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One-dimensional model for microemulsions
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In this paper, a model for water-oil-surfactant mixtures, which we have previously studied on two-
and three-dimensional lattices, is now studied on a one-dimensional lattice. In this case we are able to
obtain exact results, whereas on the higher-dimensional lattices it was necessary to use approximations.
This one-dimensional model produces correlation and structure functions that are similar to those ob-
tained for the disordered phase on the two- and three-dimensional lattices. The disorder line is obtained
from the water-water correlation function and the Lifshitz line is derived from the water-water structure
function. One or the other of these lines is typically used to divide the disordered phase into a region of
ordinary disordered fluid and a microemulsion region. Both these lines calculated exactly for the one-
dimensional lattice behave similarly to their counterparts on the two- and three-dimensional lattices cal-
culated by various approximations.

I. INTRODUCTION

Water-oil-surfactant mixtures can exist as microemul-
sions because of the strong tendency of surfactant mole-
cules to be adsorbed at water-oil interfaces. In this case,
the water and oil are mixed down to microscopic scales
whereas without the surfactant they would phase
separate [1]. A microemulsion with considerably more
water than oil consists of small spheres of oil surrounded
by a surfactant monolayer and randomly dispersed in the
water. The reverse happens when there is considerably
more oil than water. When the water and oil concentra-
tions are comparable, as considered in this paper, the wa-
ter and oil form bicontinuous interweaving tubelike
structures where a surfactant monolayer exists on the
vast interface between water and oil. Although these
bicontinuous structures are formed from tubes with mi-
croscopic sized cross sections, they form a network that
spans macroscopic distances.

The microemulsion does not have any rigid structure
or long-range order and thus appears as a uniform disor-
dered phase [1—9]. In order to characterize the mi-

croemulsion phase by methods of statistical mechanics,
one examines the correlation and structure functions.
For example, the average diameter of the tubes making
up the bicontinuous structure for water causes an oscilla-
tion in the water-water correlation function of compara-
ble wavelength. This oscillation in the water-water corre-
lation function can cause a peak in the water-water struc-
ture function at small nonzero wave vectors. Increasing
the surfactant concentration presumably creates finer
bicontinuous structures with more surface area, which
decreases the wavelength of the oscillation in the water-
water correlation function and moves the peak in the
water-water structure function to larger wave vectors.
Part of our aim is to reproduce this behavior in the corre-
lation and structure functions.

In recent years, much effort has gone into modeling
water-oil-surfactant mixtures [1—14] and other similar

systems [15,16]. Rather than attempting to examine real-
istic models, the focus has been on producing simple
models that hopefully still retain the essential features of
these mixtures. These simple models usually employ a
lattice [1—8, 10—12] rather than allowing molecules the
freedom to occupy any point in space [12,13]. In most
cases, as in the present work, each lattice site is occupied
by either water, oil, or surfactant. The justification for
examining these lattice models is that they can be tackled
by numerous statistical approaches. By using a lattice
model, more accurate approximations and sometimes, as
in the case here, exact solutions are possible. Also these
models generally have fewer parameters, making it much
easier to determine the effects of each parameter on the
model.

In this paper we consider a model on a one-
dimensional lattice, which was first introduced in Ref. [2]
and studied there on a more realistic three-dimensional
lattice. The strongest justification for considering the
model on a one-dimensional lattice is that it can be solved
exactly by the transfer-matrix method [3]. The main
drawback with one-dimensional models is that they gen-
erally do not exhibit phase transitions except at zero tem-
perature. Instead, they may have different regions with
distinct characteristics but without the well-defined phase
boundaries present in higher-dimensional lattices. Hence
aspects such as phase diagrams and surface tensions, both
important in the study of water-oil-surfactant mixtures,
cannot be properly considered. Nevertheless, we find
that correlation and structure functions for the present
model [2] do seem to have the same behavior on the one-
dimensional lattice as on higher-dimensional lattices.
Therefore, our main focus will be on these two functions
which are of importance in microemulsions. It turns out
that the bicontinuous structure of a microemulsion,
present when the water and oil concentrations are simi-
lar, is not possible in either one or two dimensions [1,17],
but it is not explicitly the bicontinuous structure of the
microemulsion that affects the behavior of the correlation
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and structure functions. If one was considering the elec-
trical conductivity of the microemulsion, its bicontinuous
structure would be important.

