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In this paper, a model for water-oil-surfactant mixtures, which we have previously studied on two-
and three-dimensional lattices, is now studied on a one-dimensional lattice. In this case we are able to
obtain exact results, whereas on the higher-dimensional lattices it was necessary to use approximations.
This one-dimensional model produces correlation and structure functions that are similar to those ob-
tained for the disordered phase on the two- and three-dimensional lattices. The disorder line is obtained
from the water-water correlation function and the Lifshitz line is derived from the water-water structure
function. One or the other of these lines is typically used to divide the disordered phase into a region of
ordinary disordered fluid and a microemulsion region. Both these lines calculated exactly for the one-
dimensional lattice behave similarly to their counterparts on the two- and three-dimensional lattices cal-

culated by various approximations.

I. INTRODUCTION

Water-oil-surfactant mixtures can exist as microemul-
sions because of the strong tendency of surfactant mole-
cules to be adsorbed at water-oil interfaces. In this case,
the water and oil are mixed down to microscopic scales
whereas without the surfactant they would phase
separate [1]. A microemulsion with considerably more
water than oil consists of small spheres of oil surrounded
by a surfactant monolayer and randomly dispersed in the
water. The reverse happens when there is considerably
more oil than water. When the water and oil concentra-
tions are comparable, as considered in this paper, the wa-
ter and oil form bicontinuous interweaving tubelike
structures where a surfactant monolayer exists on the
vast interface between water and oil. Although these
bicontinuous structures are formed from tubes with mi-
croscopic sized cross sections, they form a network that
spans macroscopic distances.

The microemulsion does not have any rigid structure
or long-range order and thus appears as a uniform disor-
dered phase [1-9]. In order to characterize the mi-
croemulsion phase by methods of statistical mechanics,
one examines the correlation and structure functions.
For example, the average diameter of the tubes making
up the bicontinuous structure for water causes an oscilla-
tion in the water-water correlation function of compara-
ble wavelength. This oscillation in the water-water corre-
lation function can cause a peak in the water-water struc-
ture function at small nonzero wave vectors. Increasing
the surfactant concentration presumably creates finer
bicontinuous structures with more surface area, which
decreases the wavelength of the oscillation in the water-
water correlation function and moves the peak in the
water-water structure function to larger wave vectors.
Part of our aim is to reproduce this behavior in the corre-
lation and structure functions.

In recent years, much effort has gone into modeling
water-oil-surfactant mixtures [1-14] and other similar
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systems [15,16]. Rather than attempting to examine real-
istic models, the focus has been on producing simple
models that hopefully still retain the essential features of
these mixtures. These simple models usually employ a
lattice [1-8,10-12] rather than allowing molecules the
freedom to occupy any point in space [12,13]. In most
cases, as in the present work, each lattice site is occupied
by either water, oil, or surfactant. The justification for
examining these lattice models is that they can be tackled
by numerous statistical approaches. By using a lattice
model, more accurate approximations and sometimes, as
in the case here, exact solutions are possible. Also these
models generally have fewer parameters, making it much
easier to determine the effects of each parameter on the
model.

In this paper we consider a model on a one-
dimensional lattice, which was first introduced in Ref. [2]
and studied there on a more realistic three-dimensional
lattice. The strongest justification for considering the
model on a one-dimensional lattice is that it can be solved
exactly by the transfer-matrix method [3]. The main
drawback with one-dimensional models is that they gen-
erally do not exhibit phase transitions except at zero tem-
perature. Instead, they may have different regions with
distinct characteristics but without the well-defined phase
boundaries present in higher-dimensional lattices. Hence
aspects such as phase diagrams and surface tensions, both
important in the study of water-oil-surfactant mixtures,
cannot be properly considered. Nevertheless, we find
that correlation and structure functions for the present
model [2] do seem to have the same behavior on the one-
dimensional lattice as on higher-dimensional lattices.
Therefore, our main focus will be on these two functions
which are of importance in microemulsions. It turns out
that the bicontinuous structure of a microemulsion,
present when the water and oil concentrations are simi-
lar, is not possible in either one or two dimensions [1,17],
but it is not explicitly the bicontinuous structure of the
microemulsion that affects the behavior of the correlation

3710 ©1991 The American Physical Society



4 ONE-DIMENSIONAL MODEL FOR MICROEMULSIONS

and structure functions. If one was considering the elec-
trical conductivity of the microemulsion, its bicontinuous
structure would be important.

