,4]. The impetus was the success of certain nonlinear
mode-coupling theories in describing a purely dynamic
transition from an ergodic to a nonergodic (structurally
arrested) behavior at a well-defined critical temperature
T, [5,6]. Itis now recognized and accepted that the criti-
cal temperature 7T, in the mode-coupling theory should
not be identified with the experimental glass transition
temperature T,, but with a temperature where the
viscosity is considerably smaller, 10—10* poise. The cor-
responding time scale is mesoscopic, of the order of
nanoseconds.

The notion of the importance of the nanosecond time
region for the dynamics of viscous liquids is not new.
Goldstein [7(a)] argued that when the shear relaxation
time exceeds 107° s activated processes between local
potential-energy minima start to dominate the flow pro-
cesses, while at higher temperatures, this will no longer
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be true. It is also well known [2,8] that the so-called fra-
gile glass-forming liquids show a change of their tempera-
ture dependence for the viscosity, when cooling below a
temperature where the viscosity is in the range 10-1000
poise. It has also been shown [8b] that the Stokes-
Einstein relation for the diffusion constant starts to break
down for the same values of the viscosity.

Inelastic neutron scattering experiments are well suited
for testing the theoretical predictions of the mode-
coupling theory. In particular, the neutron spin-echo
technique has been used in order to reach the nanosecond
regime. Extensive investigations have been done on quite
different systems, such as ionic systems [9], molecular
systems [10], polymers [11], and proteins [12]. The re-
sults are in qualitative agreement with the theory and in
particular in the case of polybutadiene in quantitative
agreement [11d]. Experiments have also been performed
on colloidal suspensions [13] and here the relevant length
and time scales are such that conventional light scatter-
ing and photon correlation measurements can be used.
The comparisons with the theoretical predictions are
convincing [14].

Molecular-dynamics (MD) simulation can also be used
in order to reach the nanosecond regime for simple model
systems. This technique is unique in the respect of yield-
ing detailed information on a variety of correlation func-
tions and on single-particle trajectories. Some recent MD
work in relation to the liquid-glass transition problem can
be found in Refs. [15-26]. In particular, the two-
component soft-sphere system has been investigated in
great detail [18,19].

Here, we will present MD results for a two-component
Lennard-Jones system in the supercooled-liquid regime.
Careful attention is paid to proper equilibrium of the sys-
tem and long production runs are performed in order to
reveal slow relaxation processes and to be able to obtain
good statistics.
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We concentrate on the self-motion and in particular on
the temperature dependence of the area under the quasi-
elastic peak in the dynamic structure factor. This depen-
dence has been in focus in the neutron scattering studies
[9-11]. An identification of an anomalous decrease of
the strength of the quasielastic peak is a strong indication
in favor of the mode-coupling theory. We also try to
characterize the processes that are responsible for the in-
crease of the viscosity in the strongly supercooled regime.
The statistics is poor due to the limited time region that
can be covered in MD simulations, but the question is
controversial and highly relevant for further development
of the theoretical description.

The paper is organized in the following way. In Sec. II
some basic predictions of the mode-coupling theory are
briefly summarized. Section III gives some technical de-
tails about the MD simulation. The main section, Sec.
IV, presents the numerical results together with directly
related discussion. The paper is concluded by a summary
and concluding remarks in Sec. V. Preliminary results of
this work have been presented in Ref. [23(a)].

II. THE MODE-COUPLING THEORY

In this section we would like to present a short outline
of the basic ideas behind the mode-coupling theory and
the predictions which are relevant for this paper.
Thorough reviews can be found in Refs. [3] and [4].

The mode-coupling theory for the liquid-glass transi-
tion is a development of theoretical concepts used for the
description of the microscopic dynamics of dense liquids
[27,28]. It includes explicitly delayed feedback effects,
which arise from the fact that in dense systems each par-
ticle is hindered in its motion by the surrounding parti-
cles. It was found [5,6] that when lowering the tempera-
ture this nonlinear effect gives rise to a transition from an
ergodic to a nonergodic state at a certain critical temper-
ature T,. The static quantities are assumed to vary
smoothly when crossing the critical temperature T, and
the transition is purely dynamic in origin.

A frozen structure manifests itself in a strictly elastic
peak in the dynamic structure factor,

S(g,0)=2mf(q)S(g)8(w)+ - - , (2.1)

where the ellipsis represents ‘“more regular terms.”
Equivalently, the infinite time value of the intermediate
scattering function is nonzero,

F(g,t—»)=f(q)S(q) . (2.2)

Here, S(q) is the ordinary static structure factor and
f(g) is a continuous positive function, which corresponds
to the Debye-Waller factor of a crystalline structure. It
may be viewed as an order parameter [29] and we will
refer to it as the nonergodicity parameter. The mode-
coupling theory makes the prediction that when increas-
ing the temperature for the frozen structure the nonergo-
dicity parameter decreases according to

fl@Q=fg)+h(@UT,—T)/T. 1'%, T=<T,. (2.3
Equation (2.3) holds in the vicinity of T, (T'<T,) and
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both f.(g) and & (q) are temperature independent.

All quantities that couple to the density are predicted
to show behavior similar to that in Eq. (2.3). In particu-
lar, we have for the self-motion a corresponding nonergo-
dicity parameter, F*(q,t — o0 )=f*(q), which fulfills the
relation

Q=@ +h"QUT,—T)/T,]'?

The small g values of f*(g) determine the mean square

displacement of localization length r, of the particles, ac-

cording to
[g—0)=1—(ryq ).

