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A model of x-ray diffraction for thin smectic-A liquid-crystal films is presented. The effect of the
smectic-layer displacement Auctuations and correlations and the molecular form factor on the interlayer
structure and the x-ray-diffraction pattern is discussed. In thin films the inAuence of the displacement-
displacement correlation function on the x-ray-diffraction pattern is very small and can be neglected in
the analysis of experimental data. On the other hand, both the displacement-Auctuation term (Debye-
Waller factor) and molecular form factor produce strong measurable effects and so can be determined.
We discuss the dependence of displacement Auctuations, calculated in the framework of the Landau —de
Gennes model, on the smectic elastic constants and the smectic-vapor surface tension and show that
these constants can be determined from the x-ray-diffraction pattern. The analysis of the hydrodynamic
(collective) layer Auctuations and the individual molecular-motion Auctuations shows that the latter can
be neglected in comparison to the former. The Auctuation amplitudes predicted by the model agree
within 5% with the recent experimental measurements performed on smectic-I on -C films. In thin

0 0
smectic films the fiuctuation amplitudes cr(r)=[(u (r))]'~ are only -4 A compared with —8 A in a
macroscopic sample. The Auctuations are suppressed at the two free surfaces by the large surface ten-
sion, grow away from each surface, and have a parabolic profile near the center of the film. We argue
that one of the reasons for surface freeezing in smectic liquid crystals is the quench of the layer Auctua-
tions by the large surface tension. However, we also show that in systems with small surface tension the
Auctuations at the surface are in fact larger than the ones in the interior of the system. The growth of
the diffuse scattering, due to the displacement-displacement correlations, with the thickness of the smec-
tic film is discussed and shown to evolve towards the structure predicted for large samples by Gunther,
Imry, and Lajzerowicz [Phys. Rev. A 20, 1733 (1980)]. The model for the displacement layer fluctua-
tions including the director as an independent variable is presented. Furthermore, the coupling between
the layer Auctuations and the nematic order parameter in smectic liquid crystals is qualitatively dis-
cussed. It is argued that the compressional modes induce the nematic order-parameter Auctuations and
that a large Auctuation profile may induce the smectic-3 —smectic-C phase transition in thin films.
Eventually in tilted smectic liquid crystals the layer Auctuation profile may induce a tilt profile. Finally,
it is shown that the presented model can be applied to smectic systems other than smectic-3; we give ex-
plicit formulas for the x-ray-scattering intensity from the smectic-Ad films and also calculate the fluctua-
tions amplitudes for the stratified smectic-I on -C system.

I. INTRODUCTION

Thin smectic films have been the subject of intensive
experimental studies during the past decade [1—17). The
first optical experiments on extremely thin ( ~ 50 A, two
and more layers thick) freely suspended ferroelectric
smectic-C films were reported in 1978 in the seminal pa-
per by Young et al. [1] and in 1979 by Rosenblatt et al.
[2]. Inelastic light-scattering measurements were used in
these papers to determine the dispersion relations for
molecular orientation fiuctuations [1] and to determine
the average polarization, average tilt angle, Frank elastic
constants, and viscosities as functions of the film thick-
ness [2]. The success of these experiments proved that
thin freely suspended smectic films are suitable systems
for studying surface and finite-size effects. Since that
time many different experiments using light scattering
[1-5], electron diffraction [6], high-resolution ac
calorimetry [7], and x-ray scattering [8—17] have been
done on these systems. These experimental studies have

been primarily aimed at the understanding of the phase
transitions and thickness-dependent phase diagrams
[3,7—11], the two-dimensional (2D) —3D evolution of the
in-plane order and dimensional crossover [6,12—14], hex-
atic elastic constants in thin films and the dynamic of the
hexatic order parameter [4,5], and surface freezing and
wetting phenomena [15—17]. The theoretical studies
have been mainly devoted to the phase transitions in 2D
systems and the structure of 2D systems [18—24], and the
evolution of the hexatic order between 2D and 3D sys-
tems [25,26]. Very recent experiments by Tweet et al.
[27] and Gierlotka, Lambooy and de Jeu [28] demonstrat-
ed the utility of x-ray diffraction for studies of the inter-
layer structure of thin smectic films. Because the x-ray-
diffraction pattern from thin films is much richer than
the corresponding pattern from bulk samples, their inter-
layer structure can be studied in detail using diffraction.
One of these experiments [27] has been performed on
freely suspended films consisting of two hexatic smectic-I
layers and interior smectic-C layers. The interlayer
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structure of these films has been very well described by
the gaussian distribution for the layer positions with the
gaussian width given by the Landau —de Gennes theory
for the displacement layer Auctuations in smectic- A
films, adapted to include finite size and surface effects
[29]. In addition, the smectic-I on -C films had a very
distinct tilt profile induced by the smectic-I surface
phase. The fits of the experimental data to the elastic
theory for the tilt profile and the fluctuation profile al-
lowed the determination of the smectic elastic constants,
the surface tension, and the characteristic length for the
decay of the tilt profile. The thin films have been shown
to be more tilted and more ordered than thick ones [27].
Unfortunately, in the analysis of the experimental results
the displacement-displacement correlation function has
been completely neglected. Surprisingly, although this
assumption is completely invalid for bulk samples [30], it
has been shown to be a valid one for thin smectic films
[31]. The aim of this paper is to give more details of the
calculations not presented in Refs. [29,31] and also to
present some new results for smectic-Ad, which should
be applicable to the experiment on thin smectic-Ad films

by Gierlotka, Labooy, and de Jeu [28]. Here we also
present the complete expressions for the displacement-
Auctuation profile for the stratified smectic-I on -C phase,
studied experimentally by Tweet et al. [27], the evolution
of the displacement-displacement smectic- A correlation
function with the film thickness and discuss qualitatively
the influence of the layer Auctuations on the surface
freezing, smectic-A —smectic-C phase transitions in thin
films, and the Auctuation-induced tilt profile in
tilted smectic liquid crystals. We also discuss the satura-
tion of the layer fluctuations in thin films and the
influence of the very small surface tension on the Auctua-
tion profiles. The paper is organized as follows: In Sec.
II we recall the main results for large bulk samples; Sec.
III is devoted to the discussion of fluctuations and corre-
lations in thin films and their dependence on smectic elas-
tic constants, surface tension, and the number of smectic
layers; in Sec. IV the x-ray-diffraction pattern for thin
smectic-A films is presented; in particular, we discuss
there the effects of the finite size, the Auctuations, the
correlations, and the molecular form factor on the x-ray-
scattering intensity; finally, Sec. V is devoted to the dis™
cussion of the approximations made in the theory, the
comparison to the experiment, the discussion of the
director fluctuations, and the analysis of the hydro-
dynamic versus the molecular-motion fluctuations. Here
we also discuss the concept of the x-ray correlation
length and the relevance of the fluctuation profiles to the
surface freezing in smectic liquid crystals and surface
melting in simple Auids. Finally, we discuss the satura-
tion of the layer fluctuations due to the finite-size effects
and the influence of the small surface tension on the Auc-
tuation profiles. The details of the calculations are
relegated to the appendixes.

