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Nematic and smectic order in a Auid of biaxial hard particles
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The liquid-crystalline phase behavior of a Quid of biaxial hard particles (spheroplatelets) is studied us-

ing a scaled particle calculation of the Auid configurational entropy combined with a cell description of
translational order. If translational ordering is ignored, the density versus particle biaxiality phase dia-
gram displays a cusp-shaped biaxial-nematic phase intervening between two uniaxial nematic phases.
The location of the crossover from rodlike to platelike uniaxial-nematic behavior is in agreement with
previous bifurcation-analysis results. The density discontinuity at the isotropic-nematic transition de-
creases as this crossover is approached from both the rodlike and platelike sides, becoming vanishingly
small at the crossover point itself. When the possibility of translational order is considered, the phase di-
agram displays three distinct smectic-A phases, in addition to the two uniaxial nematic phases, and only
a small remnant of the biaxial-nematic phase. One of the three smectic phases has in-layer orientational
order, while the other two have in-layer isotropic order.

INTRODUCTION

The term liquid crystal encompasses a broad range of
Quid materials displaying anisotropic properties and or-
dered mesophases. On a microscopic level all of these
materials are characterized by a significant degree of
molecular shape anisotropy [1], a fact which suggests
that liquid-crystalline order may be understood in terms
of a Iiuid of asymmetric hard particles [2]. Uniaxial-
hard-particle models have been studied extensively and
appear to provide a reasonable qualitative description of
a variety of liquid-crystal phases [2—9]. However, quan-
titatively, such uniaxial-hard-particle models give results
systematically at odds with experimental findings.
Specifically„ the uniaxial-hard-particle model generally
overestimates the nematic order parameter and gives ex-
aggerated discontinuities in density, entropy, and enthal-

py across the isotropic-nematic transition. Such
discrepancies persist even when attractive interparticle
interactions are included in the hard-core description
(i.e., the van der Waals approach) [10].

It has been suggested that a Quid of hard biaxial parti-
cles should provide a more realistic reference system for
mesogenic IIIuids than does a fIuid of hard uniaxial parti-
cles [10,11]. This suggestion is prompted primarily by
the fact that, on a molecular level, most mesogenic mole-
cules are by no means uniaxially symmetric. On a macro-
scopic level this approach seems promising since, as
pointed out by Gelbart and Barboy [11] (and more re-
cently by Tjipto-Margo and Evans [12]),introduction of a
small degree of biaxiality into the hard particle model can
result in more realistic nematic behavior (such as an or-
der of magnitude decrease in the isotropic-nematic transi-
tion density discontinuity). Fluids governed by an under-
lying biaxial interparticle potential have been of consider-

able interest and are predicted to have a complex phase
diagram which includes one biaxial- and two uniaxial-
nematic phases [13—18]. In a density versus particle
biaxiality phase diagram first described by Alben [15] the
uniaxial-nematic phases for rodlike and platelike particles
are separated from the intervening biaxial phase by two
second-order transition lines which meet the first-order
isotropic-nematic phase boundary in a sharp cusp. This
intersection, at which four phases coexist, is a distin-
guishing feature of the phase diagram and is known as
the Landau bicritical point. Preliminary results from re-
cent computer simulations of a fluid of hard biaxial ellip-
soids include a phase diagram of this very topology [19].

The prediction of a stable biaxial-nematic phase in
these model biaxial systems has raised some questions as
to their applicability to real systems as there are remark-
ably few experimental systems for which such a phase has
been identified [20—22]. One possible explanation for this
near nonexistence of the biaxial-nematic phase is provid-
ed by recent studies of certain uniaxial-hard-particle
fluids [8,9] for which the nematic phase is unstable, above
a critical density, with respect to other more highly or-
dered liquid-crystalline phases, e.g. , the smectic in a
dense Quid of spherocylinders. It has been suggested
that, at least in certain hard particle biaxial systems, the
biaxial-nematic phase is likewise unstable with respect to
smectic ordering [17,18]. (Of course this argument does
not apply to ellipsoids as uniaxial ellipsoids do not form a
smectic phase [7] and a biaxial-nematic phase is stable in
a fiuid of biaxial ellipsoids [19]). Somoza and Tarazona
have used a density-functional theory to study one such
biaxial-hard-particle system, a Quid of oblique cylinders,
and find stable smectic ordering with only a small region
of biaxial-nematic stability [23].