At the liquid side, 7> T, the theory predicts that the
viscosity 1 diverges as a power law,

T<T, . (2.4)

2.5)

n:nO[Tc/(T_Tc)]V > (2.6)

where y is a nonuniversal, system-dependent exponent.
Besides Eqgs. (2.3) and (2.6) the theory makes nontrivial
predictions for the time dependences of the density corre-
lation functions F(q,t) and F*(q,t). In the vicinity of T,
two different slow relaxation processes appear, the o and
the B relaxation, besides the conventional fast microscop-
ic one. The former, the a relaxation, is arrested below
T,, while the latter, the 3 relaxation, shows up as a subtle
low-frequency singularity in the part of the spectrum
denoted by the ellipsis in Eq. (2.1).

The transition from an ergodic to a nonergodic behav-
ior at T, is a result of the assumption that the relaxation
kernel in the mode-coupling theory can be expressed in
terms of only density modes [5,6]. We will refer to this as
the ideal transition. Already in one of the original papers
[6] it was argued that certain kinds of density fluctua-
tions, connected with strong local anisotropies, have been
left out and may cause a smearing of the sharp ideal tran-
sition. Later [30] it was shown that independently of the
number of density modes included in the relaxation ker-
nel, the transition is sharp, ideal.

By extending the original density-mode approximation
and including also current contributions into the relaxa-
tion kernel it was shown that the transition is smeared
out to a more continuous crossover and a strict noner-
godic solution becomes impossible [31(a),32(a)]. The den-
sity correlation functions F(q,t) and F*(q,t) will decay to
zero for sufficiently long times also when T < T, but for
intermediate times they will level off at a constant
nonzero value. The strictly elastic peak in the spectra
broadens to a quasielastic line, the a peak, and the viscos-
ity does not diverge to infinity. The strength of the «
peak is directly related to the plateau value of the corre-
sponding density correlation function. However, it was
found [32(b)] that for temperatures 7 > T, the basic dy-
namics did not change and the task is to find systems
where it is possible to come close enough to the critical
point, i.e., where the additional processes that restore er-
godicity for T' < T, (referred to as hopping processes or
jump diffusion events) are sufficiently infrequent around
T.. The theoretical predictions from the theory for the



3754

ideal transition can then be tested. In particular, we have
that the strength of the a peak is given by Eqgs. (2.3) and
(2.4), respectively, for T<T.. For T > T, the strength
varies smoothly with temperature. This prediction will
be tested in Sec. IV B4.

An important issue is the location of the critical tem-
perature T,. The statement that T, is located in a tem-
perature region where the viscosity is of the order 10— 10*
poise is based on experimental evidence [9—-12]. It is pos-
sible to calculate the value for the critical temperature T,
only for very simple model systems, using a microscopic
description. For realistic glass-forming liquids it has not
been possible to perform calculations. The viscosity
range 10—10* poise corresponds to a moderately super-
cooled liquid.

In the strongly supercooled region (T, <T <T,) the
origins of the transport properties are evidently not the
nonlinear couplings introduced in the original density-
mode approximation. The validity of the proposed exten-
sion of the original theory is unsettled. It is possible to
obtain an Arrhenius dependence for the viscosity at tem-
peratures well below T, [32(c)], in accordance with exper-
iments. On the other hand, it has been stated [31(b)] that
in order to come in contact with the conventional glass
transition (T ~T,) one has to generalize the theory and
allow for the underlying thermodynamic liquid-solid
transition. In any case, for further development of the
theoretical description it is important to be able to
characterize correctly the processes that are responsible
for the increase of the viscosity in the strongly
supercooled-liquid state. In Sec. IV B 5 we present some
information in that direction.

III. MODEL AND MOLECULAR-DYNAMICS
PROCEDURE

We consider a binary mixture of N, =250 particles of
mass m, and diameter o; and N, =250 particles of mass
m, and diameter o,,. For the interaction between all
pairs of particles the Lennard-Jones potential is used,

12 6
Tap Gap
r

) (3.1

vop(r)=4e

where a and B are equal to 1 or 2, denoting the two
different types of particles. The only differences between
the two types of particles are that their masses and diam-
eters differ, m,/m;=2.0 and 0,,/0,;=1.2. The cross-
interaction diameter is given by the Lorentz-Berthelot
mixing rule, o ,=(0;+0,,)/2.

Nucleation is easily bypassed in a binary mixture and
that is the motivation for using a two-component system
[18(a)]. The Lennard-Jones potential is used for its sim-
plicity and the parameter values are chosen in the same
way as in some previous MD studies on the binary soft-
sphere mixture [18,19], where the interaction is given by
vaﬁ(r)=£(0a,3/r)12. By comparing with these previous
studies the effect of the attractive part in the Lennard-
Jones potential can be studied [24].

All the simulation results are reported in dimensionless
units; energy is measured in g, length in o, and time in
T=(m,03,/¢)!"2. Assuming the 1 particles to be argon,
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7=2.2 ps and €/kp =120 K. We will call this argon
units. The equations of motion are integrated with
periodic boundary conditions using the velocity version
of Verlet’s algorithm [33], with the time step being equal
to At=0.017. The calculations are carried out at con-
stant total energy and the particle concentration
n =N /V is kept fixed at the value n*=no3},;=0.75 and V
denotes the total volume.

Due to the slow relaxation processes the phase space
may be poorly sampled and that can become a serious
problem in MD simulations, where small systems during
short time periods have to be studied by necessity. To
test this we have performed three independent series of
calculations (a, b, and ¢). Each series is initiated by gen-
erating a random configuration of 500 particles at a high
temperature T*=kyT/e=2.0. The system is then
cooled quasicontinuously by scaling the velocities.