II. BULK SMECTIC-A SYSTEM

The smectic- A phase can be described as a one-
dimensional stacking of equidistant two-dimensional

liquid layers with the elongated liquid-crystal molecules
perpendicular to the smectic layers (in our convention
parallel to the z axis). Smectic-A liquid crystals are at
lower marginal dimensionality and consequently, accord-
ing to the Landau-Peierls argument [32], the layer Quc-
tuation amplitudes diverge in the thermodynamic limit
and destroy the long-range order. However, in practice,
the logarithmic growth of the Auctuations with the size of
the sample is so slow that it is very difficult to directly ob-
serve the destruction of the long-range smectic order in
the typical experimental samples [33]. In order to esti-
mate the amplitude of these Auctuations let us introduce
the displacement perpendicular to the layers, u„(x,y), of
the smectic layers from their equilibrium positions [34],
z =nd. Here d is the layer spacing and n is the layer in-
dex. The free energy for the distortions of the smectic
layer must be invariant with respect to any rotations of
the system and also to the reAection with respect to the
xy plane (z and —z direction are equivalent). Assuming
the continuous limit, u„(x,y)~u (x,y, z) =u (r), we find
the following form of the bulk free energy [35]:

2

—
—,
'

(
Vu (r)

(
+K [bu (r) ]

du (r)F =—'~ dr B

(2.1)

F~ = ,' f dr —B +K[biu(r)]
dz

(2.2)

Here hz is the Laplacian in x,y variables. If the system is
large, but finite in the z direction and infinite in the two
transverse directions, then the Auctuations far from the
sample boundaries can be easily calculated using Eq.
(2.2),

QxD,
0. (r)—:u (r) = ln

4~v KB ao
(2.3)

Here the statistical average ( ) is taken with respect
to the u(r), i.e.,

( )=fDu . . exp
k, z

(2.4)

D, is the sample thickness, ao is the molecular diameter,
kii T is the Boltzmann factor, and A, =&K/B is the
characteristic smectic length in the system, which is of

Here B is the smectic elastic constant associated with lay-
er compressions and K is the elastic constant associated
with layer undulations. One may easily check that the
anharmonic terms in the bulk free energy are necessary
to preserve the rotational invariance [35]. Although the
effect of these terms on the renormalized B and K cannot
be neglected in the infinite samples, nevertheless they can
be neglected for typical experimental samples, because
their inAuence there is rather small [35]. Dropping the
anharmonic terms and neglecting the second derivative of
u with respect to z in comparison to the first derivative,
we find the bulk free energy in the harmonic approxima-
tion [30,34—36].

2
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kg T
o (r)=(u (r))= ln

4m+KB a p

(2.5)

where 8' is the linear dimension of the system in the xy
plane. Assuming the same parameters as before and
8 =1 cm we find o.=10.4A.

As we have mentioned before, the layered structured of
the smectic-A phase is destroyed in the thermodynamic
limit due to the diverging fiuctuations [see Eqs. (2.3) and
(2.5)]. However, despite these divergent fiuctuations
smectic-A liquid crystals still possess quasi-long-range
layer order even in the thermodynamic limit, because the
interlayer density-density correlation function decays
algebraically with the distance. This means that over
large distances the layers fluctuate in unison. In addition,
this slow algebraic decay of the correlation function leads
to a strong diff'use scattering [30,36] (as opposed to the
scattering from the perfectly ordered crystals). The inter-
layer scattering peak intensity S (Q, ) diverges like

the order of the layer spacing, d. For typical values of
the parameters appearing in Eq. (2.2) (i.e. , A, =20 A,
D, =1 cm, &KB =5 dyn/cm, ap=4 A, and
ks T=4 X 10 '" erg), the corresponding layer fiuctua-
tions amplitude is o =7.7 A. Since these fluctuations are

0
smaller than the layer spacing, d =30 A, the smectic lay-
ers in a 1-cm-thick sample are still well defined. Howev-

0

er, these 7.7-A fluctuations dramatically reduce the inten-
sity of the higher-order (001) refiections from the smectic
layers [33,37]. For the system finite in the xy plane and
infinite in the z direction we find, also using Eq. (2.2),

to the smectic layers. The question we address in this pa-
per is as follows: What happens in thin smectic samples?

III. THIN SMECTIC-A FILMS:
FLUCTUATIONS AND CQRRELATK)NS

A. General formalism

We now consider a freely suspended thin smectic-2
film with N„ layers [29,31]. The displacement fiuctua-
tions in this system are described by a free energy F with
surface Fs and bulk Fz [Eq. (2.2)], contributions:
F =Fz+Fs, with [29,31]

Fs= —,'y fdri[~Viu(ri, z=0)~ + ~Viu(ri, z=Xd)~ ] .

(3.1)
This term describes the additional energy cost associated
with increasing the surface area of the two free surfaces
(located at n =0 and n =X). Here y is a smectic-A va-
por surface tension and N~ =%+1. Since the system
consists of a finite number of layers in the z direction, it is
natural to use a discrete version of this free energy with
respect to z: u(ri, z =nd) —=u, (ri). Combining Eqs. (2.2)
and (3.1) one easily finds [31]

N —1B
dr~ —u, +& rz —u„r~

n=0

+ g Kd [b iu„(ri) ] + y ~ Viup(ri) ~

n=0

S(Q, ) =(Q, —2am /d) (2.6) + y ~ Viu~(ri) I
(3.2)

where I is the index of the peak, d is the layer spacing,
and Q, is the momentum transfer in the z direction (we
have confined our analysis to the interlayer structure
only) and

Now, taking the continuous Fourier transform with
respect to rj results in a compact expression for the free
energy, I':

(2.7)
N

F=—' f dqi g uk(qi)Mk„u„( —qi) .
k, n =0

(3.3)

is the temperature and Q, -dependent exponent [30,36].
Thus in the infinite smectic-2 system the Bragg peaks
characteristic for a one-dimensional solid are replaced by
the power-law divergences. These predictions have been
successfully checked in several experiments [33,38,39].
Of course, according to Eq. (2.6), there is only the finite
number of peaks with diverging intensity; for large Q,
g )2, and instead of the divergence we have a cusp in the
scattering intensity. One may estimate, using the
aforementioned smectic parameters, that the fourth peak
should be absent in the x-ray-diffraction pattern for an
infinite sample.

For finite samples, there are two interesting limits:
very thick and very thin. The very thick case has been
treated by Gunther, Imry, and Lajzerowicz [36], who
showed that the scattering pattern then consists of two
parts, the aforementioned diffuse scattering plus a finite-
size induced Bragg peak of width -D, ' and height
-D, 8' ~ on top of the diffuse scattering; here 8 is the
finite sample size in the direction parallel to the layers
and D, is the sample size in the direction perpendicular

Here the only nonzero elements of the symmetric matrix
M are on the diagonal and in the first off-diagonal posi-
tions. They are given by the following formulas:

2 4 B
MOO MNN Pg J +Kdg g + —Q

d

M„=Kdq~+—:b, n =1, . . . ,iV —1
2B

(3.4)

(3.5)

o2(ri)=(u~(ri)) =ksT f dqi(M ')„„1

(2')' (3.7)

(u„(r )u„(0))=ksT dq (M )I,„exp(iq&. r&) .
1 —1

(2~)
(3.8)

M„+,„=M„,+&
= ———=c, n =0, . . . , X —1 . (3.6)

B

The layer displacement fiuctuations ( u„(ri) ) and the dis-
placement correlation function (uk(ri)u„(0)) can now
be calculated using the elements of M ', namely,
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(M
—1) ( 1)n+k

CN+1
(3.9)

for n ~ k (otherwise n and k should be exchanged). Here

C„=a T„2—2ac T„3+c T„4, n )2 (3.10)

The limits of these integrations are 2~/8' & ~qi ~
& 2'/ao;

the lower limit is set by the transverse size of the film, 8,
and the upper limit is set by the molecular diameter since
transverse modes with wavelengths smaller than the
molecular diameter or larger than the film cannot be ex-
cited. For real measurements, the long-wavelength cutoff
will usually be set by the instrument resolution (or, in
other words, by the photon correlation length) rather
than by the sample size [27]. This point will be discussed
further in Sec. V. The elements of the matrix M ' are
given by 20.0—

17.5
os

yg l5.0
V

~ 4

4

l2.5—

(o)
OO 00

4 0
44 0

4 0
0X

X
X

X

~ ~
~ ~

~ + ~
+ h

0
tion amplitude o.z is —3 —4 A, because as we can see
from Fig. 1 the surface Auctuations hardly depend on the
film thickness. The difference between the surface and
the bulk fIuctuations induces, far from the surface, a
slowly varying parabolic profile for the fluctuation ampli-
tudes. In Figs. 1(b) and Fig. 1(c) the profiles are present-
ed for y=5 dyn/cm and 100 dyn/cm to be compared

~n a Tn —1 c Tn —2~

n+1 n+1
bn ~+

7l

n=1, . . . , N (3.11)

(3.12)
-20

~ ~

I

0
I I 1 I

20

1+[1—4(c/b) ]'
7l+ =

2
(3.13)

B. Displacement fluctuations

For n =0, A„=1. The inversion of the matrix M, al-
though standard [40], is presented for completeness in

Appendix A.