Here we study both nematic and smectic order in a
fIuid of hard biaxial spheroplatelets. We use scaled parti-
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cle theory for the fluid configurational entropy [24], in
conjunction with a cell description of translational order
[25]. For an isotropic distribution of spheroplatelets the
exact scaled particle theory results are given. However,
in our description of nematic and smectic order we resort
to the simplifying xyz approximation whereby particles
are constrained to a discrete set of three mutually orthog-
onal orientations [26]. This approximation reproduces
the well-known biaxial phase behavior described above in
the absence of translation ordering (although an actual
bicritical point is not found). The location of the axial-
to-planar nematic crossover is in agreement with the pre-
vious spheroplatelet calculations of Mulder using a
second virial treatment [17] and Holyst and Poniewierski
using a density-functional theory [18]. When smectic or-
dering is considered, the biaxial spheroplatelet phase dia-
gram displays three distinct smectic-3 phases which al-
most completely displace the biaxial-nematic phase. One
of the three smectic phases has in-layer orientational or-
der while the other two have in-layer isotropic order. We
also find that these smectic phases are stable with respect
to both columnar and crystalline ordering.

NEMATIC ORDER

We begin by working out the general scaled particle
theory equations for a Quid of hard biaxial particles. For
an isotropic distribution of such particles the exact solu-
tion to these equations is presented. For calculations of
the full phase diagram, these equations are solved within

the discrete orientation xyz approximation. The biaxial
particle we consider is the spheroplatelet, which is the
geometrical object swept out by a sphere of radius a
whose center is constrained to a rectangle of dimensions
b X c (0 & b & c). This particle is the only nonaxially sym-
metric convex body for which the pair excluded volume
at arbitrary fixed orientations is known in closed form
[27]. Our model system consists of N hard spheroplate-
lets of dimensions a, b, c [particle volume
vo=4ma /3+era (b +c)+2abc] in a volume V, with
orientational order described by fn, the fraction of parti-
cles with orientation 0 such that gnfn =1. The particle
orientation is defined here, with respect to a fixed labora-
tory frame, by the particle principle axes
0=

I u„u&, u, ]
=

[ Q„Q&,0, I, where u, defines the nor-
mal to the basis platelet, i.e., the a axis and ub and u,
refer to the b and c axes, respectively. Clearly the
specification of two principle axes fixes the third, howev-
er, in the following we refer to the orientations of all
three axes for clarity.

We use scaled particle theory, in the manner of Cotter
[4] and of Savithramma and Madhusudana [28], to de-
scribe this spheroplatelet fIuid. Required is the work
function Wn(5„5&,5, ) associated with the insertion of a
scaled spheroplatelet of dimensions 6,a, 5bb, 5,c
(0 5„5&,5, & ~) and orientation 0 in this fluid of
(a, b, c) spheroplatelets. This quantity is known exactly
for the two limiting cases of a vanishingly small and of a
macroscopically large scaled particle. In the former lim-
it, this work function is given by

P~n(5„5f„5, 0)= —ln 1 —py fnbnn (5„5$,5, ) '

= —in[1 —p(b'„"„(5„5,5, )) ]

where P= 1/k& T, P =+/P, and bn n. (5„5&,5, ) is the Pair excluded volume between the scaled (5,a, 5qb, 5,c ) sPhero-
platelet in orientation n and an (a, b, c) spheroplatelet in orientation 0 We have also introduced the notation
(g ) =y~ngn, which we shall use throughout. The exPlicit form of the Pair excluded volume, as given by Taylor
[29], is

bn n (5„5~,5, )= a (1+5, ) +era b(1+5, ) (I+5&)+era c(1+5,) (1+5,)+2abc(1+5, )(1+5~5, )

+2abc (1+5, )5, i sin(Q& —0', ) i
+2abc (1+5, )5& sin( Q, —0I, ) i

+2ab (1+5, )5& isin(Qt, —QI, )i+2ac (1+5,)5, isin(Q, —0,')i

+b c51, [ cos(Q, —III, ) +5, icos(IIt, —II,')i]+bc 5, [ cos(Q, 0', )i+5—&icos(Q, —0,')i] . (2)

Note that the argument of the logarithm in Eq. (1) is simply the probability of success in the insertion process in the
5„5&,5, —+0 limit. In the other limit of a macroscopically large scaled particle (5, , 5&,5, —+ ~ ), the work function is
given simply in terms of a hydrostatic pressure P resisting the formation of a macroscopic cavity in the Auid, i.e.,

PR n(5„5t„5,~~ )=PP a 5, +(era b)5, 5&+(era c)5,5, +(2abc)5, 5I,5, (3)

The premise of scaled particle theory is that the work function for the case of interest, 6„6b,5, = 1, can be approxi-
mated by an interpolation between these two exact limiting cases. Such an interpolation is constructed through an ex-
pansion of the orientationally averaged work function in the scaling parameters 6„6b,6, as follows:
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pW(5„5b, 5, )= g fnpWn(5„5b, 5, )

=
COOO + C1005a +C0105b + C0015a +C1105a5b +C1015a5c

+Co»5b5, +C2005, +era b(PP)5, 5b+ma c(PP)5, 5, +2abc(PP)5, 5b5, + a3(PP)53
3

where the expansion coefficients
r

C
1

lmn

g(1+m +n)(PW)

85 85b 85 5,5b, 5 =0

are computed using the small scaling limit work function from Eq. (1):

pW(5„5b, 5,~0)= g fnpWn(5„5b, 5, ~0)

= —ln + 1 —pgfn, bn n( 5„5b, 5, )
0 Q'

= —in[1 —p« b'" (5„5,5, ) »] .