When the temperature is reduced to about T*=0.7 the
collection of data is started. First the velocities are
scaled at each consecutive time step Ar =0.017 for the
time g, (see Table I) to obtain a chosen temperature.
The system is then left to evolve in time for the time teq
(see Table I) in order to equilibrate the system properly.
Temperature, pressure, and the static pair distribution
functions g,4(r) are monitored and only minor changes
are observed. In the beginning of the equilibrium run
these static properties are drifting slightly. Also the
mean square displacements for the two different types of
particles are determined and compared in consecutive
time intervals of the size 2007. The values for these

TABLE 1. Different times used in the three different series of
the MD simulation (a, b, and c); ., —time for scaling the ve-
locities, t.,—time for equilibration, tr0a—time for producing
data. The time unit is equal to 2.2 ps if argon units are assumed.

No. t:::ale te"; t:rod
a 10 0 100
a, 10 400 1200
a, 20 400 1200
ay 40 800 1200
as 40 1200 1200
ag 40 1200 2400
a; 40 1200 1200
b, 10 0 100
b, 10 400 1200
by 20 400 1200
by 20 800 2000
bs 20 800 1600
b 20 800 1600
b, 20 1600 2000
bg 20 1600 2000
e 10 0 100
) 20 400 1200
c3 20 800 1600
ca 20 800 1600
cs 20 800 1600
e 20 1200 1600
¢y 20 2000 1600
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time-dependent correlation functions are drifting when
comparing them in the first few time intervals of the size
2007, indicating a nonequilibrium situation. After some
time they stabilize and show a more fluctuating behavior.
We then regard the sample to be in the supercooled-
liquid state and the following time period ¢4 (see Table
I) is used for evaluating static and dynamic quantities.
At the lowest temperatures the system is frozen. The last
configuration at one temperature is used as initial
configuration for the next temperature.

The cooling rate is considerably less than is generally
used in MD studies. The equivalent cooling rate for ar-
gon would be of the order 10° K/s, which is comparable
to those achieved by the fastest experimental techniques.

In no case have we seen any sign of crystallization.
This has been verified by monitoring the time depen-
dences of the instantaneous pressure and temperature.
One state c¢5 seems to be in error [23(a)]. Pressure, tem-
perature, and pair distribution functions behave normal-
ly, but the mean square displacement for the 1 particles is
too small compared with the corresponding displacement
for the 2 particles [23(a)]. The reason can be the small
size of the system we are using. The data evaluated from
this state are not shown in the figures that follow.

IV. RESULTS AND DISCUSSION
A. Static quantities

1. The total energy

The simulation is carried out at constant volume. At
low temperatures, where the system is frozen and its vi-
brational motion approximately harmonic, the total ener-
gy per particle u should depend linearly on the tempera-
ture,

u=uy+3kyT . 4.1)

The slope, the heat capacity at constant volume, is given
by the law of Dulong and Petit. In Fig. 1 we show the
temperature dependence of the total energy. The
different symbols correspond to the three independent
series of calculations (a, b, and c¢) with different starting
configurations. The dashed straight line is fitted to the
low-temperature values and has the slope 3, in accor-
dance with Eq. (4.1). When the temperature is increased
there is a change of the temperature dependence around

*=0.5. We have indicated this by fitting a dotted
straight line to the high-temperature values.

The crossover temperature 7* ~0.5 marks the change
from solidlike to liquidlike behavior for the heat capacity.
For T* <0.5 the system is solidlike for the relevant “ex-
perimental” time scale 7,,,4. In our case it is equal to
nanoseconds if argon units are assumed. By extending
the simulation in time we expect the temperature points
below T*=0.5 to change slightly and the crossover tem-
perature to move to lower temperatures. The location of
the crossover temperature depends strongly on the pres-
sure. At zero pressure the transition is located around
T*=0.35 [24], which coincides with the findings in Ref.
[15(b)].
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FIG. 1. The temperature dependence of the total energy per
particle u for the different states defined in Table II. The
dashed line is fitted to the low-temperature points and has the
slope 3 [cf. Eq. (4.1)]. The dotted line is fitted to the high-
temperature points. The arrow indicates the location of the
temperature (the critical temperature T,) where the dynamic
anomalies are most pronounced.

For the low-temperature states time averaging becomes
ineffective in sampling the relevant phase space, particu-
larly for the small systems that are used in computer
simulation studies. The problem is that the system be-
comes nonergodic. Proper ensemble averaging is very
costly on a computer. We have tried to test if the noner-
godicity is a major problem by using the three indepen-
dent series of calculations (a, b, and ¢). We have found
no significant difference between these three series.

2. The pair distribution function

A fundamental assumption behind the mode-coupling
approach for the liquid-glass transition problem is that
static quantities are assumed to change smoothly. Only
by inspecting dynamic quantities can one identify if a sys-
tem is in the supercooled-liquid or glassy state. This
identification also depends on the time (frequency) win-
dow that is being used.

In Fig. 2 we show the partial pair distribution function
g11(r) for the 1 particles and at three different tempera-
tures. When lowering the temperature the second peak
evolves into a double peak, the characteristic signature of
dense random packing. These three curves correspond to
a large temperature change. The self-diffusion constant
changes with two orders of magnitude over the same tem-
perature interval. In a similar computer simulation study
of a two-component Lennard-Jones system [15(b)] it was
found that the structure changed slightly and local five-
fold symmetry became more prominent when lowering
the temperature. It is difficult to judge if these kinds of
changes of static quantities are crucial for the description
of the liquid-glass transition.
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5F 3 ,

: no ag, T*=0.4335 In all our simulations we have determined the mean

S E square displacements of the particles. From the slope of
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3 3 D, and the relevant data are collected in Table II. At

S | T low temperatures the uncertainty is large, but it is
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pair distribution function gy;(r)
T

distance r

FIG. 2. The pair distribution function g;;(r) for the 1 parti-
cles at three widely separated temperatures.