We are aware of two papers that examine similar one-
dimensional lattice models. The first, by Gompper and
Schick [3], is also solved exactly by the transfer-matrix
method, but has significantly different interactions from
those considered here. In particular, that model [3-5]
does not include orientational degrees of freedom for the
surfactant molecules but rather uses a three-particle in-
teraction that favors having water and oil on opposite
sides of a surfactant molecule. The second model on the
one-dimensional lattice, considered by Ciach [6], is
slightly less general than the present model. As well, it is
not solved exactly but rather by a mean-field approxima-
tion, which artificially creates phase transitions. To cal-
culate results, in terms of the parameters used in Ref. [6]
from formulas present in this paper, set J,=b, J,=c,
J3=0, K,=0, K,=0, and K;=0. (The J,’s and K;’s will
be defined in Sec. II.)

II. THE MODEL

On the one-dimensional lattice, each lattice site will
have four possible states, water, oil, and two orientations
of surfactant. The lattice sites are labeled sequentially
from 1 to N, where N is the total number of lattice sites.
For the i lattice site, there is a state variable x; which
takes on the values 1, 2, 3, and 4 when the site is occu-
pied by water, oil, surfactant pointing to the right, and
surfactant pointing to the left, respectively. Unlike the
model in Ref. [2], the unnecessary orientational degrees
of freedom for the water and oil are not explicitly includ-
ed.

The Hamiltonian described in Ref. [2] for the three-
dimensional lattice, on the above one-dimensional lattice
becomes

N
H= 3 [Vy(x;,x; )+ Vi(x)], (1)

i=1

where V, and V| are the two and one-particle potentials,
respectively. V,(a,b) is given in Table I and V(a)=0, O,
—ug, and —ug for a=1,2,3, and 4, where ug is the sur-
factant chemical potential. The variable x, , ; is defined
to equal x; so that in fact we are imposing periodic
boundary conditions. This boundary condition is used
only because it is most convenient. We will always give
results in the thermodynamic limit where N — o, and
the actual boundary conditions are immaterial.

The Hamiltonian has a ‘“‘spin-reversal” symmetry de-
scribed in Ref. [2], where it is invariant under a simul-
taneous interchange of water with oil (i.e., x; =l<>x; =2
for all /) and of surfactant orientation (i.e., 3 «—4). Al-
though it is realized that such symmetries are not valid in
real water-oil-surfactant mixtures, they are often used be-
cause they greatly simplify a model while retaining the
essential elements of the ternary mixture [6]. In this par-
ticular case, it means there are only six distinct bonds,
which are shown in Table II. (An open circle represents
water, a closed circle represents oil. The arrow, which
represents a surfactant molecule, points in the direction
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TABLE 1. The two-particle potential ¥,(a,b) of the present
model.

_JI_KI Jl‘Kl JZ_KZ _JZ_KZ
JI_KI _Jl_Kl _JZ_KZ JZ_KZ
—J,—K, J,—K, Ji—K, —J,—K,
JZ_KZ _JZ_KZ _—‘13_K3 J3—K3

Aww»—-%
—
()
w
N

of the polar head group.)

While there are six parameters used to specify the six
distinct bonds in Table II, not all of these six parameters
are necessary. This is because the substitutions
K,—K,+A, ,K,—K,+A, and K;=K;+A, simply
change the total energy of all states by the constant
amount —N A, which does not affect the statistics of the
model. Thus by choosing A; appropriately any one of the
K;’s can always be set to zero without loss of generality.
It is possible to set one other K; to zero without loss of
generality, because the substitutions K,=K,+A,,
K;=K;+2A, and pg=pugs—2A, do not change the en-
ergy of a state for any value A,. Nevertheless, all six pa-
rameters are retained in future calculations as there is no
significant simplification by not doing so.