Evaluation of the CI „expansion coefficients leads to the desired 5„5b,5, =1 orientationally averaged work func-
tion,

2
VP

PW(5„5b, 5, =1)=—ln(1 —v )+
v0 1 vp

UP

1 —v0 p
(7)

where

S=SIra +6Ira b +6nac+4.abc+4abc « lsin(Qb —Q', )l »+4abc « lsin(Q, —Qb)l »

+4ab « lsin(Qb —Qb)l »+4ac « lsi11(Q, —Q,')l »+b c[« leos(Q, —Qb)l »+« leos(Qb —Q,')l »]
+bc'[« lc»(Q. —Q,')I »+ « lc»(Q, —Q.')I »],

C =(4' +2Ira b +2~a c + 2a bc )

X [2n.a +2' a b +2m a c +abc +2abc « l
sin( Q b

—Q,' ) l » +2abc « l
sin( Q, —Qb ) l »

+2ab « lsin(Qb —Qb)l »+2ac « lsin(Q, —Q,')l »+b c« leos(Q, —Qb)l »+bc « leos(Q, —Q,')l »]
+ [mab +2abc « l.sin(Q, —Qb ) l

»+2ab « l
sin(Qb —Qb ) l

»+b c « leos(Q, —Qb ) l » ]

X[~a c+2abc&& lsin(Qb —Q,')l &&+2ac && lsin(Q, —Q,')l &&+bc && leos(Q, —Q,')l &&] (9)

and v =pv0 is the volume or packing fraction of parti-
cles.

The complete thermodynamics of this hard particle
fiuid can be constructed from the Eq. (7) work function.
The Gibbs free energy is given by

1'[fn] PG
N X Vp

=&info &
—1+in(pA )

—ln(1 —v )

2

PG[fII ] = &info &+ln(pA )+PW(5„5b,5, =1) (10)
UP P UP

2v0 1 vp 3~ 1 vp
(12)

2

~p P + P + 2~ P

1 V 2v0 1 V 3y'0 1 v

3

and the Helmholtz free energy is

where A=(h /2nmkIIT)'~ is .the thermal de Broglie
wavelength for a particle of mass m. Integration of the
Cxibbs-Duhem equation, BP/dp=pd(G/X)/dp, gives the
pressure equation of state

This version of scaled particle theory reproduces both the
original results of Reiss, Frisch, and Lebowitz for the
hard sphere Quid (b, c =0) [24] and those of Cotter for
hard spherocylinders (b =0) [4].

For an isotropic Quid of spheroplatelets, the orienta-
tion distribution function fn is simply a constant and the
angular averages of Eqs. (8) and (9) are given by
« l sin(Q —Q' ) l » =m. /4 and « leos(Q —Q' ) l » =

—,',
a, y& Ia, b, c] [27]. Thus for the isotropic solution we
have
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2V"=8ma +6ma (b+c)+4abc+ma(b+c) +bc(b+c)
(13)

and

C'" [8a +4a (b+c)+abc]1

4a

X[2ma +ma (b+c)+abc] (14)

The resulting second virial coefticient for hard sphero-
platelets is given by B2=vo+ —,'2F" in agreement with
Mulder's result [27]. This scaled particle theory ap-
proach gives a third virial coefficient of
B3=vo+v+'"+ —', C'" and, in general, the nth virial
coefficient is determined from Eq. (11) via

vo 8"(v(PPIv~ )8n+1
Up v =0

P

(15)

where y is a Lagrange multiplier conjugate to the fn nor-
rnalization constraint, results in a rather complicated
nonlinear integral equation for the equilibrium orienta-

In the nematic phase the orientation distribution func-
tion is no longer a constant and is determined via a func-
tional minimization of the Helmholtz free energy [Eq.
(12)] with respect to fn. The minimization condition,
given by