B. Dynamic quantities: Single-particle properties

This paper concentrates on the dynamic quantities of
the simulated system. We have chosen to present results
only for the single-particle properties. The statistics for
these are better than for the corresponding collective
ones. Also when comparing with the mode-coupling
theory there is no essential difference between single-
particle and collective properties.

magnitude of the error can be obtained by comparing the
result from the three different series of calculations. For
the two states with lowest temperature the diffusion is too
small to be detectable. One can compare these values for
the self-diffusion constant with the corresponding value
for a one-component Lennard-Jones system near the tri-
ple point which is D*=3.3X 1072 [34].

2. The velocity correlation function

We have also determined the velocity correlation func-
tion for the two species ®@,(¢). In Fig. 3 the result for the
1 particles is shown at the same temperatures as in Fig. 2.
The behavior is typical of a dense system. There is a
strong backscattering effect and some weak oscillations.
This indicates a temporal confinement in a cage built up
by the surrounding particles.

The behavior is surprisingly similar at the three
different temperatures. In the next subsection we will
show that at the highest temperature (a,) the dynamics at
a mesoscopic time scale (¢* ~10%) is liquidlike, while at
the lowest temperature (a¢) the system is frozen. These
differences are not visible in the velocity correlation func-
tion. The time window used in Fig. 3 defines the typical

TABLE II. Temperature T, pressure P, and total energy per particle u for the three different series of
calculations (a, b, and ¢). Also the self-diffusion constants D, for the two different species are shown,
determined from the slope of the mean square displacements. All results in reduced units.

No. T* P* u* D} D}

a, 0.8023 5.042 —5.375

a, 0.6886 4.145 —5.755 2.9%x1073 1.9x1073
as 0.6229 3.513 —6.006 9.4x10™* 6.1x107*
a, 0.5662 3.047 —6.202 47x10™* 2.7X107*
as 0.5229 2.598 —6.372 5.8X107° 3.8X107°
ag 0.4335 1.998 —6.644 2.0X1073 52X107°
a, 0.2042 0.535 —17.320

b, 0.7999 4.999 —5.388

b, 0.7038 4.207 —5.719 2.8X1073 1.9%x1073
b, 0.6213 3.396 —6.040 5.5%X107* 3.1Xx107*
by 0.5664 3.023 —6.204 3.0X1074 20%x107*
bs 0.5457 2.832 —6.279 24%X1074 1.0Xx107*
be 0.5512 2.880 —6.266 2.8X107* 1.6x10™*
b, 0.5051 2.417 —6.457 6.9%X107° 1.9%x10°°
bg 0.3549 1.463 —6.898

c, 0.8134 5.171 —5.325

c, 0.7043 4.215 —5.718 3.0x1073 2.1X1073
s 0.6355 3.590 —5.970 1.3x1073 7.1X107*
4 0.6164 3.244 —6.087 50X107* 2.3x107*
cs 0.5853 2.907 —6.219 1.9x107* 8.8X107°
e 0.5578 2.809 —6.278 1.8X107° 7.5X107°
¢y 0.4058 1.766 —6.738 4.1x107° 1.3X10°°
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FIG. 3. The velocity correlation function ®,(¢) for the 1 par-
ticles at the same temperatures as in Fig. 2.

microscopic time scale. It is of the order #*=~0.1
(2X 1071 s if argon units are assumed). We can compare
our results for the velocity correlation function with the
corresponding result for the soft-sphere system [18(b)].
In that case the oscillations are somewhat more pro-
nounced.

3. The Van Hove self-correlation function

A more detailed picture of the single-particle motion
can be obtained from the Van Hove self-correlation func-
tion

Na
Gfl(r,t)=—N}— 3 (8(r,()—r,(0)—1)) , 4.2)
a j=]1

where r;(¢) denotes the position of particle i of species
at time ¢. Both for a liquid in the hydrodynamic limit
and a frozen system in the harmonic approximation, the
van Hove self-correlation function is a Gaussian,

I‘2

B w(t)

GS(r,1)= p (4.3)

[ﬂ.wi(t)]3/2 €x

The width function w,(¢) is given by w2(¢)=2D,t and
w2(t>1tp)=A,T, respectively, where D, is the self-
diffusion constant for species a, 4, a constant that de-
pends on the vibrational properties of the system, and T
is the temperature. The time ?, is a microscopic time, of
the order of an inverse Debye frequency, ¢, ~1/wp. The
mean square displacement is given by the second moment
of G$,(r,1).

The function f,(r,t)=47r’G:(|r|,t) is equal to the
probability of finding a particle of species a at time ¢ at
the distance r from its location at time 0. For a liquid in
the hydrodynamic limit the location of the maximum of
fo(r,t) as function of r is changing in time according to
roax(1)=(2D,t)!/2. In a frozen structure r™*(¢) reaches
a constant value after a short time,

r (> tp)=(A,T)V?, (4.4)
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valid in the harmonic approximation.

In Fig. 4 we show the Van Hove self-correlation func-
tion for the 1 particles at three different temperatures.
At each temperature f,(r,t) is shown for several different
times in order to reveal the character of the diffusive
motion. At high temperatures (a;) the function has a
single peak which is moving to larger distances with in-
creasing time. This is the typical behavior for a liquid.
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FIG. 4. The Van Hove self-correlation function G§(|r|,t) for
the 1 particles at three different temperatures. The spatial
dependences of the function f,(r,t)=47r?G5(|r|,t) are shown
for five different times. At the lowest temperature we show also
the last curve (z*=1000) increased by a factor 10.
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At low temperatures (as) the peak becomes arrested and
a gradual increase of a second as well as a third peak is
visible. For these temperatures and times the system is
essentially frozen. The second and third peaks are due to
rare jump diffusion events. The crossover between these
two types of behavior occurs near T*=0.55.