The lattice spacing has been used to define a distance
scale and now the parameter J; will be used to set an en-
ergy scale. More specifically, energy will be measured in
units of J where J;,=J. Thus this model has three in-
dependent free parameters, J,, J3, and one of the K;’s. It
is usually desirable to develop models with few parame-
ters so that the effects of the individual parameters are
easier to identify. Explicit results presented later will be
for the choice where all the K;’s are zero, J,=2J, and
Jy=1J.

III. TRANSFER-MATRIX METHOD

In this section, the transfer-matrix method is described
for the present one-dimensional model. The steps taken
here can be generalized without difficulty to most one-
dimensional models. For this particular case, an analytic
expression for the free energy is derived. Then, exact ex-
pressions for distribution, correlation, and structure func-
tions are derived which are later solved numerically.

An exact expression for the grand canonical free ener-
gy F corresponding to the Hamiltonian in Eq. (1) is

TABLE II. The six distinct bonds in the present model.

Bond Energy
(eXe) —J,—K;
oce Ji—K,
— O —J,— K,
—@ J,—K,
—> —J3—K;
- J3— K,




3712

N
=B 3 [Valxpx; 1)+ V(x;)]

i=1

exp(—BF)= 3, exp
{x;}

N
= 2 H exp{ —B[ Vz(Xi,x,-+1)+%V1(xi)

{x;}i=1
1
+7V1(xi+1)]} ’ (2)
J
J,+K —J,+K —J,+K,+fig/2
e 1 1 e 1 1 e 2 2 S
-J,+K J +K J,+K,+ig/2
e 1 1 e 1 1 e 2 2 S

J,+K,+pg/2 e —T,+K,+ig/2 o —J3+Ky+ag

o Tt Eaths /2

o2t K tEs 2 TR tEs

Then in terms of the transfer matrix, the free energy
given by Eq. (2) can be expressed as

exp(—F)=Tr( AM)=AV+ AV +2Y+AY, Q)
where the A;’s are the eigenvalues of the transfer matrix.
The eigenvalue A, is defined to be the one with the largest
magnitude, so that in the thermodynamic limit,

F=—kzTNIn(A,) . (6)

Since the free energy must be real, A, must be real and
positive.

The spectral equation for the four eigenvalues is a
fourth-order polynomial. However, it separates into the
product of two second-order polynomials as a conse-
quence of the spin-reversal symmetry mentioned in Sec.
II. This allows us to explicitly write the eigenvalues as

A1, =HC +MCy)£[H(C, —MC3)*+MC3]'?,

A3 s=3(S, —MSyE[HS, +MS; P —MS31'2, (7
where

C,-:ej’+—’+e~_'+1?f ,

si=e’ e TR (8)

M=e"s

Calculating statistical quantities for the model usually
requires the matrix elements of 4", where n is a positive
integer. In terms of the eigenvalues and eigenvectors of
A, these matrix elements are

(al4"b)="3 (al®|c)(c|® 1 |b)A",

c=1

9)

where ® is a matrix that contains in its i column a right
eigenvector corresponding to A; (for i =1-4). Using the
above results, one can now express all the statistical
quantities of interest in terms of the eigenvalues and
eigenvectors. The single-site probability distribution
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Jy+Ky+iig/2
e

o —J,+K,+iig/2

—J,+K,+@
e 3 3 S
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where B=(kpz T) ! is the inverse temperature. From this
point on, a bar above any quantity will indicate that it
has been multiplied by B. Using the bracket notation
from quantum mechanics, the (a,b) matrix element of the
transfer matrix is defined to be

(alA|b)=exp[— Vz(a,b)—%vl(a)—%l_/l(b)} .3

For the present model, the transfer matrix A4 is

o 4)
JRERESReY

[
function, which gives the probability that x; =a for a par-
ticular site i, is

_ (al4¥a)
a Tr(AN) 2 (10)

which in the thermodynamic limit becomes

p,=f(al®|)(1]@ a) . 11)

The pair distribution function, which gives the probabili-
ty that for some site i, x; =a while x; . , = b, is given by