5(13F[fn]~N+X gfn)
(16)

tion distribution function. Here we make no attempt to
solve this full integral equation. Instead, we resort to a
discretized version of the above model in which particle
orientations are restricted, such that the particle princi-
ple axes are constrained to coincide with the axes of a
fixed Cartesian xyz-coordinate system. Systems of hard
rectangular biaxial particles have been studied within this
approximation by both Shih and Alben using a lattice
model [14] and Gelbart and Barboy using their y expan-
sion [11(a)]. Somoza and Tarazona also employ such a
discrete orientation approximation for oblique hard
cylinders [23]. While not quantitatively accurate [30],
the xyz approach should provide a qualitative description
of this biaxial system. We note here that within this xyz
approximation the results we derive for spheroplatelets
are qualitatively very similar to results we get if we sirn-
ply use hard rectangular particles. However, use of the
spheroplatelet allows assessment of the xyz approxima-
tion by comparison with analytical and numerical results
regarding the location of the Landau bicritical point in
the spheroplatelet fluid [17,18] and exact computer simu-
lation results in the limit of b =0 (i.e., spherocylinders)
[8].

A discrete version of the orientation distribution func-
tion f & is defined as the fraction of particles with princi-
ple axes u„u&, and u, oriented in fixed directions i, j,
and k, respectively. Note that a biaxial particle has six
distinct orientations in the xyz approximation (i' Ak ).
Averages over the distribution function are defined by
(gjk ) =QJ&kf~kg~k, where the sum extends over all six
pairs (j,k) for which jWk. In this xyz approximation,

i
sin(Q —Q', ) i

= (1—5,„,), i
sin(Q, —Qb ) i

=(1—5k, ),
isin(Qb —Qb)i =(1—5.'), isin(Q, —Q', )i =(1—

5kk ),
icos(Q, —Qb)i =(1—5 )=(1—5 ' —5kj ), icos(Q1, —Q,')i =(1—5.; )=(1—5 . —5 k ),
icos(Q, —Q, )i =(1—5,„)—(1—5 „—5„„.), icos(Q, —Q,') =(1—5„,') —(1 5„. 5„„.), — —

where 5 & is the usual Kronecker 5 function, and the above-mentioned nonlinear integral equation is reduced to a set of
seven coupled algebraic equations. This set of equations can be solved using the Newton-Raphson technique or, more
directly, by using a straightforward iterative procedure. We consider solutions of four different symmetries defined as
follows:

f23=f,3=f32=f3, =f,2=f2, , 1SOtrOP1C,

(f23 f» ) & (f32
=f3, ) & (f,2 =f2, ), rodlike uniaxial nematic, N„( + )

f23 &f13 &f32 &f31 &f12 &f21

f23 & (f13=f32 ) & (f31
=f12 ) &f21

. biaxial nematic, Nb„,
f23 &f32 &f13 &f12 &f31 &f21

(f23=f32)&(f13=f,2) &(f3, =f2, ), platelike uniaxial nematic, N„( —
) .

For the rodlike uniaxial nematic, N„(+ ), the director is
along direction 3 and particle orientations with the long-
est axis (c) parallel to the director are most populated
while those with the shortest axis (a) parallel to the direc-

tor are least populated. For the platelike uniaxial nemat-
ic, N„( —), the director is along direction 1 and particle
orientations with the shortest axis (a) along the director
are most populated while those with the longest axis (c)
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along the director are least populated. These two uniaxi-
al nematics can be connected in a continuous manner by
passing through the biaxial nematic, Nb„.

The phase diagram for the c/2a =5 spheroplatelet
fluid resulting from this calculation is shown in Fig. 1. A
corresponding plot of the relative density discontinuity
across the isotropic-nematic transition is shown in Fig. 2.
In the phase diagram, a cusp-shaped region of biaxial
nematic stability, Nb, separates two uniaxial nematics,
the rodlike N„(+ ), in which the particles' long axes are
aligned along the nematic director, and the platelike
N„( —), in which the particles' short axes are aligned
along the director. The uniaxial- to biaxial-nematic tran-
sition is, in all cases, apparently second order
(bp/p(10 ). The crossover from N„(+) to N„( —) be-
havior occurs at a particle biaxiality of b/2a =1.35
which is in agreement with the bifurcation analysis condi-
tion given by b +mba crea/—2=0 [17,18] where in our
case, c/2a =5. (In fact, our values of b/2a at the cross-
over are consistent with this bifurcation analysis result
for all values of c/2a investigated. ) The density discon-
tinuity at the first-order isotropic-nematic transition (Fig.
2) decreases as this crossover point is approached from
both the rodlike and platelike sides, becoming vanishing-
ly small (bp/p ( 10 ) at the crossover.