Similar behavior has been found previously for the
binary soft-sphere system and the crossover is designated
as the “kinetic glass transition” [18(f),18(h)]. The simula-
tion data on the soft-sphere system [18(f),18(h)] strongly
suggest that the observed transition is an intrinsic proper-
ty of the system, independent of the quenching history.
It is identified as a smeared version of the ideal glass tran-
sition, predicted by the mode-coupling theory.

According to the mode-coupling theory for the ideal
transition the mean square displacement should increase
as a power law when increasing the temperature towards
the critical temperature T,. At the critical temperature
T =T, the mean square displacement reaches a constant
value r.. To test this prediction one would like to extract
the dynamics of the frozen structure. A better candidate
for the mean square displacement of the frozen structure
than the second moment of G (r,?) is the location of the
maximum of f,(r,¢). The latter quantity is less
influenced by the rare jump diffusion events, which are
supposed to smear and partly destroy the theoretical
ideal transition.

We have determined the location of the maximum '
and the result for the squared quantity is shown in Fig. 5.
At high temperatures (a,—a3), where f(r,t) has a single
peak, the identification of the peak with a frozen struc-
ture is questionable. At low temperatures (as—a-), how-
ever, we have a well-defined peak, associated with the
frozen structure. For intermediate temperatures (a,) we
can identify a peak, at least for ¢* <400, that reflects the
frozen structure. We have indicated the behavior for a
harmonic system, Eq. (4.4), with the dashed straight line.
The slope A4, is adjusted to value with the lowest temper-
ature (a,) and it is equal to AT =0.045. The full circles
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FIG. 5. The location of the first maximum r1*** of the func-
tion f,(r,t)=4wr?G5(|r|,t) at different temperatures. The
squared quantity (#72*)? is shown at several different times. The
dashed line is the result for a frozen harmonic system [cf. Eq.
(4.4)].
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show the result at t*=4. This time scale is microscopic
and we may associate the departure from the straight line
with conventional nonharmonic effects. By considering
longer times we notice a substantial further increase of
r#* for T*>0.5.

By using " instead of the mean square displacement
the effects of the jump diffusion events are reduced, but
not eliminated. Ideally one would like to study the dy-
namics for the frozen system, uninfluenced by the jump
diffusion events. This is not possible here. The present
model system, as well as the similar soft-sphere system, is
not ideal for testing the mode-coupling theory. However,
it is tempting to identify the anomalous increase of r1'**
around 7*=0.55 with the prediction from the mode-
coupling theory, given in Egs. (2.4) and (2.5).

4. The self-intermediate scattering function

In neutron scattering experiments one measures the
density correlation functions. The quantity that is ob-
tained directly in the neutron spin-echo technique is the
intermediate scattering function. Its incoherent part, the
self-intermediate scattering function F3(q,?), is given by
the Fourier transform in space of the van Hove self-
correlation function G, (r,1).

We have determined the self-intermediate scattering
function F?(q,t) for both species at the temperatures
given in Table II. At each temperature F? (q,?) is evalu-
ated for times 0 <¢* <1000 and for eight different wave
vectors. In Fig. 6 the result is shown for several different
temperatures (a,—a,) and for two different wave vectors.
The smallest wave vector g*=6.47 is located slightly
below the main peak in the static structure factor, which
is centered around g * ~7.

The dramatic slowing down of the time decay is clearly
seen in Fig. 6 (notice the logarithmic scale). This effect
has been observed previously in several MD studies
[16-20]. At the highest temperature shown (a,), the
self-diffusion constant is already an order of magnitude
less than the value near the triple point for a one-
component Lennard-Jones system (D*=3.3X1072). At
the lowest temperature the system is completely frozen
and F}(q,?) is constant for times t* 2 10. The slowing
down of the time decay reflects itself in the decrease of
the self-diffusion constant (see Table II).

We now would like to test the prediction in Eq. (2.4).
To do that one has to extract the nonergodicity parame-
ter f5,(q) from the MD data. In the idealized situation
[ (g)=F}(q,t— x), but for a real system F}(q,t) al-
ways decays to zero for sufficiently long times. The quan-
tity f%,(g) should then be identified with the plateau value
of Fj(q,t?) at intermediate times. The conventional way
to extract this value is to fit the slow decay of F?(q,t) to
a stretched exponential, f(¢)=a exp[ —(t/7,)B]. The
nonergodicity parameter is then identified with the ampli-
tude a, f3(g)=a, i.e., with the strength of the corre-
sponding quasielastic peak in the frequency spectrum.

At low temperatures the amplitude a can be deter-
mined unambiguously, but at higher temperatures the
plateau is less well developed. To bias the data as little as
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possible we use the following procedure. A nonlinear fit
is performed at each temperature and all three parame-
ters (a, B, and 7, are allowed to vary independently.
The time interval 10 <¢* <1000 is used and each point in
this time interval (9900 equidistant points with spacing
At*=0.1) is assumed to have the same weight. At the
higher temperatures F3(q,t) decays to zero before
t*=1000 and in the fitting procedure a lower upper limit
for the time interval is used. The procedure becomes du-
bious at the highest temperature and for the largest wave
vectors, which is clearly seen in Fig. 6(b). Relevant data
are collected in Table III and the fitted stretched ex-
ponentials are shown as dashed lines in Fig. 6.