40.0

tV
ocf

39.0,—
04

V

00 ~ 0
~ + ~

+ +

(b)
00

0

First of all we will present the results of the calcula-
tions for the displacement fiuctuations given by Eq. (3.7).
Most of the calculations were performed assuming typi-
cal smectic parameters: K =10 dyn and 8 =2.5 X 10
dyn/cm (so A, =20 A), d =30 A, ac=4 A, y=30
dyn/cm, and W'=4X10 A (8' is estimated in Sec. V).
The calculated fiuctuation profile (u„(ri)) versus the
layer index n for 5, 11, 35, and 61 layers and for different
values of the surface tension is presented in Fig. 1. For
visual clarity the layer index n runs between —X/2 and
+X/2 in all the figures (instead of 0 and X as the formu-
las presented in the preceding section). For later con-
venience all the figures present the fluctuation amplitude
squared; nonetheless, in the discussion of the figures we
will also give values of the fluctuation amplitudes. The
fiuctuation amplitudes cr„=((u„))' at the surface are
suppressed by —1 —2 A relative to the fluctuations inside
the sample and grow rapidly in the first few layers close
to the surface. For thicker films (e.g. , 35 layers) the fluc-
tuation amplitudes have a parabolic profile in the center
of the film. The maximum amplitude occurs at the center
of the film and the center fluctuations grow from —3 A
for a 3-layer thick film to -4.7 A for a 61-layer thick
film. At the surface the layer fluctuations are strongly
suppressed by the surface tension and only weakly de-
pend on the film thickness. For infinitely thick films with
the transverse cutoff, 8'=4X 10 A, the layer fluctuation
amplitude at the center of the film o.c, estimated from
Eq. (2.5), is 7.6 A. At the same time the surface fiuctua-
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FIG. 1. The discrete layer displacement fluctuation profile
cr„=(u„) vs the index layer n for a 5-layer-thick film (+), an
11-layer-thick film (0), a 35-layer-thick film (X) and a 61-
layer-thick film (0). For visual clarity the layer index runs
from —N/2 to N/2, where N+1 is the number of layers. Here
n =0 corresponds to the center of the film and n = —N/2 and
N/2 corresponds to two free surfaces. B =2.5X10 dyn/cm
and K =10 dyn are smectic elastic constants and y is the
smectic/vapor surface tension; (a) y=30 dyn/cm, (b) y=5
dyn/cm, (c) y = 100 dyn/cm.
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clear from Fig. 2 that, as expected from Eqs. (2.3) and
(2.5) the fiuctuation amplitudes are more sensitive to
P=V'KB than they are to A, =V'K/B. B and K do not
change the surface fluctuations very much because
y»v'KB

The calculated dependence of crs = ( u ~&2 ) = ( u~&2 )
and o c = ( u 0 ) on the smectic- A-vapor surface tension
and the srnectic elastic constant B is shown in Fig. 3.
First we discuss their dependence on y. The asymptotic
dependence of o.

& and o.
& on y follows directly from Eqs.

(3.4) —(3.13): for very large values of the surface tension
o.z approaches zero as -y ', for very small surface ten-
sion both o.z and o.c diverge as -q~ up to the limit set
by the transverse cutoff q~=2~/8'. Here we note that
for the very small surface tension (y «&KB ) we find
that o.z & o.c. This point will be analyzed further in the
discussion. Below we will only consider the case of
y ~ &KB. Both crs and o c decrease with increasing y
[Figs. 3(a) and 3(b)]. However, the surface amplitude o s
approaches zero as y increases while the center ampli-
tude approaches a finite nonzero value, which only de-
pends on the thickness of the film and the smectic elastic

with Fig. 1(a) for @=30dyn/cm. From Fig. 1(b) (small

y) we see that the fiuctuation profile is very weak (the
difference between the surface fluctuations and the center
ones is very small). Moreover, the profile is very fiat in
the center of the film and the value of o c as well as o.z
hardly changes with the film thickness. Large surface
tension [Fig. 1(c)] strongly affects fiuctuations at the sur-
face but not the fluctuations in the center.

The dependence of the profiles for 5-, 11-, 35-, and 61-
layer thick films on the smectic elastic constants, B and K
is shown in Fig. 2. In Figs. 2(a) and 2(b) the profiles are
shown for B =25X10 and 0.25X10 dyn/cm, respec-
tively, to be compared to Fig. 1(a) for B =2. 5 X 10
dyn/cm (in all three cases y =30 dyn/cm and K =10
dyn). As one can see, the surface fiuctuations hardly de-
pend on B, whereas the interior fluctuations are very
strongly aff'ected. Large B [Fig. 2(a)] fiattens the profile
in the films, whereas small B [Fig. 2(b)] makes the profile
more pronounced. The same observations hold also if K
is changed instead of B [see Figs. 2(c) and 2(d)]. It is
clear that increasing either B or K suppresses fluctuations
throughout the sample and that this suppression is much
stronger inside the sample than at the surface. It is also
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FIG. 2. Fluctuation profile vs the layer index n for different smectic elastic constants B and K. Legend as in Fig. 1(a); (a) K = 10
B =25X10 dyn/cm; (b) K =10, B =0.25X10 dyn/cm; (c) K =10, B =2.5X10 dyn/cm; (d) K =10, B =2.5X10
dyn/cm .
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constants. Thus for large y the surface amplitude is
much more affected than the center amplitude. More-
over, the surface amplitude hardly depends on the film
thickness for any value of y, whereas the center ampli-
tude strongly depends on the layer thickness for large y
but only weakly for small y (see Fig. 3). For very small
surface tension the values of the Auctuation amplitudes
for the whole profile are dominated by the presence of the
surface. On the other hand, for large y only the surface
amplitude strongly depends on the surface tension. The
dependence of oz on B is shown in Fig. 3(c) and the
dependence of o z on B is shown in Fig. 3(d). For very
small B the interior fluctuations strongly grow, whereas
the surface fluctuations hardly change, being dominated
in the first place by the surface tension. For very thin
films it leads to large Auctuation gradients. This means
that in the limit of small B and K, the presented model is
no longer valid and other effects like the anharmonic
terms, director fluctuations and the quasi-"surface terms"
for the inside layers have to be included. All these effects
are mentioned in the discussion.

C. Displacement-displacement correlation function

The displacement-displacement correlation function
( uk(ri)u„(0) ) provides information about the typical
wavelength of the layer Auctuations. This function can
be positive or negative; a positive value of the correlation
function means in this case that different layers fluctuate
in unison; negative values mean the opposite. The case
r~ =0 provides information about the compressional
modes. In addition, studying (u„(ri)uk(0) ) for different

k and r~ gives information about the undulational modes.
The displacement correlations ( uk(0)u„(0) ) (for

ri=0) as functions of n for a 61-layer thick film is

presented in Fig. 4(a) for k =0, —10, —20, —30. Here
k =0 corresponds to the center layer, whereas k = —30
corresponds to the surface layer. As can be seen from
this figure all the layers in the thin films are very strongly
correlated; even the two surface layers separated by
(N+1)d =1800 A (d =30 A) are fluctuating in unison.
In the case of k = —30 the correlation function changes
from 10 A for n = —30 to 3 A for n =30. For corn-

40

P

30—

40
R

50—
(b)

Ol
ocf

a 20—
Se

V

Ol
oQ

w 20-
al Q ~

V

IO— 10-

0
0

I2

~ ~ I ~ ~ a I ~ a I I I I I I I

20 40 60 80
surface tension (dyn/cm)

r r r
I

r r r r
I

r r r r
I

r r

lOO
0 ~ ~ . ~ I ~ . ~ I . ~ . . I, . . . I

0 20 40 60 80
surface tension (dyn/crn)

I
''

I
'''

I60

r ~

I OO

50.
P

~~ IOJ

h
~Vg

V 9

40
OJ
oc(

A 30
~4~

V
20

e- IO—

r
a

0
a a a I a ~ a a I a a a a I a a a ~ I a a a ~

S/80
aaa. l aaaa I a ~

0 2 4
I

6
a a I a a a r

lO

FIG. 3. The surface fluctuations, (uz) =(u ~~&) =(u~~2) [cases (a) and (c)] and the fluctuations in the center of the film

( uc ) = ( u 0 ) [cases (b) and (d)] vs the smectic vapor surface tension, ) [cases (a) and (b)] and the smectic elastic constant B [cases (c)

and (d)] for a 5-layer-thick film (dashed line) and a 61-layer-thick film (solid line) N + 1 is the film thickness. (a) and (b) B =2.5 X 10

dyn/zm, K =10 dyn; (z) and (d), BO=2.5X10 dyn/zm, K =10 dyn, y=30 dyn/pm.