(al A"b)Y{b|AY "a)
Tr(AYN)

which in the thermodynamic limit can be shown to be

Pap(n)= , (12)

4
Pab(n)zpapb+ E 1—‘abcAz" ’
c=2

(13)

where
Ty =Cal®@lc){(c|® ) (b|®[1)(1]|®d a) (14)

and A, =A_./A,. Equations (12) and (13) for the pair dis-
tribution function are valid only for positive
n=0,1,2,..., . Note that both these expressions give
Pap(0)=p,8,,. To obtain the pair distribution function
for negative n, one uses p,,(—n)=p,,(n). From the pair
distribution function, one obtains the pair-correlation
function,
4
cab(n)EPab(n)_-papbz 2 I“abcAg (15)
c=2

for n=0,1,2,..., . Similarly, for negative n one uses
cap(—n)=cy,(n). Then from the correlation function

one obtains the structure function.
0

Sp@= 3 cuplnle™

n=—o

c c

4 A
= cg,z 1—‘abc e_iq—Ac +Fbac eiq'—AC

+8,5Pa —PaPb -

(16)
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Although it is not immediately obvious from Eq. (16), the
structure function is a real valued function.

IV. RESULTS

In Fig. 1 is a contour map of the surfactant density,
Ps=p;+p4, in the temperature-chemical-potential plane.
At zero temperature, pg=0.0, 0.5, and 1.0 for g < —2J,
—2J <ug <3J, and ug > 3J, respectively. The two points
us=2(J,+K,—J,—K,)=—2J and pug=2(J,+K,—J,
—K;)=3J are phase transitions separating from left to
right coexisting water- and oil-rich phases (W+0), a
lamellar phase (L) and a surfactant-rich phase (S). These
phases are pictured in Fig. 2. In order to have a lamellar
phase, the parameters of the model must satisfy
2(J,+K,)>J,+K,+J;3;+K;. For nonzero tempera-
tures, there is only a single phase and consequently no
phase transitions.

The eigenvalues A, , in Egs. (7) are always real, but A5 4
may be complex conjugate pairs. When these eigenvalues
are complex, oscillations can occur in the pair-correlation
functions. Note that negative real eigenvalues may also
cause oscillations, but always with a wavelength of two
lattice sites. For the case examined here, A, is negative
and does cause such oscillations in some of the pair-
correlation functions. The wavelength due to the eigen-
values A, 4 is 27 divided by the wave number k =arg(A;).
For small ug, A; 4 are positive and real so that k£ =0, and
thus A; 4 do not cause oscillations in the pair-correlation
functions. As ug increases, the disorder line [18] (DL) is
encountered where A; , become complex conjugate pairs,
k becomes nonzero, and long-wavelength oscillations
occur in some of the pair-correlation functions. As u, in-
creases still more, the wavelength decreases until finally
k== and A; 4, become real and negative. For larger ug,
A3,4 can only cause oscillations with a wavelength of two
lattice sites. In Figs. 3 and 4, lines of constant wave num-
ber are plotted, which resemble those obtained from the
model in Ref. [3]. The two lines for the limiting cases,
k—0"1 and k—m ", can be obtained analytically as they
result when the terms under the square root for the

FIG. 1. A contour map of the surfactant density ps in the
temperature-chemical-potential plane for the parameters select-
ed in Sec. II.
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Water-Rich Phase (W):
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Lamcllar Phase (L):

Surlactant-Rich (S):

FIG. 2. Configurations of zero-temperature phases.

second pair of eigenvalues in Egs. (7) become zero. This
occurs when

_ 283—S,8;+25,(53—5,5;)'"?
s3

, (17)

provided that S3 >S,S;. In Eq. (17), the minus sign cor-
responds to the line for k0" and the plus sign to the
line for k— 7. The line for k—07 is in fact the DL.
Figures 3 and 4 show the disorder line in the
temperature-chemical-potential plane and temperature-
density plane, respectively. As the temperature becomes
large, Eq. (17) reduces to

g 23—JJ3 220,03 —J, T2

Hs
e (18)
J3
Also at high temperatures,
1
ps = ———— . (19)

1+e s

Using Egs. (18) and (19), it follows that for the parame-
ters selected in Sec. II, the DL approaches pg=0.0626
and the line for k—m— approaches pg=0.9836 as
T— 0.