The eff'ects of the discrete orientation (xyz) approxima-
tion are most strongly manifest at the rotational symme-
try breaking, isotropic-nematic transition. This transi-
tion occurs prematurely due to an underestimation of
orientational disorder in the isotropic phase and a lesser
overestimation of orientational order in the nernatic
phase. For comparison, this transition is known to occur
at pv0=0. 40 for spherocylinders (i.e., b =0) [8] with
c/2a =5 while the bicritical point for this c/2a value is
estimated to occur at pvo=0. 43 [18]. A consequence of

0.12

(pl atelike) —+

0.08—

h, p/p

0.04—

b/2a

FIG. 2. Relative density discontinuity across the isotropic-
nematic transition Ap/p vs b/2a for a Quid of hard spheroplate-
lets with c/2a =5 (corresponding to the spheroplatelet phase
diagram of Fig. 1). At the crossover from rodlike to platelike
behavior (b/2a =1.35) the density discontinuity becomes van-
ishingly small (Ap/p(10 ) suggesting a second-order align-
ment transition at this point.

our underestimation of the isotropic-nematic transition
density is the absence of a bicritical point in the Fig. 1

phase diagram, where the Xb phase terminates at
pvo=0. 34 rather than extending down to the pvo=0. 25
isotropic-nematic transition boundary. However, apart
from the location of the isotropic-nematic transition, the
overall description of this transition and of the complete
nematic phase behavior for the spheroplatelet fluid is
qualitatively [and even quantitatively, in the case of the
N„(+ )~N„(—

) crossover condition] correct.

SMECTIC ORDER

0.8

pv

0.6—

0.4—

Nbx

/
/

N (+)
U

N„(—)

0.2—
Isotropic

m(rodlike) (platelike) m

b/2a

FIG. 1. Phase diagram for a fluid of hard spheroplatelets
with c/2a =5 computed using an xyz version of scaled particle
theory. Broken lines indicate second-order phase transitions
while shaded areas denote regions of first-order phase coex-
istence. The three aligned phases are the axial nematic N„(+ ),
the planar nematic N„( —), and the biaxial nematic Nb„.

Our xyz treatment of the nematic order in a fluid of bi-
axial hard particles results in a familiar phase diagram in-
cluding the previously predicted biaxial-nematic phase.
However, as discussed in the Introduction, the fact that
such a biaxial-nematic phase is rarely seen experimentally
casts doubt on the applicability of this type of model.
The discovery of a stable smectic phase in a fluid of uni-
axial spherocylinders [8] has led to the suggestion that, at
least in certain hard particle systems, the elusive biaxial-
nematic phase is actually unstable with respect to smectic
ordering [17,18,23]. If this is the case, the region of
biaxial-nematic stability in the Fig. 1 biaxial spheroplate-
let phase diagram should actually be replaced by a more
stable, smectic phase. Here we investigate the question of
smectic ordering in a biaxial spheroplatelet fluid using a
self-consistent cell model for translational order in hard
particle ffuids [25].

In this model, smectic order is imposed by the intro-
duction of impenetrable cell walls which divide the sys-
tern into smectic layers. The smectic phase is thus treat-
ed as a two-dimensional fluid confined within the one-
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dimensional cell corresponding to the thickness of the
smectic layer. The two-dimensional Quid density is cou-
pled to the one-dimensional cell entropy through their
mutual dependence on the smectic layer spacing 5, . For
self-consistency this model requires that one of the
spheroplatelet principle axes (u„u&, u, ) be constrained
to lie parallel to the smectic ordering axis (m), however,
the particles still retain in-layer rotational freedom [31].
This construction allows for three types of smectic-A or-
dering, depending on which of the three spheroplatelet
principle axes is associated with the smectic ordering
axis. In addition, there can be either isotropic or nematic
in-layer ordering.

Following the approach developed in Ref. [25], the free
energy per particle for this system can be written as the
sum of three terms, an ideal contribution,

/3F' "'/N = g f&lnfz+1 pnA
—1 (17)

and the two nonideal contributions, PFP" /N and
PF2"' /N, associated with the one ordered and two disor-
dered (fluid) dimensions of the system, respectively. In
the one translationally ordered dimension, defined by the
smectic ordering axis, we describe the system in terms of
one-dimensional particles of length l confined within
one-dimensional cells of length 6, where

2a for m=u,
l = 2a +b for m=ub

2a +c for m=u, .