3698 ROBERT HOKYST

j j r j '~ j
I

j
O

(o)

a j I I
I

I I I T

I
j I I I I ~ I j

I
~ ~ j I

I
I j '~

(b3

C4
OQ

A

O

O

V

+ k*-IO
+ik&-20 +

+
0 +~0 +

k&O

Ol
ocg

A

~ e

O

V

x k&-5

X x x

~ k*O

0
0

X x x 0

I I a a I a I a a I I I

-20 0 20
~ I I I I I I I ~ I I I I I I I I I I I I ~ I I I0-6 -4 -2 0 2 4

FIG. 4. The correlation function (u&{0)u„{0))vs the layer index n for B =25X10 dyn/cm, K =10 dyn, y=30 dyn/cm and
(a) a 61-layer-thick film for k =0 (~ ), k = —10 (+), k = —20{()),and k = —30( X ). Here k =0 corresponds to the center layer of
the film, whereas k = —30 corresponds to one of the surface layers; (b) an 11-layer-thick film for k =0 (~ ), k = —3{()), and
k = —5( X ). Here k =0 corresponds to the center of the film and k = —5 corresponds to one of the surface layers.

parison we show in Fig. 4(b) the correlation function for
the 11-layer-thick film for k =0, —3, —5; here k =0 cor-
responds to the center layer and k = —5 corresponds to
the surface layer. The behavior of the correlation func-
tion in this case is very similar to the previous one.

The displacement correlation function (uk(r~)u„(0))
for fixed k and n as a function of rt = rt~ is shown in Fig.
5(a). The correlation function is positive for rt 1000ao

0

(ao =4 A); for larger rt it starts to oscillate around zero
with the typical amplitude much smaller than 1, which
slowly goes to zero. So the typical wavelength of the un-
dulations in our finite system ( W =40000 A) is -4000 A
and thus can be probed also with light scattering. Of
course for the infinite sample size ( W= ~ ) this wave-
length is also infinite. One also observes that the correla-
tion function for different (k, n) pairs tends to the same
limit for large r j and practically for r~ greater than 100ao
it has the same values regardless of (k, n). For compar-

IV. X-RAY-DIFFRACTION PATTERNS
FOR THIN SMECTIC- A FILMS

The interlayer structure information is reAected in the
x-ray-diffraction intensity, S(Q, ), which is the Fourier
transform of the density-density correlation function,

S(Q, )= f dr f dr'(p(r)p(r'))e p[xiQ, (z —z')] . (4.1)

We assume that the multiple scattering and attenuation
of the incident beam in the sample can be neglected. In
general, the x-ray multiple scattering can be neglected be-

ison a similar figure for an 11-layer-thick film is shown in
Fig. 5(b).

In the next section the inhuence of the fluctuations and
correlations, calculated in this section, on the x-ray-
scattering intensity, S(Q, ), is presented.
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cause the Thompson cross section for electron-photon
scattering is very small [(e /mc ) =10 ' A )] [41]. In
thin films practically all of the incident beam is passing
through the sample, thus the last effect can also be safely
ignored. In thin smectic films the density operator p can
be written in the following form:

N

p(r) =p, g f dz'5(z —z' —nd —u„(ri) }p~(z') . (4.2)
n=0

Here p, is the number of molecules per unit surface area
I

of the layer and pM is the molecular electron density
along the z direction (i.e., the electron density of the
liquid-crystal molecule projected onto the z axis). The 5
function 5(z —nd —u„) specifies the location of the nth

layer in space in terms of the displacement u„of the nth
layer from its equilibrium position z =nd. The statistical
average ( } is taken with respect to the u„[see Eq. (2.4)]
with the free energy given by Eq. (3.2). By combining
Eqs. (4.1) and (4.2) S(Q, ) can be rewritten in the concise
form

Ã

S(Q, )=SM(Q, )SO f dry g exp[iQ, d(k n)]F—k(Q, )Ck„(Q„ri)F„(Q,) .
aO n, k=O

(4.3)

Here So is a constant,

F„(Q, ) =exp( —
—,
' Q, ( u„) )

is the Auctuation term,

C«( Q„ri ) =exp[ Q, ( uk (r~)u„(0) ) ]

is the correlation term and
2

SM(Q, )= f dz exp(iQ, z)pM(z)

(4.4)

(4.5)

(4 6)

(4.7)

Although the molecular form factor for the real liquid-
crystal molecule consisting of the benzene rings and hy-
drocarbon chains is much more complicated [27,42 —45]
than the simple form given by Eq. (4.7), it is sufficient to
show the sensitivity of the x-ray diffraction pattern to the
molecular form factor using the simple form. All the cal-

is the molecular form factor. Although the fluctuation
term may be viewed as an analog of the Debye-Wailer
factor in solids, its origin in smectic liquid crystals is
different from that for the solids. Here the collective
motion of molecules determines the value of ( u„),
whereas in solids it is the individual local vibrations of
molecules.

To determine the contribution of each term to S (Q, ),
we can examine four interesting limits. . First by setting
F„, Ck„, and SM equal to 1, the scattering for a one-
dirnensional solid consisting of %+1 5-function scatter-
ers is obtained; in this case there are no fiuctuations,
correlations, or molecular form factor so only the finite-
size effects are present. Second by including F„[calculat-
ed using Eqs. (3.7) and (4.4)], while keeping C«and SM
equal to 1, the inhuence of the layer Auctuations on the
diffraction pattern of the one-dimensional solid is ob-
tained. In this case, since Ck„= 1 each layer fluctuates in-
dependently from all the other layers. In the third and
fourth cases, the correlation term Ck„and the molecular
form factor S~ are included. For simplicity the calcula-
tions are shown for a very simple molecular electron den-
sity, uniformly distributed along the molecule. Then
pM(z) =6( ~z~ L /2), where L —is the length of the mole-
cule, and SM [see Eq. (4.6)] has a very simple form

sin( Q,L /2)
S~(Q. )= ,L /2

culations were performed using typical values of the sys-
tem parameters: k~T=4X10 ' erg, K =10 dyn,
B =2.5X10 dyn/cm, y=30 dyn/cm, d =30 A, L =29
A, ao =4 A, Nz =N + 1 =3,5, 11 and 8 =4X 10 A.

Figure 6 shows the x-ray diffraction pattern for an
ideal one-dimensional solid with 3,5, 11 layers, respective-
ly, and F„=Ck„=SM =1. The scattering intensity in this
case is given by the following simple formula:

sin( ,'N„Q, d )—
(4.8)

sin( —,'Q, d )
S(Q, ) =So

2
aO

where A is the area of the sample (for simplicity we set
A =~W ). This pattern is like the ¹litdiffraction pat-
tern known from optics. There are Xz —2 subsidiary
maxima between each pair of primary maxima. The pri-
mary maxima are located at Q, = 2vrm /d for
m =0, 1,2. . . and do not depend on the number of layers.
They are twice as wide as the subsidiary maxima. The
minima of S(Q, ) are located at Q, =2m.m/(Nzd), for
any integer m indivisible by N~ (which is the number of
layers). As we can see, the location of the minima is
strongly size dependent, thus it can be used to determine
the number of smectic layers in the film. In this case, the
scattering at the minima of S(Q, ) [Eq. (4.8)] is zero. In
the limit of the infinitely large sample this structure
evolves towards the pattern consisting of true 6 Bragg
peaks located at Q, =2am /d.