Figure 5 shows the resulting water-water correlation
function, cpp(n)=c(n), for various ug/Jls at
kgT/J=1. Although cyy(n) is a discrete function, the
continuous extension of Eq. (15) has been plotted for clar-
ity. Notice that at ug/J = —4, cyy(n) is monotone de-
creasing, but for the higher chemical potentials in Fig. 5
cww(n) oscillates. The change in the behavior of ¢y (n)

0 2 4 6
e

FIG. 3. A contour map of the wave number k for the long-
wavelength oscillations in the water-water correlation function
plotted in the temperature-chemical-potential plane. The DL
and LL are shown with dashed lines.
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0.47

FIG. 4. The same plot as in Fig. 3, but in the temperature-
density plane.

takes place at the DL, which at this temperature occurs
at ug/J = —3.6165. One can see in Fig. 5 that as ug be-
comes larger the wavelength of the oscillation decreases
continuously. Also notice that at ug/J ~0, which is in
the lamellar region, the wavelength is about four lattice
spacings as one should expect.

The surfactant-surfactant correlation function,
css(n)=cy3(n)+cyu(n)+cy3(n)+cyy(n), is plotted for
several pug/J’s at kyT/J=1 in Fig. 6. In this case, the
eigenvalues A; , do not contribute to the correlation func-
tion and thus long-wavelength oscillations do not exist in
cgs(n). However, A,, which is negative in this case,
causes an exponentially decaying oscillation with a fixed
wavelength of two lattice spacings. Notice that the oscil-
lations are strongest near pg /J =0, which is natural since
this is the lamellar region.

In Fig. 7 is the water-water structure function,
Sww(q)=S,,(q), at kpT/J=1. Notice that for
us/J=—3, the structure function only has a peak at
g =0, but for the higher ug /J’s in Fig. 7, the peak moves
to nonzero g due to the long-wavelength oscillation in the
water-water correlation function. This change in behav-
ior of Sy (q) occurs at the Lifshitz line [19] (LL). To

0.3 T T T T T T T

FIG. 5.
kg T /J =1 for several chemical potentials.

The water-water correlation function plotted at
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0.3 T T T

0.2

0.0

FIG. 6. The surfactant-surfactant correlation function plot-
ted at k3 T /J =1 for several chemical potentials.

obtain the LL, Sy, (q) is expanded in a Taylor series
about ¢ =0,

Sy (@) =Sy (0)+185.(0)g*+0(g*) , (20)
where
. 4 (1+A)A,
SWW(O):”—ZCEZFUC—(I'—_TCST . (21

Mathematically, the LL corresponds to the solution of
Sww(0)=0. The LL is plotted in the temperature-
surfactant-chemical-potential plane in Fig. 3 and in the
temperature-surfactant-density plane in Fig. 4. One can
also see a pronounced peak in Sy (q) at ¢ =, which is a
signature of the lamellar region. In Fig. 8 are similar
plots for Sgs(g)=S33(g)+S34(g)+S43(g)+S44(g). They
are rather simple, only having a peak at g =, which is
strongest near pg/J =0 where the lamellar region exists.

Unlike the DL, the LL does not extend to infinite tem-
perature, but instead bends to the right, terminating at a
finite temperature and pg=1. To calculate the tempera-
ture where the LL terminates, one must solve for ® and
® ! to order M~ /2. These matrices are not unique, but
any one of the possible solutions will do, such as

(q)

TWW

<

OO L . 1 L L 1 s L | I Il

q

FIG. 7. The water-water structure function plotted at
kT /J =1 for several chemical potentials.
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FIG. 8. The surfactant-surfactant structure function plotted
at kp T /J =1 for several chemical potentials.
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FIG. 9. The temperature at which the Lifshitz line intercepts
the p, =1 line for various values of the parameters.