The one-dimensional cell entropy per particle is simply
ln(I /b, , ) where I =5, —1 is the free "volume" accessible
to the center of a confined particle and thus

/3FP" /N = —ln(1 //5, —) . (19)

In the remaining two translationally disordered (in-
layer) dimensions we have a corresponding two-
dimensional Quid of 1V two-dimensional particles in a to-
tal area V/b, We first consider the case in which
m=u, (i.e., the particles' a axes are parallel to the smec-
tic ordering axis). In this case, the shape of the two-
dimensional particles, here referred to as "circloplate-
lets, " is given by the parallel projection of an (a, b, c)
spheroplatelet on a plane perpendicular to the a axis [par-
ticle area coo =ma+ 2a. ( b + c)+bc] Th.is two-
dimensional Quid is described using a two-dimensional
version of scaled particle theory. For this purpose we
consider the process of inserting a scaled circloplatelet of
dimensions 5,a, 5&b, 5,c and orientation 0 (which is now
defined in terms of a single angle) into this two-
dimensional fluid of (a, b, c) circloplatelets. In the limit of
a vanishingly small scaled particle, the work associated
with this process is given exactly by

/3W„(5„5i„5,~0)= —ln 1 —ph, g f„,A„„,(5„5b,5, ) (20)

where

An n (5„5&,5, )=era (1+5, ) +2ab(1+5, )(1+5&)+2ac(1+5,)(1+5,)+cb(1+5&5, )

+cb(5&+5, ) ~cos(Q —0') ~+(c 5, +b 5I, ) ~sin(Q —0')
~

(21)

is the excluded area between the scaled (5,a, 5&b, 5,c) circloplatelet in orientation 0 and an (a, b, c) circloplatelet in
orientation 0 . In the limit of a macroscopically large scaled particle (5„5b,5, ~ ~ ), this work function is given exact-
ly in terms of a two-dimensional pressure II. We interpolate between these two limits via an expansion in the scaling
parameters as follows:

/3W(5„5i„5, )= g f„PW„(5„5i„5,)

=Cooo+C, OO5, +Coio5&+Cooi5, +ma (PII)5, +2ab (PII)5,5&+2ac(PII)5, 5, +bc(/311)5&5, (22)

where the expansion coefficients C& „, given by Eq. (5), are computed using an orientationally averaged [as in Eq. (6)]
version of the small scaling limit work function [Eq. (20)].

Construction of the analogous scaled particle work function for the m =ub and m =u, smectic structures exactly
parallels the above derivation. For these two cases the two-dimensional Auid of interest is composed of "circlorectan-
gles, " i.e., rectangles of length c or b capped by hemicircles of radius a (coo=ma +2ac or coo=era +2ab) Thus only.
two scaling parameters are required, one for the rectangle length (5, or 5&) and one for the circle radius (5, ). For the
m=uz smectic phase the excluded area [analogous to Eq. (21)] and work function [analogous to Eq. (22)] are given, re-
spectively, by

and

Az n (5„5,)=ma (1+5, ) +2ac(1+5, )(1+5,)+c 5, ~sin(A —0')~ (23)

PW(5 5 ):Coo+Ci05 +Coi5 +m'a (/311)5 +2ac(/311)5 5 (24)
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The related expressions for the m=u, smectic phase are identical to Eqs. (23) and (24) when c and 5, are replaced by b
and 5&. The expansion coefficients of Eq. (24) are given by a suitably modified version of Eq. (5).

Proceeding with the straightforward scaled particle approach (as described above and in Ref. [25]) for each of these
three smectic-A phases results in the following two-dimensional excess Quid configurational free energy:

V2PFz"' /N= —ln(1 —v2)+
2coo 1 —

V 2
(25)

where

2coo+ ( b +c ) ((
~

sin( 0—0' )
~
)) +2bc [ (( ~

cos(0 —0'
~
)) —1 ] for m =u,

2roo+c (( ~sin(Q —0')~ )) for m=u&

2coo+ b ((
~
sin( Q —0')

~ )) for m =u,

(26)

and v2=~oh, p is the two-dimensional in-layer packing
fraction with the two-dimensional particle area given by

ma +2a(b+c)+bc for m=u,
~a +2ac for m=u&2

~a +2ab for m=u, .

(27)

The complete free energy per particle, given by the sum
of Eqs. (17), (19), and (25), for each of the three smectic
phases is a functional of both the in-layer orientation dis-
tribution function fri and the smectic layer spacing 5, .
To be consistent with our previous xyz treatment of
nematic ordering in this system, here we consider only
the xy version of the in-layer orientation distribution
function replacing fn by f, where i =1., 2. This leads to
the following simplifications:

~
sin( Q —fl )

~

~ ( 1 —5;J ),
~cos(Q —0')

~ ~5J, and (g(Q) ) ~ (g, ) =g,f g;. The
equilibrium in-layer orientation distribution function and
smectic layer spacing for each of these smectic phases are
given by simultaneously optimizing the complete free en-
ergy functional with respect to f, (subject to the normali-
zation f, +fz= 1) and b,