We are aware of two papers that examine similar one-
dimensional lattice models. The first, by Gompper and
Schick [3], is also solved exactly by the transfer-matrix
method, but has significantly different interactions from
those considered here. In particular, that model [3-5]
does not include orientational degrees of freedom for the
surfactant molecules but rather uses a three-particle in-
teraction that favors having water and oil on opposite
sides of a surfactant molecule. The second model on the
one-dimensional lattice, considered by Ciach [6], is
slightly less general than the present model. As well, it is
not solved exactly but rather by a mean-Geld approxima-
tion, which artificially creates phase transitions. To cal-
culate results, in terms of the parameters used in Ref. [6]
from formulas present in this paper, set J, =b, J2=c,
J3=0, Ki =0, K2=0, and %3=0. (The J s and K s will
be defined in Sec. II.)

II. THE MODEL

On the one-dimensional lattice, each lattice site will
have four possible states, water, oil, and two orientations
of surfactant. The lattice sites are labeled sequentially
from 1 to X, where N is the total number of lattice sites.
For the i' lattice site, there is a state variable x; which
takes on the values 1, 2, 3, and 4 when the site is occu-
pied by water, oil, surfactant pointing to the right, and
surfactant pointing to the left, respectively. Unlike the
model in Ref. [2], the unnecessary orientational degrees
of freedom for the water and oil are not explicitly includ-
ed.

The Hamiltonian described in Ref. [2] for the three-
dimensional lattice, on the above one-dimensional lattice
becomes

N8= g [V2(x;,x;+,)+ V, (x;)],

where Vz and V& are the two and one-particle potentials,
respectively. Vz(a, b) is given in Table I and V, (a) =0, 0,
—pz, and —

p& for a = 1,2, 3, and 4, where p& is the sur-
factant chemical potential. The variable xz+ &

is defined
to equal x, so that in fact we are imposing periodic
boundary conditions. This boundary condition is used
only because it is most convenient. We will always give
results in the thermodynamic limit where X—+~, and
the actual boundary conditions are immaterial.

The Hamiltonian has a "spin-reversal" symmetry de-
scribed in Ref. [2], where it is invariant under a simul-
taneous interchange of water with oil (i.e., x; = I+-+x, =2
for all i) and of surfactant orientation (i.e., 3 +-+4). Al-
though it is realized that such symmetries are not valid in
real water-oil-surfactant mixtures, they are often used be-
cause they greatly simplify a model while retaining the
essential elements of the ternary mixture [6]. In this par-
ticular case, it means there are only six distinct bonds,
which are shown in Table II. (An open circle represents
water, a closed circle represents oil. The arrow, which
represents a surfactant molecule, points in the direction

TABLE I. The two-particle potential V2(a, bj of the present
model.

—J —K1 1

J1 —K1—J —K2 2

J2 —K2

J1 —K1—J —K1 1

J2 —K2—J —K2 2

J2 —K2—J —K2 2

J3 —K3—J —K3 3

—J —K2 2

J2 —K2—J —K-3 3

J3 —K3

III. TRANSFER-MATRIX METHOD

In this section, the transfer-matrix method is described
for the present one-dimensional model. The steps taken
here can be generalized without difficulty to most one-
dimensional models. For this particular case, an analytic
expression for the free energy is derived. Then, exact ex-
pressions for distribution, correlation, and structure func-
tions are derived which are later solved numerically.

An exact expression for the grand canonical free ener-
gy F corresponding to the Hamiltonian in Eq. (l) is

TABLE II. The six distinct bonds in the present model.

Bond

OO

Energy

—J —K1 1

J1 —K,
—J —Kz 2

J2 —K2—J —K3 3

J3 —K3

of the polar head group. )

While there are six parameters used to specify the six
distinct bonds in Table II, not all of these six parameters
are necessary. This is because the substitutions
E ] E ] +6] E2 ' E2+6] and E3 E3 +6& simply
change the total energy of all states by the constant
amount —XA&, which does not affect the statistics of the
model. Thus by choosing 6& appropriately any one of the
E s can always be set to zero without loss of generality.
It is possible to set one other E; to zero without loss of
generality, because the substitutions E2 -E2+62,
E3 E3 +2~2 and ps ps 2~2 do not change the en-
ergy of a state for any value A2. Nevertheless, all six pa-
rameters are retained in future calculations as there is no
significant simplification by not doing so.