In Fig. 7 we show the result for the logarithm of f}(q)
as a function of temperature. The results for the 1 parti-
cles at two different wave vectors are shown and similar
results are obtained for other wave vectors as well as for
the 2 particles. The results from the three independent
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FIG. 6. The self-intermediate scattering function Fi(q,t) for
the 1 particles at six different temperatures (see Table II). The
results for two different wave vectors are shown. The main
peak in the static structure factor is located around ¢* ~7. The
dashed lines show the fitted stretched exponentials. Notice the
logarithmic time scale. The time unit is equal to 2.2 ps if argon
units are assumed.
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TABLE III. Different parameters in the stretched exponen-
tial f(¢)=a exp[ —(t/7,4)?], obtained by a fitting to the MD
data for the 1 particles. The results from series @ and for two
different wave vectors are shown. The time unit is equal to 2.2
ps if argon units are assumed.

No. a B T
q*=6.47
a, 0.597 0.807 16
a; 0.611 0.741 77
a, 0.618 0.789 225
as 0.695 0.632 6206
ag 0.780 0.430 51757
a, 0.890
q*=129
a, 0.264 0.610 4
a; 0.165 0.807 40
a, 0.194 0.881 121
as 0.286 0.551 4081
ag 0.385 0.448 14068
a, 0.640
0 '\' Ll T T | T T T 4
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FIG. 7. The temperature dependence of the logarithm of the
nonergodicity parameter f{(q) for the 1 particles. The results
for two different wave vectors are shown. The main peak in the
static structure factor is located around ¢* ~7. The dotted lines
indicate the behavior predicted by the mode-coupling theory
[cf. Eq. (2.4)] and the dashed lines show the result for a frozen
harmonic system [cf. Eq. (4.5)].
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series of calculations (@, b, and c¢) coincide reasonably
well. The spread of the data points at high temperatures,
T* >0.60, is mainly due to the problem of fitting F;,(q,?)
to the stretched exponential. For a frozen harmonic sys-
tem we have a linear temperature dependence for

a

4

where A, is the same quantity as in Eq. (4.4). This be-
havior is shown as dashed lines in Fig. 7 and the slope,
AT =0.042, is adjusted to the value with lowest tempera-
ture. This value for 4, is not identical with the value
used in Fig. 5, but very close.

For temperatures 7* > 0.5 the system becomes strong-
ly anharmonic and the mode-coupling theory is aiming at
explaining this in terms of a dynamic phase transition.
According to the theory the nonergodicity parameter
f3,(q) should show a square-root decrease when increas-
ing the temperature towards the critical temperature T,
[cf. Eq. (2.4)]. We have indicated this behavior with dot-
ted lines in Fig. 7. The parameters f (q), h*(q), and T,
are determined by fitting to the MD data points and the
obtained values are given in Table IV. The MD data do
not prove the square-root dependence in Eq. (2.4), but
they are certainly consistent with the prediction by the
mode-coupling theory.

The relaxation processes that are responsible for the
anomalous decrease of the nonergodicity parameter are
also responsible for the increase of r[ %%, shown in Fig. 5.
The relevant time scale for the relaxation processes is of
the order t*~10. Conventional anharmonic effects are
associated with a much shorter time scale.

Infi(q)=— q°T , (4.5)

5. The dynamics in the strongly supercooled liquid

We have also tried to characterize the single-particle
motion in the strongly supercooled liquid. At the lowest
temperatures (7* <0.35) nothing happens within the
time scale of the MD simulation, besides small amplitude
vibrational motion of the particles around local equilibri-
um locations. At slightly higher temperatures
(T*~0.40) some dynamic events with larger displace-
ments occur. When the temperature is further increased
these kinds of events become more frequent.

To quantify this we have followed the trajectory of

each single particle in detail. The displacements
AR (2, +1)=|R;(t, +15)—R; ()] (4.6)

are determined in time intervals of the size 1007,
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respect to the location R;(¢,) of the particles at the be-
ginning of each separate time interval. In each time in-
terval we have determined the maximum displacement,
AR™ =max[AR;(¢,)], and we have counted the number
of particles with AR <0.750;, 0.750; <AR™ <0y,
and o,; <ART®, respectively. In Table V the result is
shown from the simulation no. a4 (T*=0.4335). We also
show the time dependence of AR;(¢) for a few numbers of
particles in two different time intervals in Figs. 8 and 9.
All these particles are 1 particles, except the particle
denoted by I in Fig. 9, which is a 2 particle.

The majority of particles perform small amplitude vi-
brational motion and are counted in the first group I,
AR[™*<0.750,. These particles do not contribute to
the diffusive motion but they give rise to the dominant
contribution to average properties. To make a contribu-
tion to diffusion the particles have to make larger dis-
placements. At T*=0.4335 the number of these parti-
cles is small and it is possible to analyze these events in
some detail. We concentrate on the particles belonging
to group III, o; <AR™.

In the time interval 300 < t* <400 four particles make
large displacements. We denote these by B, C, D, and E.
The corresponding functions AR;(¢) are shown in Fig. 8
together with the typical behavior of a particle belonging
to group I, denoted by A. Three particles C, D, and E
make a large displacement nearly instantaneously and
they do not return to their previous equilibrium loca-
tions. At the same time particle B makes a large dis-
placement but it returns. These four particles are located
in the vicinity of each other. This can be seen in Fig. 10
where the instantaneous locations of particles are shown
at three different times. Imagine that the 1 and 2 parti-
cles are represented by spheres with the radius equal to
o, and 0,,, respectively. Figures 10 and 11 then show
the result from an artificial cut through the liquid. The
small circles correspond to particles which are located
slightly above or below the artificial plane. The letters
show the location of the same particles as are shown in

TABLE V. Number of particles with maximum displace-
ments ART** =max[AR;(t,)] [cf. Eq. (4.6)] in different spatial
intervals defined by I: AR™*<0.750; II:
0.750; < AR < o;; III: 0, <AR/™**. The results are taken
from simulation No. a¢ (T*=0.4335) and the displacements are
measured with respect to the location of the particles at the be-
ginning of each time interval.