Consideration of these various smectic-3 phases, in
addition to the isotropic and nematic phases described
above, leads to the density versus particle biaxiality phase
diagram shown in Fig. 3 for c/2a =5. This phase dia-
gram is markedly different from the spheroplatelet phase
diagram of Fig. 1 for which translational ordering was ig-
nored. We find stable smectic ordering across the full
range of particle biaxiality for volume fractions pvo 0.5.
For rodlike particles (6~0) there is a first-order transi-
tion from the N„(+ ) phase to the uniaxial S„(+) phase
(m=u, ) in which the rod axes are aligned perpendicular
to the smectic layers. (For spherocylinders (b =0) with
c/2a =5, this transition is known to occur at pvo=0. 53
and is second order [8].) As these rodlike particles be-
come more diaxial (larger b/2a) or as the density is in-
creased (for b/2a ) 1) there is an apparently second-
order, in-layer orientational ordering transition from the
uniaxial S„(+) phase to the biaxial S&„(+) phase. In the
other extreme of platelike particles (b~c) there is a
first-order transition from the N„( —) phase to the uniaxi-
al S„(—) phase (m=u, ). In the S„(—) phase, the short

axes of the particles are oriented perpendicular to the
smectic layer forming a lamellar structure. With increas-
ing density, this S„(—) phase becomes unstable with
respect to the biaxial S&„(+)phase. At this first-order
phase transition the platelike particles, which are "lying
down" in the S„(—) smectic layer, simultaneously "stand
up" and undergo an in-layer orientational ordering tran-
sition forming the Si, (+ ) phase. At intermediate parti-
cle biaxiality (1.4(b/2a (2.1) there is either a first-
order N„( —)~S„(+) or N„( —

)—+S&„(+) transition.
We note that the strongly discontinuous nature of these
nematic-smectic transitions results from the cell con-
struction of smectic order, which precludes the possibili-
ty of a continuous transition from the nematic [25].
However, the overall smectic phase behavior shown in
Fig. 3 should be qualitatively correct.

0.8

pv

0.6—
Sb

s„(+)

0.4—

0.2—
Isotropic

E—(rodlike)

I

1

b/2a

(platelike) ~

FIG. 3. Phase diagram, including smectic order, for biaxial
spheroplatelets with c/2a =5. Broken lines indicate second-
order phase transitions while shaded areas denote regions of
erst-order phase coexistence. The uniaxial S„(+)and S„(—)

smectic phases have in-layer isotropic order while the biaxial
Sb (+) smectic phase has in-layer nematic order. A detailed
description of these smectic phases is given in the text. Of par-
ticular interest is near disappearance of the biaxial Nb„nematic
phase (compare with Fig. 1).
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Perhaps the most striking feature of the Fig. 3 phase
diagram is the nearly complete disappearance of the
biaxial-nematic phase. Only a small remnant of the Fig.
1 cusp-shaped region of Nb stability survives, the majori-
ty of this region being replaced by the uniaxial S„(+)
and biaxial Sb„(+) phases. Due to the approximations
employed here, it is unclear whether this remaining 1Vb„
phase is truly stable or if the isotropic-nematic transition
boundary actually merges with the nematic-smectic
boundary in this region of the phase diagram. While a
definitive resolution of such details awaits an "exact"
computer simulation, we can conclude here that the large
region of biaxial-nematic stability previously predicted
for a Quid of biaxial hard particles is, for the most part,
unstable with respect to smectic ordering and that if a bi-
axial nematic does exist in this system it is constrained to
a very limited range of density and particle biaxiality.

For the case of c/2a =5 hard spherocylinders (i.e.,
b =0), it is known that above a density of pvo= 0.65 the
smectic S„(+) phase is no longer stable with respect to
crystalline ordering [8]. For the biaxial spheroplatelets
studied here one similarly expects the region of smectic
stability shown in Fig. 3 to be replaced by a crystal phase
above some critical density. Various columnar phases
may also be stable at high density in this system. We
have investigated the possibility of these more highly or-
dered phases in the biaxial spheroplatelet system, using a
generalized version of our previous model for columnar
and crystalline ordering in the parallel hard sphero-
cylinder system [25] (in analogy to our above treatment
of the smectic phase). In this model, the columnar phase
is described as one-dimensional Quid confined within a
two-dimensional cell. The one-dimensional Quid density
is coupled to the two-dimensional cell entropy through
their mutual dependence on the cell dimensions. For the
crystal phase the cell model is applied to translational or-
der in all three dimensions. Details of these calculations
are given in the Appendix.