The lattice spacing has been used to define a distance
scale and now the parameter J& will be used to set an en-

ergy scale. More specifically, energy will be measured in
units of J where J& =J. Thus this model has three in-
dependent free parameters, J2, J3, and one of the E s. It
is usually desirable to develop models with few parame-
ters so that the effects of the individual parameters are
easier to identify. Explicit results presented later will be
for the choice where all the E, 's are zero, J2 =2J, and
J3 =

—,
' J.
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N

exp( P—F)= g exp —P g [V2(x, ,x,. +, )+ V, (x,. )]
Ix,. j i =1

N= g Q exp I
—P[ V2(x, ,x, +, )+ —,

' V, (x, )

Ix,. j i =1

+
2 Vl «;+1)) ]

where P—:(ks T) ' is the inverse temperature. From this
point on, a bar above any quantity will indicate that it
has been multiplied by P. Using the bracket notation
from quantum mechanics, the (a, b) matrix element of the
transfer matrix is defined to be

&a~ Rib & =exp[ —Vz(a, b) —
—,
' V, (a)—

—,
' V, (b)] . (3)

For the present model, the transfer matrix A is

Ji+Ki
e

1 1
—J +K

J2+K2+ps/2
e

Jp+ K2+Ps /2
e

1 1
—J +K

J)+Ki
e

—J2+K2+Ps /2
e

J2+K2 +Ps /2
e

—Jz+K2+ ps/2
e

J~+K2+Ps /2
e

—J3+K3+ps
e

J3+K3+ps
e

J2+K2+ps /2
e
—J2 +K2 +Ps /2

e

J3+K3+ps
e
—J3+K3+ps

e

(4)

Then in terms of the transfer matrix, the free energy
given by Eq. (2) can be expressed as

function, which gives the probability that x, =a for a par-
ticular site i, is

exp( —F ) =Tr( ~")=X", +X,"+X",+X, ,

where the I, s are the eigenvalues of the transfer matrix.
The eigenvalue A,

&
is de6ned to be the one with the largest

magnitude, so that in the thermodynamic limit,

&a/ A "fa &

Tr(A ~)

which in the thermodynamic limit becomes

p, =&~ic /1&& li@

(10)

I' = —k~TMn(A, , ) . (6)

Since the free energy must be real, A,
&

must be real and
positive.

The spectral equation for the four eigenvalues is a
fourth-order polynomial. However, it separates into the
product of two second-order polynomials as a conse-
quence of the spin-reversal symmetry mentioned in Sec.
II. This allows us to explicitly write the eigenvalues as

&a[~ "/b &&b/~"-"/a &

Tr(A )

which in the thermodynamic limit can be shown to be

4

p.b(n) =p.pb+ y r.b, A,

(12)

(13)

The pair distribution function, which gives the probabili-
ty that for some site i, x; =a while x, +„=b, is given by

A, , ~= —,'(C, +MC3)+[ —,'(C, —MC3) +MC2]'

k3 4 2 (S, —MS3 )+[—,'(S, +MS3) —
MS2 ]

where

(14)

where

J,. +K,. —J,. +K,.

J,. +K,. —J,-+K,.S;—:e' .
' —e

Calculating statistical quantities for the model usually
requires the matrix elements of A ", where n is a positive
integer. In terms of the eigenvalues and eigenvectors of
A, these matrix elements are

&&I ~ "Ib &
= g &a/@[c &&c/4 '/b &k,",

and A, =—A,, /A, &. Equations (12) and (13) for the pair dis-
tribution function are valid only for positive
n =0, 1,2, . . . , &x&. Note that both these expressions give
p,b(0)=p, 5,b. To obtain the pair distribution function
for negative n, one uses p,b( n) =pb, (n). Fr—om the pair
distribution function, one obtains the pair-correlation
function,

4

c,b(n)= p,b(n) p,p, = —y r,b, A—," (15)

for n =0, 1,2, . . . , ~. Similarly, for negative n one uses
c,b( n)=cb, (n).—Then from the correlation function
one obtains the structure functio~

where N is a matrix that contains in its i'" column a right
eigenvector corresponding to A, ; (for i = 1 —4). Using the
above results, one can now express all the statistical
quantities of interest in terms of the eigenvalues and
eigenvectors. The single-site probability distribution