. - Time interval 1 11 111

0=<¢,=1007. The displacements are measured with
0<t*<100 498 2 0
100 < t* <200 497 3 0
200<t* <300 499 1 0
300 <t* <400 481 15 4
TABLE 1V. Different parameters in Eq. (2.4) obtained by fitting to 400 < * < 500 498 2 0
the MD data in Fig. 7. 500 <t* <600 496 4 0
* s s * 600 <t* <700 488 11 1

(q) h(q) T,

q g 4 700 < t* <800 471 2 7
6.47 0.612 0.431 0.566 800 <t* <900 488 10 2
12.9 0.213 0.477 0.566 900 <t * < 1000 468 23 9
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FIG. 8. The time dependence of the displacements
AR,-(t:—:tl+t0)E|R,-(t1+t0)-R,-(t0)\ for five particles in the
time interval 300<?* <400, taken from simulation No. as
(T*=0.4335). Particle A shows the typical behavior.
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FIG. 9. Same as in Fig. 8 but for seven other particles and in
the time interval 900 < ¢t * < 1000.
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Figs. 8 and 9, respectively. It is not possible to locate a
plane where all five particles A—E are visible at the same
time. In Fig. 10 particle B is located above the plane at a
distance slightly larger than o,/2, but in the vicinity of
C-E. Figures 8 and 10 show that the motion of C, D,
and E is strongly correlated. They perform a type of
“chain” motion; (1) C moves to a new position, (2) D
moves to the initial location of C, and (3) E moves to the
initial location of D. There is no clear time ordering of
the events (1)—(3). At the same time particle B and other
particles in the vicinity, counted in group II, make large
displacements, but they all return to their initial equilibri-
um locations. After this event no large displacements
(011 <AR™®*) occur in the next two time intervals.

In the time interval 600 < ¢* < 700 one particle makes a
large displacement. However, this particle returns to its
initial equilibrium location and its motion is very similar
to the one shown in Fig. 8 for particle B. In general, we
find several events where particles make large displace-
ments but then return. Sometimes these events are
directly correlated to large ‘“irreversible” displacements
as in Fig. 8, but not always. This motion is strongly
anharmonic. The particle makes a displacement much
larger than the mean displacement and for an extended
time period, several vibrational periods. This gives rise
to a further relaxation and the relevant relaxation time is
given by the extension of the time period of the excur-
sion, which is of the order 7 ~10. At the present tem-
perature too few of these events occur to really be visible
in average quantities, such as, for instance, the van Hove
self-correlation function. At higher temperatures the
events are more frequent but it then becomes more
difficult to make a detailed analysis of individual trajec-
tories. It is very difficult to settle if this kind of motion
can be connected to a distinct secondary slow relaxation
process. We will make some more comments on this in

the last section.
In the time interval 700 <z* < 800 seven particles make

large displacements and four of these do not return to
their initial equilibrium locations. In the interval
800<t* <900 two particles make a “chain” type of
motion similar to the one in the time interval
300 < t* < 400.

In the time interval 900 < ¢t * < 1000 nine particles make
large displacements. Six of these, denoted by F-K, are
located in the vicinity of each other (see Figs. 9 and 11).
Around t*=940 F and G make large displacements but
they return. Later, at t* =966, they again make large
displacements but at this time the motion is ‘“irreversi-
ble.” At the same time three particles, L-N, are in-
volved in a “chain” type of motion some interparticle dis-
tances away from particles F-K. The motion of these
two groups of particles seems to be directly correlated,
but they are not located in the immediate vicinity of each
other. Also when the periodic boundary conditions, used
in the simulation, are taken into account the distance be-
tween F—K and L—N is several interparticle distances.

In conclusion, the diffusive motion is complicated and
strongly cooperative in nature. All events that we have
observed differ from ordinary interstitial diffusion in
solids, where a single particle makes a jump and the sur-
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rounding particles only make small readjustments. We is only possible to analyze comparatively few events in
argue that there may be a tendency for a secondary slow detail and the statistics become poor. Hopefully, the
relaxation process, seen as large ‘“‘reversible” displace- present data show some typical events occurring in the
ments. Qualitatively, the same kind of motion has been strongly supercooled liquid.

seen in the two-component soft-sphere system [18(c)]. It

96
O
O
L
O
O
o

distgice/

®
O,
O
a
O
O
3
@

'
n
T

-2 0 2 distance

SET {}@umm

: ©©<
OQQ C
NSO} DQQQO;

-2 0 2 -2 . 0 2
distance distance

© Ob
OO0
Q@O@Q-
O
Q@

s M
C

distance
o

7
©
©
)
O
O
O

2O~ O]
QQO (c)"i I
i OO0

FIG. 10. The instantaneous location of particles at an -2 . 0
artificial cut through the liquid. The 1 and 2 particles are distance
represented by spheres with the radius equal to o,; and 0, re-
spectively. Small circles correspond to particles which are lo-
cated slightly above or below the artificial plane. The letters
show the location of the same particles as shown in Fig. 8. FIG. 11. Same as in Fig. 10 but for the particles in Fig. 9.

%o@
Q@
(5O

g/_\\ O Qo

'
N




S

V. DISCUSSION AND CONCLUSIONS

We have investigated the dramatic slowing down of the
structural relaxation in a simple supercooled liquid, a
two-component Lennard-Jones fluid. Two different re-
gimes of viscous behavior are found in the time window
accessible in MD simulations.