Figure 7 shows the effects of including the fluctuations
in the same system. The displacernent fluctuations
reduce the intensity of the scattering [now for Q, ) 1.5
A ' S(Q, ) ( I] and shift the locations of the scattering
intensity minima, but the minima still go to zero. The
Auctuations also change the widths of the primary maxi-
ma, but not their positions; for large Q, they become
equal to the subsidiary maxima widths. The latter effect
is due to the fact that each layer has a different Auctua-
tion amplitude (see Fig. 1). If the fiuctuations were the
same for each layer the Quctuation term given by Eq.
(4.4) would simply multiply the ideal contribution and so
could not change the locations of the scattering minima.
In thin films the Auctuation amplitude has a profile and
( u„} strongly depends on n (Fig. 1). The structure
presented in Fig. 7 should in the limit of the infinitely
large thickness (but finite transverse dimension) evolve to-
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wards the pattern consisting of the quasi-Bragg-peaks of
height decreasing like the Gaussian factor [see Eq. (4.4)]
with the layer ffuctuations given by Eq. (2.5). In the truly
infinite sample there would be no scattering from the
sample, because of the diverging ffuctuations (see Sec. I).
The smectic system, in this approximation, would then
behave like the truly isotropic liquid.

Figure 8 shows the calculated scattering pattern when
both the fluctuations and the correlations between layers

are included (so now only S~= 1). First note that the
correlation term Ck„ is responsible for the diffuse scatter-
ing from the film; it produces the nonzero values of the
intensities at the minima. However, it hardly changes the
Bragg peaks located at the top of the diffuse scattering
(compare Fig. 7 and Fig. 8). The maxima of the diff'use
scattering for large Nz (N~ )5) are located at the same
Q, as the primary maxima. For the three-layer-thick film
the diffuse scattering pattern is almost featureless. The
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FIR. 7. X-ray-diffraction pattern for (a) a 3-layer, (b) a 5-

layer, and (c) an 11-layer smectic film including the fluctuations,
but not the correlations or the molecular form factor. Here
B =2.5X10 dyn/cm, K =10 dyn, and y=30 dyn/cm and d
is the same as in Fig. 6.
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envelopes of the minima for the scattering intensities
presented in Fig. 8 are shown for 3-, 5-, 11-layer-thick
films in Fig. 9. This represents the e6'ect of the correla-
tion alone. We note that this structure evolves from al-
most the featureless pattern for a 3-layer thick film to a
well-developed pattern with well-visible maxima for an
11-layer thick film. Surprisingly there are at least four
well-pronounced maxima in the correlation scattering
pattern shown in Figs. 8(c) and 9 for an 11-layer-thick
film, whereas we know from the large sample asymptotic
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tuations and the correlations, but not the molecular form factor.
Srnectic parameters as in Fig. 7.

expansion for the scattering intensities [see Eq. (2.6) dis-
cussion below this equation] that the fourth peak should
be absent. Thus we conclude that although the structure
presented in Fig. 8(c) is very similar to the structure pre-
dicted for large samples by Gunther, Imry, and
Lajzerowicz [36] it still has not reached the asymptotic
limit. On the other hand, the asymptotic expansion for a
finite sample is probably too simplified to predict the ex-
act behavior of the high Q, scattering intensity peaks.

0
Also note that for Q, ) 1.5 A ' there is still an apprecia-
ble amount of disuse scattering tail which only slowly
goes to zero as Q, increases. For Q, ) 3 A ' the scatter-
ing intensity is practically zero. In the limit of the
infinite sample this scattering pattern evolves towards the
structure given by Eq. (2.6) where instead of the Bragg
peaks we have the power-law divergences at Q, =2vrm /d
(Sec. II).

Figure 10 shows the full scattering pattern for SM
given by Eq. (4.7). Note that the molecular form factor
greatly decreases the intensity of the scattering especially
for Q, ) 1.25 A ' Also, because the length of the mole-
cule, L =29 A, is only slightly smaller than the layer
spacing, d =30 A, the molecular form factor has a
minimum just past each primary maximum. In the case
shown, it clearly splits the first primary maximum into
two pieces. The envelopes of the subsidiary maxima and
minima both follow the shape of the molecular form fac-
tor; this is very clear past the first primary maximum.
This pattern certainly provides information about the
length of the molecule and also in the case of the more
complicated molecular structure about its location in
smectic layers, and about its conformation.

V. DISCUSSION

A. Practical implications of the presented analysis
and comparison with experiment

There are several practical implications of this
analysis: Because the fluctuation term [Eq. (4.4)] and the
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molecular form factor [Eq. (4.6)] strongly influence the
x-ray diffraction pattern, both can be determined. In ad-
dition, because SM depends on the locations of the atoms
in the molecule, accurate intensity measurements for
known molecules should allow determination of the con-
formation of these molecules in thin smectic films. As
pointed out in the previous sections, since (u„) depends

on K, B, and y, these parameters can also be determined
from the x-ray-diffraction pattern. In order to see the
sensitivity of the x-ray-diffraction pattern to y and B, we
made a calculation of the x-ray-diffraction pattern for the
small surface tension with other parameters unchanged
[now @=5 dyn/cm), shown in Fig. 11(a) and also for
small B (now B =0.25X10 dyn/cm ] shown in Fig.
11(b). In order to understand all the differences between
Figs. 11(a), 11(b), and Fig. 8(c), we have to recall the hluc-

tuation profiles for all three cases. For the case of y =5
dyn/cm [Fig. 1(b) for the profile and Fig. 11(a) for the
corresponding scattering intensity] the average hluctua-
tion amplitude is -6 A which is enough to reduce con-
siderably the intensity of the quasi-Bragg-peaks after the
third peak. Thus now the x-ray-scattering pattern is
dominated by the correlation effects for Q, )0.5 A
Note that because the proNe of the fluctuations shown in
Fig. 1(b) is very weak the width of the primary maxima
are practically unchanged in this case. On the contrary,
for small B [Fig. 2(b) for the hluctuation profile and Fig.
11(b) for the correspond scattering intensity] the width of
the second peak is practically indistinguishable from the
width of the subsidiary minima. This is caused by the
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FIG. 10. X-ray-diffraction pattern for (a) a 3-layer, (b) a 5-

layer, and (c) an 11-layer smectic film, showing the combined
effect of finite size of the sample, fluctuations, correlations, and

the molecular form factor. Smectic parameters as in Fig. 7.

FICx. 11. X-ray-diffraction pattern for an 11-layer thick film

with K =10 dyn and (a) small surface tension, y=5 dyn/crn.
Here 8 =2.5X 10 dyn/crn; (b) a small B, B =0.25X 10
dyn/cm . Here y =30 dyn/crn. The molecular factor is not in-

cluded. This figure should be compared with Fig. 8(c).
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very sharp Auctuation profile. Moreover, although the
fluctuation amplitudes in the middle of the film ( —8 A)
are larger than in the previous case of the small y the
Auctuation amplitudes at the surface are still very small
( —3 A) and that is why there is no sudden drop in the
scattering intensity for large Q, (see Fig. 11). Note that
in both cases these large Auctuations do not very much
affect the scattering due to correlations which is clear by
comparing Fig. 11 with Fig. 8(c). However, in both
cases, the change in the quasi-Bragg-peaks both in the
primary and in the subsidiary maxima is large enough to
be measured. The sensitivity of the x-ray-diffraction pat-
tern to the layer Auctuation profile is fully investigated in
the papers by Tweet et al. [27,45].