S,b(q) = g c,b(n)e'"~
n — Qo

4 A,r abc

+~abPa PaPb

A,+1 b„"e'~ —A C

(16)
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1

2

(C~ /C3 )M

(c,/c, )M-'"
—(C, /C, )M-'" (S,/S, )M-'"
—(C, /C, )M-'" —(S,/S, )M-'"

(s, /s, )M-'"
—(S, /S, )M-'"

(22)

(c,/c, )M-'" (c,/c, )M-'"

—(S~ /S3 )M ' (Sq /S3 )M

—(C /C )M ' —(C /C )M
—(S/S)M ' (S/S)M (23)

C)C3 —Cq

C3

S)S3—S~
g3

S3

A4= —S3M .

(24)

From Eqs. (24), one obtains the A, 's for large M. Substi-
tuting these results into Eq. (21) and equating it to zero
gives the condition that must be satisfied by the LL as
M —moo or pq —+1, which is

sinh (Jz)
sinh(J3)

1 —tanh( J3 ) —1
[1+tanh( J3 ) ]

cosh (J2)
cosh(J3)

+exp(J, +E', —2Ez+E3)=0 . (25)

For the parameters selected, the solution to Eq. (25) and
thus the temperature at which the LL terminates is
k~ T/J = 18.5057. For other parameters, the tempera-

From these matrices, the values of the I », 's can be cal-
culated for large M or p&=1. Also for large M, the ei-
genvalues given by Eqs. (7) are

A, ) =C3M,

ture at which the LL intercepts the p, =1 line is plotted
in Fig. 9. From this figure, it is clear that Jz, which con-
trols the amphiphilic strength of the surfactant, has
much more effect on the upper temperature limit of the
LL than J3. If Jz becomes less than
—,'(J, +J3+Ef 2KQ+K3) so that the zero-temperature
lamellar phase does not exist, then LL usually does not
exist. An exception occurs when Jz is nearly large
enough to produce the lamellar phase and J3 is close to
zero, in which case the LL begins from the pz =1 line at
a nonzero temperature rather than from pz & 1 and zero
temperature. In this case, the LL intercepts the p, =1
line twice, which is what causes the line for J3 =0 in Fig.
9 to become double valued for small J~.

V. DISCUSSION

The most notable limitation of this one-dimensional
model is the lack of phase transitions. As mentioned ear-
lier, there are only phase transitions at zero temperature
between the 8'+0 and L phases, and between the L and
S phases. When this model is considered on higher-
dimensional lattices [2], these phase transitions extend
upward to nonzero temperatures forming first-order lines
separating the different phases. Eventually as tempera-
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ture increases, the 8'+0, L, and S phases usually ter-
minate at first-order transitions with a disordered phase
(D). For low surfactant concentrations, the transition be-
tween 8 +0 and D is second order.

At zero temperature where the phase transitions occur,
at pz/J= —2 and 3 in the present case, the system is
completely degenerate. There is an infinite number of
ground states at each of these two points (sometimes re-
ferred to as "frustration points" [20] ). In Ref. [3], there
is a similar point between the 8'+0 and L phases, which
is considered more extensively. Such points also exist on
higher-dimensional lattices. In fact, the present model on
higher-dimensional lattices can exhibit various longer-
period lamellar phases which exist in very narrow regions
extending upward from these degeneracy points.

Although there is only one phase at nonzero tempera-
ture, characteristics of each zero-temperature phase per-
sist over a range of chemical potential at low tempera-
tures. For example, the model will exhibit characteristics
of the lamellar phase at low temperatures and ps/J=O,
since for the parameters selected this is above the zero-
temperature lamellar phase. In this lamellarlike region,
there is a tendency to have sequential sites occupied by
water, surfactant, oil, surfactant, water, and so on, where
the surfactant molecules tend to point towards sites occu-
pied by water. Consequently, p&=0. 5, the water-water
correlation function has an oscillation with a wavelength
of about four lattice sites, the water-water structure func-
tion has a peak at about q =0.5~, the surfactant-
surfactant correlation function has an oscillation with a
wavelength equal to two lattice sites, and the surfactant-
surfactant structure function has a strong peak at q =~.
For low temperature and low chemical potential, the
nonzero temperature phase behaves like the zero-
temperature 8'+0 phases. In this region, pz is small
and the water-water correlation length is long. Similarly,
for low temperature and high chemical potential, there is
a surfactant-rich region where sites are predominantly
occupied by surfactant molecules with orientation alter-
nating from site to site.