(C,/Cy )M ™12 1 (S,/83)M 12
1 (C,/Cy)M ™12 1 —(S,/85)M 1/ .
=3 1 —(C,/CM ™2 (8,/5,)M ™1/ 1 (22)
1 —(C,/C3 M™% —(S,/8;)M 12 -1
and
(C,/C3)M ™2 (C,/Cy)M ™12 1 1
1 1 —(C,/C3)M ™2 —(C,/Cy )M ™12
= (23)
V7 1 -1 —(S,/S;)M V2 (S,/S;,)M ™12

—(S,/8,) M™% (S,/8;)M 12

From these matrices, the values of the I';;.’s can be cal-
culated for large M or pg=1. Also for large M, the ei-
genvalues given by Egs. (7) are

A=CiM ,
GG —C
27 C3 >

SIS3—S%

S; ’

Ay=—S;M .

(24)

}\.3z

From Egs. (24), one obtains the A_’s for large M. Substi-
tuting these results into Eq. (21) and equating it to zero
gives the condition that must be satisfied by the LL as
M — «© or pg—1, which is

sinh*(J,) 1—tanh(J;)
sinh(J;) | [1+tanh(J;)]?
+exp(J; +K,—2K,+K;)=0. (25

cosh®(J,)
cosh(J,)

For the parameters selected, the solution to Eq. (25) and
thus the temperature at which the LL terminates is
kgT/J=18.5057. For other parameters, the tempera-

1 —1

f

ture at which the LL intercepts the p, =1 line is plotted
in Fig. 9. From this figure, it is clear that J,, which con-
trols the amphiphilic strength of the surfactant, has
much more effect on the upper temperature limit of the
LL than Js. If J, becomes less than
HJ,+J3+K,—2K,+Kj3) so that the zero-temperature
lamellar phase does not exist, then LL usually does not
exist. An exception occurs when J, is nearly large
enough to produce the lamellar phase and J; is close to
zero, in which case the LL begins from the pg=1 line at
a nonzero temperature rather than from pg <1 and zero
temperature. In this case, the LL intercepts the p, =1
line twice, which is what causes the line for J; =0 in Fig.
9 to become double valued for small J,.

V. DISCUSSION

The most notable limitation of this one-dimensional
model is the lack of phase transitions. As mentioned ear-
lier, there are only phase transitions at zero temperature
between the W+ O and L phases, and between the L and
S phases. When this model is considered on higher-
dimensional lattices [2], these phase transitions extend
upward to nonzero temperatures forming first-order lines
separating the different phases. Eventually as tempera-
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ture increases, the W+0O, L, and S phases usually ter-
minate at first-order transitions with a disordered phase
(D). For low surfactant concentrations, the transition be-
tween W+ 0O and D is second order.

At zero temperature where the phase transitions occur,
at ug/J=—2 and 3 in the present case, the system is
completely degenerate. There is an infinite number of
ground states at each of these two points (sometimes re-
ferred to as “frustration points” [20] ). In Ref. [3], there
is a similar point between the W+ O and L phases, which
is considered more extensively. Such points also exist on
higher-dimensional lattices. In fact, the present model on
higher-dimensional lattices can exhibit various longer-
period lamellar phases which exist in very narrow regions
extending upward from these degeneracy points.

Although there is only one phase at nonzero tempera-
ture, characteristics of each zero-temperature phase per-
sist over a range of chemical potential at low. tempera-
tures. For example, the model will exhibit characteristics
of the lamellar phase at low temperatures and pug/J =0,
since for the parameters selected this is above the zero-
temperature lamellar phase. In this lamellarlike region,
there is a tendency to have sequential sites occupied by
water, surfactant, oil, surfactant, water, and so on, where
the surfactant molecules tend to point towards sites occu-
pied by water. Consequently, py~=0.5, the water-water
correlation function has an oscillation with a wavelength
of about four lattice sites, the water-water structure func-
tion has a peak at about ¢=O0.57, the surfactant-
surfactant correlation function has an oscillation with a
wavelength equal to two lattice sites, and the surfactant-
surfactant structure function has a strong peak at g =m.
For low temperature and low chemical potential, the
nonzero temperature phase behaves like the zero-
temperature W+O phases. In this region, pg is small
and the water-water correlation length is long. Similarly,
for low temperature and high chemical potential, there is
a surfactant-rich region where sites are predominantly
occupied by surfactant molecules with orientation alter-
nating from site to site.