At high temperatures (T* >0.6), but still within the
supercooled-liquid regime, the behavior is “liquidlike.”
This is seen by monitoring the time evolution of the van
Hove self-correlation function G3(r,#) which shows the
behavior typical of a dense liquid [cf. Fig. 4(a)]. The
difference between the supercooled liquid and an ordinary
dense liquid is merely quantitative, the supercooled liquid
is more viscous, and the corresponding structural relaxa-
tion times are longer.

At low temperatures (7* <0.5) the system is essential-
ly frozen for times ¢* < 103. The position of the peak in
fo(r,t)=47r?G%,(|r|t) remains unchanged after an initial
microscopic time. A tail in f,(7,¢) at larger distances is
built up gradually at the expense of a slow decay of the
strength of the peak [cf. Fig. 4(c)]. This is caused by hop-
ping processes, which are investigated in some detail in
Sec. IVBS. The hopping processes are found to be
strongly cooperative in nature. Many particles partici-
pate and several of them, but not all, make instantaneous-
ly large displacements, of the order of interparticle dis-
tances, and they do not return to their initial equilibrium
locations. The motion of these particles contributes to
the diffusion process.

The transition between the two types of viscous behav-
ior is rather abrupt and it is located around T*=0.55.
This temperature is identified with the critical tempera-
ture T, in the mode-coupling theory. The corresponding
time scale for structural relaxations is 7.~ 2507 (0.5 ns if
argon units are assumed) and it coincides with the conjec-
ture by Goldstein [7(a)] that the viscous behavior changes
in a qualitative way when the shear relaxation time
exceeds 10~ % s. It is important to notice that this transi-
tion is an intrinsic property of the system. We have
found no evidence for a dependence on the cooling rate,
provided it is sufficiently slow. The same conclusion is
also obtained in the study of the two-component soft-
sphere system [18].

A conventional glass transition is obtained if the time
scale for structural relaxations becomes comparable to or
longer than the “experimental” time scale. In our case
this occurs at about the same temperature. The drop of
the heat capacity around T*=0.5 (cf. Fig. 1) is the classi-
cal indication of a conventional glass transition. In labo-
ratory studies on real glass-forming systems structural re-
laxations can also occur at lower temperatures and for
those systems there is then a more clear distinction be-
tween the critical temperature T, and the glass transition
temperature T, (cf. Ref. [15(b)]). Only the location of
the latter temperature depends on the “experimental”
time scale and on the cooling rate. Strong indications in
favor of this statement are now available through the re-
cent and extensive neutron scattering data [9-11].

We have found no qualitative difference between the
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present model system and the two-component soft-sphere
system. In our case we can vary two of the parameters,
density, pressure, and temperature, independently. To
investigate the effect of the attractive part of the interpar-
ticle interaction we have performed calculations keeping
the pressure constant and equal to zero [24]. The transi-
tion between the two types of viscous behavior is then lo-
cated around T*=0.39 but we do not find any noticeable
difference in the dynamical behavior. In this respect
these two systems seem to behave similarly.

Next, we consider the mode-coupling theory. One of
the basic theoretical predictions is the anomalous de-
crease of the nonergodicity parameter when increasing
the temperature towards T,. The present MD data do
not prove the square-root dependence in Eq. (2.4), but the
data are certainly consistent with the theoretical predic-
tion. Similar behavior is obtained with the neutron
scattering technique [9-11], but then on much more
complicated systems.

In the theory, the anomalous decrease of the nonergo-
dicity parameter is associated with a secondary slow re-
laxation process, the 8 relaxation. The primary relaxa-
tion, a relaxation, is responsible for the diffusive motion
and here that was taken into account by fitting to the
stretched exponential. It is difficult to judge if the anom-
alous decrease, shown in Fig. 7, can be associated with a
distinct relaxation process or if a more proper interpreta-
tion is in terms of a conventional but strong anharmonic
effect.

To investigate this in more detail we have determined
the self-dynamic susceptibility, which is given by the
Fourier transform in time of F3,(q,?). A broad feature in
the imaginary part of the susceptibility, the spectrum, is
visible in between the diffusive peak (a peak) and the mi-
croscopic peak (the vibrational motion) [23(b)]. The
mode-coupling theory makes detailed scaling predictions
for the behavior of the spectrum in the vicinity of 7.
From the present MD data it was not possible to test
these scaling relations [23(b)]. The main problem is that,
assuming the mode-coupling theory to be correct, the
transition in our model system is too smeared out and a
detailed test becomes impossible. This is clear from the
fact that at T, Fj(q,t) has decayed to zero already
around ¢ *=1000. Our results for F}(q,?) in Fig. 6 agree
qualitatively with the numerical results from a model cal-
culation by Gotze and Sjogren [cf. Fig. 1(b) in Ref.
[32(b)] ], where additional processes have been included
which smear the ideal transition. The theory becomes
more involved and another separation parameter &
enters. A main issue for future investigations is to study
these real transitions and in particular to include the
relevant processes in an appropriate way in the theory.
MD simulation studies can then be of great value and the
result in Sec. IV B 5 is a small step in that direction.

The theoretical prediction of two distinct slow relaxa-
tion processes, not associated with the microscopic de-
tails of the system, is amazing. It is well known that
many glass-forming systems show two different slow re-
laxation processes. The commonly accepted explanation
for the fastest, the secondary relaxation, is that it is con-
nected to the microscopic molecular details of the glass
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former. However, it has been conjectured that it may be
a general dynamical feature of dense amorphous systems
[7]. An identification of a secondary slow process in the
simple model systems used in MD simulation studies
would therefore be of great interest. Our conclusion is
that the present MD data to some extent support this as-
sertion, but they are far from conclusive.
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