At high temperatures, the single phase for this one-
dimensional model behaves similarly to the disordered
phase (D) which exists on higher-dimensional lattices.
This phase is of interest because it is thought to contain
the microemulsion region along with a region of ordinary
disordered fluid [1—7]. The line which separates the D
phase into these two regions is not a phase boundary and
is not clearly defined. The DL and the LL introduced in
Sec. IV are the two common choices for this dividing line
[3—5,21]. The region to the side of the dividing line with
higher surfactant concentration is considered to be the
microemulsion region. The DL is perhaps the more real-
istic dividing line, since the structure of the microemul-
sion is thought to cause the oscillation in the water-water
correlation function. However, the more practical func-
tion to measure is the structure function, obtained by
scattering experiments. Thus the LL is experimentally
easier to determine than the DL.

This one-dimensional model is about the simplest pos-
sible model which produces correlation functions, struc-
ture functions, and disorder lines with what we believe is

the correct behavior for the disordered phase of water-
oil-surfactant mixtures. This behavior can be summa-
rized by describing what happens as pz and thus pz are
increased while the temperature is held fixed. For small

p&, there is ordinary disordered Quid where the water-
water correlation function decreases monotonously and
the water-water structure function has its maximum at
q =0. As p, is increased, the DL is encountered and the
water-water correlation function develops very long-
wavelength oscillations signifying the microemulsion re-
gion. When pz increases still farther, the oscillation in
the correlation function becomes stronger and the wave-
length decreases, finally producing a peak in the water-
water structure function at small nonzero q. The more

pz increases and one moves deeper into the microemul-
sion region, the wavelength of the oscillation in the corre-
lation function decreases and the peak in the structure
function moves to larger q. Note that the LL occurs at
higher surfactant concentration than the DL since the
long-wavelength oscillations must be present before the
peak in the water-water structure function will move to
nonzero q. The surfactant-surfactant correlation func-
tion never develops the long-wavelength oscillation and
thus the surfactant-surfactant structure function never
develops a peak at small nonzero q, which is in agreement
with experiment. Other structure functions can be ob-
tained from the two given and using identities such as
~ws(q) = —

—,'~ss(q)»d ~wo(q) = —~ww(q) —~ws(q) [4].
It is the tendency for surfactant molecules to locate

themselves at water-oil interfaces which is supposedly re-
sponsible for microemulsions. Thus it is not surprising
that Jz and Kz are important for the existence of the mi-
croemulsion region. This is because in order to produce
the long-wavelength oscillation in the water-water corre-
lation function, the transfer matrix must have complex
eigenvalues. This is not possible if J2=0 because then
the transfer matrix Eq. (4) is symmetric and thus only
produces real eigenvalues. However, once J2) 0, the
symmetry of the transfer matrix is broken. These
symmetry-breaking terms become larger for larger Jz and
K2, favoring complex eigenvalues as can be seen from
Eqs. (7). This is true also on the two- and three-
dimensional lattices.

The locations of the disorder line and the Lifshitz line
differ substantially at high temperatures. This is con-
sistent with the behavior of these two lines on higher-
dimensional lattices for the present model [2,22]. The
DL always seems to approach an asymptotic surfactant
density as T~ ~ as it did in the present one-dimensional
case. As for the LL, approximations for higher-
dimensional lattices seem to agree that it terminates at a
finite temperature with ps= 1 [2]. Results for the model
in Refs. [3—5] predict that the Lifshitz line extends to
infinite temperature. The reason this happens is that the
amphiphilic interactions in those references are associat-
ed with a temperature-independent three-particle poten-
tial. In practice, such interactions should decrease with
temperature due to entropic effects associated with the
underlying orientational degrees of freedom [10,23]. If
this were done, there would be a finite temperature where
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the amphiphilic interaction becomes too small to produce
a microemulsion. When this is taken into account in a
similar model of binary water-surfactant mixtures [15],a
LL is found which appears to terminate at a finite tem-
perature.
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