Figure 4 shows the resulting biaxial spheroplatelet
phase diagram when columnar and crystalline ordering
are considered, in addition to the smectic ordering con-
sidered in Fig. 3. For low and intermediate densities
(pvo 0.6) Fig. 4 is identical to the phase diagram of Fig.
3, while at higher densities stable columnar and crystal-
line phases replace the smectic ordering of Fig. 3. Of the
three possible columnar phases discussed in the Appen-
dix, only one is found to be stable. In this C(+ ) colum-
nar phase the spheroplatelets' long (u, ) axes are parallel
to the columnar tube axis and the columnar tube has a
stretched hexagon cross section. The crystal phase of
Fig. 4 has a close-packed structure consisting of a rec-
tangular array of interdigitated columns of face-to-face
stacked spheroplatelets. Thus, as expected, columnar
and crystal phases do replace smectic ordering at high
densities in the biaxial spheroplatelet Quid. However, a
large region of the smectic ordering shown in Fig. 3 is ac-
tually stable with respect to these more highly ordered
phases and therefore our main conclusion, that smectic
ordering replaces the biaxial-nematic phase for biaxial
spheroplatelets, stands.

Finally, the formation of the biaxial-nematic phase can

1.0
C~stal

pv
0.8—

0.6—

0.4-
N„(+)

P2

0.0
c—(rodlike)

bx

Isotropie

N„(—)

(platelike) —+

b/2a

FIG. 4. Phase diagram for biaxial spheroplatelets with
c/2a =5 as in Fig. 3, but now including columnar and crystal-
line ordering. The structures of these additional phases are de-
scribed in the text.
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APPENDIX

Columnar order

Here we describe columnar ordering in the biaxial
spheroplatelet system using a generalized version of the
self-consistent cell model introduced in Ref. [25]. In this
model columnar order is imposed by confining the parti-
cles within impenetrable columnar tubes. Thus we treat
the columnar phase as a one-dimensional Quid confined
within a two-dimensional ce11 corresponding to the cross
section of the columnar tube. In analogy with the above
treatment of smectic ordering, three columnar phases are
possible depending upon which of the three spheroplate-
let principle axes (u„ub, u, ) is constrained to lie parallel
to the columnar ordering axis (I ). As with the smectic
phase, the free energy per particle for this system can be
written as the sum of three terms, an ideal contribution,
13F' "'/N given by Eq. (17) and two nonideal contribu-

tions, f3Fz'""/N and PF","' /N, associated with the two
ordered and one disordered (fluid) dimensions of the sys-
tem, respectively.

be described in terms of a competition between rodlike
and platelike ordering and thus a mixture of rods and
plates is also predicted to exhibit such a phase [32]. One
might anticipate that this mixed rod/plate biaxial-
nematic phase is also unstable with respect to smectic or-
der. However, for sufficiently incommensurate rod and
plate sizes, there is the possibility of a frustration of
smectic ordering and thereby a stabilization of the
biaxial-nematic phase of the mixture.
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We first consider the case of I =u, (i.e., the sphero-
platelets are stacked end to end). Here, the two-
dimensional cell is a hexagon of side-to-side width 5,
which has been stretched from the midpoints of two
parallel sides by a length 8, [two-dimensional cell area
~=(&3/2g. ', +e,a, ]. The two-dimensional par~icle
confined within this cell is a circlorectangle of diameter
2a and rectangle length b. The free "volume" accessible
to the center of this confined particle is
I =(&3/2)(h, —2a) +(e, —b)(b, , —2a) and the
nonideal contribution to the free energy associated with
the two ordered dimensions is

PF"""/N = —ln
r

2 0

In the one remaining dimension we have a Quid of one-
dimensional particles of length c +2a with an excess free
energy given by [25]

pF","' /X= —ln(1 —
U, ) (A2)

where Ui =ptr(c +2a) is the one-dimensional fiuid densi-
ty. The calculation for the I =u& columnar phase is iden-
tical to the above if the dimensions b and c are inter-
changed. For the l =u, columnar phase the spheroplate-
lets are stacked face to face. Here the cross section of the
columnar tube is a rectangle of dimensions 6, by 0,
(tT =b,,e, ) and the confined two-dimensional particle is
an (a, b, c) circloplatelet with particle free volume
I = [0,—(c +2a)][6,, (b +2a)].—In this phase the
one-dimensional fiuid density is Ui =ptr(2a). For each of

these three columnar phases the free energy, given by the
sum of Eqs. (17), (Al), and (A2), must be minimized with
respect to the cell dimensions 6, and 8„. The hard parti-
cle pressure equation of state for each of these phases is
given by

Crystalline order

Vp
PF /X =1np A 31n 1 ——

Ucp

and the hard particle pressure is

1/3

(A4)

vs'=
[1—(v /vcp) ]

The close-packed crystal structure we consider is of a
rectangular array of interdigitated columns of stacked
spheroplatelets (i.e., within a column the spheroplatelets
are stacked along their a axes and the b and c edges of ad-
jacent columns are interdigitated). The close-packed
volume fraction of this structure is Ucp=vo/v„» where
v„&~=2abc+2&3a (b+c)+6a is the close-packed
unit-cell volume. The free energy per particle of this
hard particle crystal is given by [25]
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