The correlation term given by Eq. (4.5) has very little
effect on the scattering intensity in thin films since it does
not change the Bragg peaks and, moreover, the ratio of
the maximum difFuse scattering intensity to the first pri-
mary maximum intensity is less than 10, so it is too
small to be measured. In addition, because the resolution
function obscures the details of the scattering pattern
close to the minima [27,28,45], the effect of C&„ there will

also be very difficult to observe. Consequently, the ap-
proximation Ck„=1 is adequate for the analysis of all
thin-film experimental work. Indeed this assumption has
been used with success in the theoretical analysis of the
Tweet et al [27,45] experimental results. The experimen-
tal sample was the freely suspended film 7.07 consisting
of two hexatic, tilted smectic-I surface layers and the in-
terior liquid, tilted smectic-C layers. In Appendix 8 the
theory for the layer Auctuations which has been used to
interpret the experimental data [45] is presented. Be-
cause the surface smectic-I layers are different than the
interior smectic-C layers the theory for smectic- 3
presented in Sec. III had to be slightly modified. It has
been possible to extract from the experimental data the
following parameters: QKCBC =3. 14+0.10 dyn/cm,
(y "(/K~8~ c )' =6.5+0.5 dyn/cm, and 8 & y & 3

dyn/cm, where the subscript C stands for the smectic-C
phase and I for the smectic-I phase. 8~ c is the smectic
elastic constant associated with the coupling between the
surface smectic-I layer and the next smectic-C layer. The
smectic-I elastic constants are about two times larger
than those for smectic-C and consequently the smectic-I
layers are much stiffer than smectic-C ones. We have
neglected the coupling between the hexatic order parame-
ter and the layer Auctuation amplitude in the free energy
[46], assuming that the main effect of the hexatic order
has been to increase the smectic elastic constants Kz and
8z & in comparison to the liquid smectic-C ones. In Ref.
[27] the anisotropy of the real-space cutoff W introduced
a considerable overestimate in the determination of the
surface tension and the elastic constants. It has been
corrected in Ref. [45]. Here we give the corrected values
of the smectic parameters.

Finally we would like to point out that the presented
model can be also applied to the experiment performed
by Gierlotka, Lambooy, and de Jeu [28] on thin freely
suspended smectic-A& film. In Appendix C we give the
explicit form for the scattering intensity in this case.

B. Approximations made in the model

Although the ~V'u
~

term should, in principle, appear
for each layer, because the rotational symmetry has been
broken by the film holder, we have assumed that for the
interior layers the contribution of this term to the free en-
ergy is very small. In the first approximation this term
should be proportional to the square of the density
difference between layers [47]. For the surface layer,
where the density difference between liquid-crystal liquid
and its vapor is huge, this term which we identify with
the surface tension is large, whereas for the interior lay-
ers, where the density difference is a few percent at most,
this term can be neglected. We have also not included
the anharmonic terms in the free energy, because they
should not affect the fluctuations very much (see discus-
sion in Sec. II), and also neglected the influence of the
disjoining pressure to the free energy [48-51]. This effect
is probably small; according to the recent measurements
for lyotropic lamellar mesophases between two mica sur-
faces [52] the contribution of the disjoining pressure to
the surface tension is —1 dyn/cm. This is within the ex-
perimental error. In the model we have also neglected
the coupling between the director Auctuations and the
layer Auctuations and the inAuence of the tilt profile on
the layer Auctuations. The coupling between the director
Auctuations and layer fluctuations may be easily included
and is presented in Sec. V E.

C. Individual versus collective Auctuations;
surface melting versus surface freezing

In addition to the hydrodynamic (collective), long-
wavelength Auctuations which have been calculated in
this paper, there are also short-wavelength contributions
to the total Auctuation profile that should be properly in-
cluded before comparing the theoretical predictions with
experiment. These short-wavelength contributions are
due to the individual motions of the molecules. Suppose
that these molecular motions make the density distribu-
tion for the layer positions to be Gaussian (this is true for
the harmonic Debye-Wailer theory [53]) and that the
long-wavelength Auctuations further broaden this Gauss-
ian distribution. The density operator for the layer posi-
tion (for simplicity we neglect the molecular form factor)
can be written now in the following form:

[z nd —u—„(r~)]

(2 z )inexp
2 z

(5.1)

Here o.~ is the Auctuation amplitude due to the individu-
al molecular motion and p, is the number of molecules
per unit surface area. The individual molecular Auctua-
tion amplitude should be larger at the surface than in the
bulk in contrast to the hydrodynamic Auctuations which
are quenched by the surface tension. The profile of o.

L

can be probably described by the mean-field density-
functional theory for smectic phases [54—60]. Averaging

p with the free energy given by the harmonic elastic mod-
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el [Eq. (3.2)] we get the average layer density distribution

p(z)=p, g z, &
exp

1 (z —nd)
(2mcr )'~ 2cr

(5.2)

Here

cr =(o. +cr )' (5.3)

and the elastic fluctuations o.„are given by Eqs.
(3.7)—(3.13). For cr„=4 A and o L

=1 A [61] (measured
by Leadbetter, Mazid, and Richardson [61] using neutron
scattering) we get 0 =4. 12 A, so the individual molecular
motion contributes only 0.12 A to the layer fluctuation
amplitudes and the hydrodynamic, long-wavelength con-
tribution dominates. Although the Leadbetter, Mazid,
and Richardson [61] measurements were performed for
the crystalline smectic liquid crystals this value for the in-
dividual fluctuations should be similar in dense liquid
smectic liquid crystals, because locally the dense liquid is
very similar in structure to the solid phase. Below we
discuss the implications of this analysis for the surface
freezing [17] and surface melting transitions [62—67].

In 1910 Lindemann [68] formulated a useful criterion
for melting, which asserts that melting occurs if the fluc-
tuation amplitude 0. of an atom exceeds 10% of the
nearest-neighbor distance. In solids where the individual
fluctuations dominate, atoms at the surface fluctuate
more than the atoms in the bulk. This means that the
criterion can be fulfilled for the surface atoms before it is
fulfilled for the atoms inside the sample. Thus the melt-
ing transition can be initiated at the surface. In smectic
liquid crystals it has been observed that surface freezing
occurs [17] instead of surface melting. We interpret this
result by the dominance of the hydrodynamic fluctua-
tions over the local fluctuations. The hydrodynamic fluc-
tuations are quenched at the surface; thus surface freez-
ing rather than surface melting should occur in this case.

D. X-ray correlation length and the cutoÃ

As has been mentioned in Sec. III the cutoff 8'that ap-
pears in the model is not simply the size of the system,
but rather is related to the properties of the x-ray beam.
Here we would like to elaborate on this topic and give a
rough estimate of the cutoff for the typical experimental
setup [27,28]. In such experiments the x-ray radiation
produced by the rotating anode is scattered from the
monochromator (graphite [27] or germanium [28]), which
produces the beam of well-defined k wave vector. Ac-
cording to the Bragg condition for scattering from crys-
tals [53] only this k is selected which forms a definite an-

gle with the crystal planes. However, the monochroma-
tor crystals are not perfect; thus the outgoing x-ray beam
has some small angular spread in k. This x-ray beam
with the angular spread, a, may be viewed as if the radia-
tion was produced by the incoherent extended source of
spatial dimension R

&
at distance R from the sample, such

that cx =R
&
/R. Now consider the correlation between

the electromagnetic field vibrations at two points at the
surface of our sample, separated by the distance r~. We

denote this function p = ( A (ri, t) A (0, t) ) and further
neglect the retardation effects, which is justified provid-
ing the photon coherence length c~, is much greater than
ri. Here r, is the photon coherence time [69], c is the
speed of light, ( ) denotes the time average, and A (yi, t)
is the amplitude of the electromagnetic wave at point r~
at time t. The distance r~ over which p is large and posi-
tive will be called the photon correlation length in order
to distinguish it from the previously mentioned photon
coherence length. One finds that p is given by the Van
Cittert-Zernike formula and for the circular source is
proportional to [70] 2J, (u)/u, where J, is the Bessel
function of the first kind, v =2~r~/k, and k is the wave-
length of the x-ray radiation. The maximum value of p is
1 for v =0 and it reaches value 0.88 at v =1, i.e., when

ri =0.16K/a . (5.4)

This somehow arbitrary (we considered 12%%uo deviation
from the ideal value of p) fixed length is a photon corre-
lation length along the surface of the sample. This length
is modified by the angle 0 between the incoming beam
and the surface. Taking this into account we finally find

ri =0.16K./(a sin8) . (5.5)

For A, =1 A, 0.=0.02, and 0=1' we find r~ =10 A.
Over distances larger than r~ the photon is scattered in-
coherently and consequently the layer fluctuations
characterized by the wavelength smaller than qi =2m/ri
cannot be detected. Thus it is natural to set the cutoff
W=ri where ri is given by Eq. (5.5). In the real experi-
ment [45] the cutoff strongly depends on the geometry
and size of the slits which narrow the x-ray beam. In
fact, in the experiment discussed [45] the correlation
length has been shown to be anisotropic, i.e., the correla-
tion length along the x axis, 8' =400 A, while the one
along the y axis, Wy=40000 A. In the theoretical
analysis of the experimental results [45] the correlation
area has been approximated by the rectangle of size 28
and 28'. In the simplest case considered in this paper
the correlation area is a circle of radius 8'.