At high temperatures, the single phase for this one-
dimensional model behaves similarly to the disordered
phase (D) which exists on higher-dimensional lattices.
This phase is of interest because it is thought to contain
the microemulsion region along with a region of ordinary
disordered fluid [1-7]. The line which separates the D
phase into these two regions is not a phase boundary and
is not clearly defined. The DL and the LL introduced in
Sec. IV are the two common choices for this dividing line
[3-5,21]. The region to the side of the dividing line with
higher surfactant concentration is considered to be the
microemulsion region. The DL is perhaps the more real-
istic dividing line, since the structure of the microemul-
sion is thought to cause the oscillation in the water-water
correlation function. However, the more practical func-
tion to measure is the structure function, obtained by
scattering experiments. Thus the LL is experimentally
easier to determine than the DL.

This one-dimensional model is about the simplest pos-
sible model which produces correlation functions, struc-
ture functions, and disorder lines with what we believe is
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the correct behavior for the disordered phase of water-
oil-surfactant mixtures. This behavior can be summa-
rized by describing what happens as pg and thus pg are
increased while the temperature is held fixed. For small
ps» there is ordinary disordered fluid where the water-
water correlation function decreases monotonously and
the water-water structure function has its maximum at
q=0. As p, is increased, the DL is encountered and the
water-water correlation function develops very long-
wavelength oscillations signifying the microemulsion re-
gion. When pg increases still farther, the oscillation in
the correlation function becomes stronger and the wave-
length decreases, finally producing a peak in the water-
water structure function at small nonzero gq. The more
ps increases and one moves deeper into the microemul-
sion region, the wavelength of the oscillation in the corre-
lation function decreases and the peak in the structure
function moves to larger g. Note that the LL occurs at
higher surfactant concentration than the DL since the
long-wavelength oscillations must be present before the
peak in the water-water structure function will move to
nonzero q. The surfactant-surfactant correlation func-
tion never develops the long-wavelength oscillation and
thus the surfactant-surfactant structure function never
develops a peak at small nonzero g, which is in agreement
with experiment. Other structure functions can be ob-
tained from the two given and using identities such as
Sws(q)=—13Sss(q) and Sy (q)=—Syy(q)—Sys(q) [4].

It is the tendency for surfactant molecules to locate
themselves at water-oil interfaces which is supposedly re-
sponsible for microemulsions. Thus it is not surprising
that J, and K, are important for the existence of the mi-
croemulsion region. This is because in order to produce
the long-wavelength oscillation in the water-water corre-
lation function, the transfer matrix must have complex
eigenvalues. This is not possible if J, =0 because then
the transfer matrix Eq. (4) is symmetric and thus only
produces real eigenvalues. However, once J, >0, the
symmetry of the transfer matrix is broken. These
symmetry-breaking terms become larger for larger J, and
K,, favoring complex eigenvalues as can be seen from
Egs. (7). This is true also on the two- and three-
dimensional lattices.

The locations of the disorder line and the Lifshitz line
differ substantially at high temperatures. This is con-
sistent with the behavior of these two lines on higher-
dimensional lattices for the present model [2,22]. The
DL always seems to approach an asymptotic surfactant
density as T— oo as it did in the present one-dimensional
case. As for the LL, approximations for higher-
dimensional lattices seem to agree that it terminates at a
finite temperature with pg=1 [2]. Results for the model
in Refs. [3-5] predict that the Lifshitz line extends to
infinite temperature. The reason this happens is that the
amphiphilic interactions in those references are associat-
ed with a temperature-independent three-particle poten-
tial. In practice, such interactions should decrease with
temperature due to entropic effects associated with the
underlying orientational degrees of freedom [10,23]. If
this were done, there would be a finite temperature where
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the amphiphilic interaction becomes too small to produce
a microemulsion. When this is taken into account in a
similar model of binary water-surfactant mixtures [15], a
LL is found which appears to terminate at a finite tem-
perature.
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