K. Coupling between layer and director fluctuations

The free energy associated with the director distortions
is given by the Frank free energy [34]

+d;, =—,
' IK, [Vn(r)] +Kp[n(r)VXn(r)]

+K3[n(r) X VXn(r)]2I, (5.6)

where K, is the elastic constant associated with splay de-
formations, E2 is the elastic constant associated with
twist deformations, and K3 is the elastic constant associ-
ated with bend deformations. As pointed out by de
Gennes [34] if we assume that the director is perpendicu-
lar to layers and that the layer spacing does not change,
the director fluctuations can be incorporated in the undu-
lational mode. To be specific, the director, in this case, is
simply given by the vector normal to the smectic layers
and in the limit of small displacement gradients is equal
to
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n(r) =

—Bu(r)
Bx

Bu(r)
By

1

(5.7)

Furthermore, if the layer is unaltered in the process of
fluctuations the bend and twist contributions to the direc-
tor distortions are forbidden and only splay contributes.
Taking into account Eq. (5.7) it is easy to see that the
splay term in Eq. (5.6) has the same structure as the un-
dulational term in Eq. (2.2) [34]. All these assumptions
are very reasonable providing there is no strong displace-
ment Auctuation profile. However as has been pointed
out in Sec. III 8 for very small smectic elastic constants
and very large surface tension the displacement gradients
are very large and the presented theory is no longer valid.
The direct distortions have to be included in this case.
The coupling between the undulational mode and the
director Auctuations is given by

F„„=K„„[n(r) —e, (r)] (5.g)

where e, is the vector normal to the layers. In the sim-

plest approximation e, is given by Eq. (5.7).

answer to this question has been given in the framework
of the density-functional theory [57] for the
nematic —smectic- A (N —Sm-A) phase transition and is
also presented below. The rotational motion strongly
hinders the translational motion inside layers and only if
Q& is large (P* is small) this effect is small and the entro-

py gained in the process of layer formation (at the
N Sm —Aph-ase transition) can outweigh the entropy loss
associated with it. Namely, the molecules inside layers
have more translational freedom than they had in the
nematic phase and this accounts for the entropy gain; on
the other hand, the molecules cannot move freely be-
tween layers which accounts for the entropy loss [57].
The condition of large Qz (small P*) in bulk smectics
liquid crystals has important consequences in thin smec-
tic films with the strong Auctuation profile as shown
below.

The existence of the Auctuation profile in thin smectic
films means that neighboring layers Auctuate with
different amplitudes. The compressional mode due to
these differences in amplitudes induces the change in the
layer spacing, d. The change in d can be achieved in
smectic liquid crystals in two ways. One is the inter-
penetration of molecules from neighboring layers, the
other is the change in P* because

F. Fluctuation induced tilt profiles
and smectic- 3 —smectic-C phase transition in thin films d =L icos&*i, (5.1 1)

In this section we would like to speculate on the possi-
ble inAuence of the Auctuation profile on the tilt profile
observed in thin tilted smectic films [27,45] and on the
smectic-A —smectic-C phase transitions in very thin films

[71]. First we will analyze the structure of the bulk smec-
tic liquid crystals and further discuss its implications for
the structure of thin smectic films.

In the smectic-3 phase the director is perpendicular to
the layers but the molecules are not perfectly aligned.
The nematic order parameter

(5.9)

P*=arccos
1/2M

i=1
(5.10)

as an average angle between the long axis of the molecule
and the normal to the layer. The molecules in smectic-A
liquid crystals freely rotate around the normal to the lay-
ers. In smectic-C liquid crystals rotations are frozen, axi-
al symmetry is broken, and P* is the tilt angle (the angle
between the director and the normal to the layers). Of
course the molecules in the smectic-C phase still rotate
freely around the director, but the director is no longer
perpendicular to the layers. Why is Q& so large (or
equivalently P* so small) in the smectic-A phase? The

is less than 1 (its maximal value for a perfectly aligned
sample), nonetheless it is very large (usually Qz) 0.9).
Here ( ) denotes the statistical average, P, is the angle

between the director and the long axis of the ith mole-

cule, and M is the number of molecules. In the case of
smectic-3 liquid crystals one can interpret

where 1. is the length of a molecule. The former mecha-
nism is less probable because of the high entropy cost as-
sociated with the interpenetration [57]. Thus we are left
with the latter mechanism. In particular, from this
mechanism one can predict that the layer Auctuation
profile induces the P* profile. Moreover, for very large
layer fiuctuation gradients the change in P* can be very
large. If P* for a given layer is too large the rotations
around the director very strongly hinder the translational
motion inside this layer, as mentioned previously in the
discussion of Q~. The only way to change this unfavor-
able configuration is to freeze rotations for all the mole-
cules inside the layer. But this leads to the smectic-
3 —smectic-C phase transition indeed observed in very
recent optical experiments in very thin smectic-3 films

[71].
The tilt profile changes the layer spacing as indicated

in the condition (5.11) and thus moves the scattering
peaks. This property has been used to determine the tilt
profile from x-ray difFraction pattern in the smectic-I and
—C films [27,45]. The tilt and displacement fiuctuation
profiles observed in these experiments agree qualitatively
with the hypothesis presented above. According to it
both the tilt profile and the Auctuation profile arise be-
cause of the presence of the surface tension, which by
quenching the surface Auctuations induces the Auctuation
profile and eventually the tilt profile. It may also be true
that large tilt at the surface produced by the surface ten-
sion initiated the liquid-hexatic phase transition
(smectic-C —smectic-I) in the surface layer. The con-
clusive experimental proof of this mechanism for the
Auctuation-induced tilt profile could be obtained from the
x-ray-diffraction pattern for thin smectic-A films.
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G. Eft'ect of small surface tension
and small real-space cutoft' on the Auctuation pro6les

So far we have confined our analysis to the typical
values of the elastic constants, K,B, the surface tension y,
and the real-space cutoff O'. Now we would like to dis-
cuss the two interesting cases of small 8'and small y.

The fluctuations in the center of the film grow logarith-
mically with its thickness, D„and for large W ( W))D, )

and large D, have the form (2.3). By comparison of Eq.
(2.3) and Eq. (2.5) we find that for D, = W /A. the fiuctua-
tions in the center of the film should saturate (stop grow-
ing). However, in the case of small W ( W/ao = 100) the
above'analysis does not apply. In particular, the satura-
tion of the fluctuations in the center is observed at
D, = 8'. Moreover, the saturated profile is very Aat in the
middle (in contrast to the parabolic profile discussed in
detail in the paper) and its shape can be reproduced by
the hyperbolic cosine [72]. This observation may be very
useful in the analysis of experimental data, namely, the
hyperbolic cosine form (obtained from the saturated
profiles for thin films) can be used to fit the data even for
the very thick films.

The case of very small surface tension (y ((VKB )

may be relevant to the finite system of stacked mem-
branes [73]. We observed that in such a system the fiuc-
tuations at the surface are larger than the Auctuations in
the interior. Moreover, the fluctuations decrease with the
thickness of the film. This behavior is completely oppo-
site to the one studied in the previous sections. The
reason for this behavior is the fact that small surface ten-
sion cannot compensate for the increase of Auctuations
due to the lack of one nearest-neighbor layer for the sur-
face layer. So the surface layer will fluctuate more than
the interior. The decrease of the fluctuations with the
thickness is also understandable by the same token. Fi-
nally we note that the behavior of the fluctuations in thin
films can be even more complicated for the stratified sys-
tems with small surface tension and two different sets of
elastic constants at the surface (K„B,) and in the interior
(Kb, Bb) like in the smectic-I on -C. In particular, for

y (&QK„Bb and QKbB& « QK, B, such that
(y+K,B, )' )QKbBb the fluctuations first grow with
the thickness of the film for very thin films and then, for
thicker films, decrease with the thickness of the film.

I hope that the presented analysis will be a good start-
ing point for future experimental and theoretical studies
of thin smectic systems.

APPENDIX A: INVERSION OF THE MATRIX M

According to the definition, the elements of the inverse
matrix (M ')' +"are given by

detM '+)
(I—1)N+1 ( 1)n+k

detM
(A 1)

Moo =M~~ =a,
M„„=b, (A3)

M„+i„™„„+,=c, (A4)
Expanding the determinant of M' +" in the first and
last row elements we easily get

detM' +"=a detT' "—2a detT'

+c"det T' (A5)

Here the matrix T' ' has, for any J, the following ele-
ments:

(T' ')k„=c5k „+,+c5i, +, „+b61,„, (A6)

for any n and k, and 6 stands for Kronecker's 5 function.
Now let

T(J)—b JL (.J) (A7)

It is easy to verify, by expanding the matrix L' ' in the
first row elements, that the following recursive relation is
satisfied:

detL' '=detL' "—n detL' (A8)

where a=c/b.
lowing relation:

detL' '

detL'

From this equation we also get the fol-

r

detL'

detL' (A9)

This equation can be solved iteratively. For J =0 and 1

we have detL' '=1, thus

detL' '

detL'

J—1

1 —a 1

1 0 1
(A10)

Diagonalizing the matrix in Eq. (A10) one easily finds
that

Here the matrix M k„' is obtained from M' +" by delet-
ing the kth column and the nth row and det denotes the
determinant. The superscript indicates the dimension of
the matrix. Let the square matrix M' +" have only the
following nonzero elements:
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where

J—1

1 —(x

1 0

2

1
9+
a

1

0
=S S0 (Al 1)

(A12)
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and

1+[ I —4(c /b) ]'i
2

Combining Eqs. (A7) —(A13) we get
J+1 J+1

( ) g+

1+

It is also easy to show that

(A13)

(A14)

Here KI is the smectic elastic constant for smectic-I film

and BI c is the smectic elastic constant associated with
compressional modes between the layer of smectic-I film
and the layer of smectic-C film. We note that for the
three-layer film the form of b, is slightly different, i.e.,

4 2BI-C
b1=Xcdqi4+ (B7)

The elements of the inverse matrix (M ')' +" are given
by (Appendix A)

defM =det g c I(n
—

kldet g (N—n) (A15)

for n ~ k, otherwise n and k should be exchanged. Here

det, 2 de't 3
det~(N+" (B8)

det A ' '=a detT' "—c detT'

Combining Eqs. (A14) —(A16) we get Eqs. (3.9)—(3.15).
For J =0 we set det A ' '= 1.

Here the superscript stands for the dimension of the ma-
trix. For N ) 3 and X—1 ~ n ) 1 we have

detM(N+)) —(a b c2 )2detT (N —3)
1 1 1

APPENDIX B: THE FORMULA FOR THE FLUCTUATION
PROFILE IN THE SMECTIC-I ON -C SYSTEM

—2a, c (a, b, —c, )detT'

+a c detT' (B9)

Here we present the results for the smectic-I on -C sys-
tem studied experimentally by Tweet et al. [27,45]. The
experimental sample consisted of two surface smectic-I
and the interior smectic-C layers. The total number of
layers is %+1. The formula for the fluctuation profile is
given in this case by the same equation as for smectic- A
[Eq. (3.7)], but with different N + 1 X N + 1 matrix M:

and

detA'"'=(a, b, —c )detT'" ' —a, c detT'" ', (B10)

and the determinant of T is given in Appendix A. For
n =1 detA'")=a, . The cases N=2, 3 (three- and four-
layer-thick film) require separate formulas. Because the

dimensionality of these matrices is low these formulas
can be obtained immediately. Also the cases n =Q, N re-
quire separate formulas. They are given below.

a, c1

c1 b1

0 c

0 0 0 . 0 0 0 0 0
c 0 0 0 0 0 0 0

b c 0 . 0 0 0 0 0

0 0
0 0
0 0
0 0

i 0 0

0 0 0 . b

0 0 0 . . c
Q Q Q ~ ~ o 0
QOO . 0
0 0 0 . . 0

c 0 0 0
b c 0 0
c b c 0
0 C b1 C1

0 0 c1 a1

where

2 I-Ca1=yqi+X, dqi+

4 BI c+BC
b1=rCcdq 4i+

BIc
1

Bc
d

2BG
b =&cdq4i+

0 0 c b c . . 0 0 0 0 0
0 0 0 c b . . 0 0 0 0 0

(Bl)

(B2)

(B3)

(B4)

(B5)

(B6)

=b((a)bi —c )detT

(2a b) —c )det T

+a1c detT' (B1 1)

and detA' '= 1. Combining these formulas and Eq. (3.7)
one can obtain the Auctuation profiles by simple numeri-
cal integration.

APPENDIX C: X-RAY-SCATTERING INTENSITY
FOR SMECTIC- Ag FILMS

The smectic-A& phase is drawn schematically in Fig.
12. Its structure can be characterized by the superposi-
tion of two one-dimensional density waves (defining

smectic layers) of different phases and polarizations, i.e.,
of the same basic srnectic period d and shifted with

respect to each other by the vector d, e, where e is the
unit vector parallel to the z axis [74]. In our convention
when the arrow points up the polarization is positive,
otherwise it is negative (Fig. 12). Of course two neigh-

boring layers of opposite polarization form a bilayer.
The scattering intensity S(Q, ) is given by Eq. (4.1) with

the density operator
N

p(r)=p, g J dz'5(z z' nd —u„(ri))p(M—)(z'—)
n=0

N

+p, g Jdz'5(z —z' n'd —d, u„(ri))pM'—(z') .
n'=0

(C 1)
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is ii )t yg ]i

]t li i4 j(
l( 'lI &( l& q'p l( l( qt

(Cl) we get the scattering intensity for the smectic-Ad
film,

N

S(Q, ) =SM(Q, )So J dr& g exp[iQ, d (k —n) ]
a k —o

XFk(Q, )Ck„(Q„rt )

XF„(Q,), (C3)

)i ]c i& i( i4 where now the summations run over the indices of bi-
layers and the molecular form factor is equal to

SM(Q, )= PM(Q, ) + ~PM'(Q, )l

FICr. 12. Schematic drawing of the smectic-Ad phase; d is
the smectic period and d& is the shift of the density waves. The
arrows denote the polar molecules in smectic layers.

+p~(Q. )p~"'(Q. )e»( —iQ. d i )

+pM (Qz)pM (Q )exp('Q di ) (C4)

'"(z)= ( '( —z) . (C2)

Combining the definition of S (Q, ) given by Eqs. (4.1) and

In the first term in Eq. (Cl) the summation is over the in-
dices of the monolayers with positive polarization and the
summation in the second term is over the indices of the
monolayers with negative polarization. The molecular
density operator pM is diA'erent for the layers with posi-
tive polarization (i =1) from the one for the layers with
negative polarization (i =2), but also satisfies the follow-
ing relation:

Here * denotes the complex conjugated and pM(Q, ) for
i = 1,2 is the Fourier transform of PM(z). The fiuctuation
term F„and the correlation term Ck„are given by Eqs.
(4.4) and (4.5) respectively, and the free energy is given by
Eq. (3.2) with X+ I being the number of bilayers and K
and B being the smectic elastic constants for a bilayer.
Of course in the analysis of the experimental results the
correlation term can be neglected. The presented model
is the simplest one, however it is also very easy to incorp-
orate other more complicated eAects like the tilt profile
and the change of d, with z. Both efI'ects can be induced
by the layer fluctuations and the fluctuations profile.
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