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The selection of self-similar fingers growing in a wedge is examined numerically both in the conver-

gent and divergent flow regime. For divergent Aows, a bifurcation occurs in the spectrum of the relative

finger width k versus o., the effective surface tension parameter, when it is very small (a (0.005). By
comparison with experimental data, we show that it can explain the tip-splitting instability usual to any
radial growth process. At finite surface tension (o. & 0.005), a universal selection law is revealed numeri-

cally for any sector value, in both growth regimes.

I. INTRODUCTION

Viscous fingering in a wedge was introduced in a recent
experiment [1]. Initially the aim was to understand the
dynamical evolution of viscous patterns in radial growth,
i.e., what is known now as the Bataille-Paterson geometry
[2]. Although fairly common in nature, radial growth
phenomena have been neglected, to some extent, by
theorists in hydrodynamics. However, recently, this
growth process has suggested several statistical ap-
proaches [1,3]. Several aspects remain unexplained at
present like the destabilization of the pattern by tip-
splitting or the crossover between petal and dendritic
shapes for crystal seeds. The sector geometry is an inter-
mediate step between the very well-established linear
geometry developed by Saffman and Taylor [4] and the
completely open one. The main advantage of traditional
experiments in a linear channel is to produce steady
fingers with a constant velocity. For a long time, the ma-
jor problem has been to understand the observed value
for the relative width A, of the experimental finger [5]
whereas Saffman and Taylor (ST) [4] have shown the ex-
istence of a possible continuum set of symmetric solu-
tions with every possible X. It is now well established, by
analytical [6] or numerical means [7], that a tiny isotropic
surface tension selects the solution which tends to occupy
half the channel. In fact, an infinite discrete set is select-
ed but only the finger with the lowest A. value is linearly
stable [8].

In an open geometry, steady solutions no longer exist
even if the imposed Quid Aux is time independent. In sec-
tor shaped cells of angle 00, the experiments are per-
formed, usually at constant applied pressure. Even
though the effective surface tension o is not constant in
this condition, a growth regime of nearly smooth and
self-similar fingers is observed. These fingers are charac-
terized by the ratio X of their angular width to 00. This
suggests [1,9,10] that the dynamic is slow enough so the
finger has time to adjust its shape to the corresponding
ideal self-similar finger. This would be the starting point
for a theoretical treatment and we address the question of
the selection mechanism via an effective surface tension
parameter o. of self-similar patterns, for arbitrary value of
the wedge angle. It is worth noting that self-similar
shapes have also been obtained experimentally by an

averaging of very unstable ST fingers and diffusion-
limited aggregation (DLA) patterns [11]. This is beyond
the scope of the present paper. Hakim has found a con-
tinuous family of analytical solutions in the particular
case Ho=90' and Brener et al. [10] found a selection cri-
terion at this angle. Experimentally, the fingers at this
angle are very unstable so the comparison to theory is
limited (the theoretical shape is observed in the averaging
of experiments only). More recently the analytical ex-
pression for the family of solutions for any value of Oo in
the absence of surface tension was found [12]. In the
present paper, we give two numerical methods leading to
the understanding of the selected structures and their sta-
bility.

The transformation of the free-boundary problem into
an integro-differential equation is standard by now. We
show that it can be done either by the Green's-function
technique [9,10] or the hodograph method [7,9]. The A,

spectrum turns out to be rather unusual: at fixed o., when
the value of the sector grows, the levels meet by pairs to
make a series of loops. These loops appear also in the
A, =f (o ) plot, indicating that the self-similar profile
disappears when the surface tension becomes arbitrarily
small. This phenomenon occurs at rather low surface
tension and only for divergent Bow. We show here that
this explains the dynamical instability in terms of tip-
splitting observed in the experiment.

This paper is organized as follows. Section II recalls
the equations for the velocity potential either in the
viscous Quid and on the interface when three-dimensional
effects are neglected. It shows how to transform the
physical plane located in a wedge into a fictitious one in a
linear channel. Section III establishes the integro-
differentia equations for the interface, in two different
formulations: we want to avoid the study of the Quid
Aow. Section IV presents the numerical results compared
to the experiment [1,9] and previous theoretical treat-
ments [1,3,10,11].

II. THE SELF-SIMILAR
FREE-BOUNDARY PROBLEM

A. The viscous Angering equations in the physical plane

When the experiment takes place in a wedge, air can
push oil either from the center or from the periphery. In
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This occurs when the Quid Aux behaves in time like t
which is probably not easy to realize. For the moment,
we focus on the selection mechanism of self-similar
shapes by a constant effective surface tension. Since the
linear geometry is most familiar, we explain in the last
section how to transform this free-boundary problem in a
wedge into a new free-boundary one in a linear channel.

B. Transformation of the wedge into an infinite strip

The Saffman-Taylor instability, which occurs in an
infinite strip, has been extensively studied experimentally
[5], numerically [7], and analytically [6,13]. For the phy-
sicist, this instability no longer seems mysterious, at least
in the steady-state approximation. We are able now to
predict both the shape and the growth rate U of steady-
state ideal patterns. Even the deviations from ideal situa-
tions like three-dimensional effects [14] or inhomogeneity
in the Quid [15] (presence of a bubble, a thread, etc.) seem
rather well understood. For this geometry, time-
dependent situations which occur at very low surface ten-
sion (or large pushing velocity) form the only remaining
challenge [1,11,16]. Moreover, the experiment in a
wedge and the associated DLA simulations indicate some
continuity of the physical results, at least for values of the
angle not too large. As an example, at low angles, the
shape of the experimentally selected finger is not very
different from the Saffman-Taylor solution with the same
A, parameter once modified by the following conformal
map:

z= ln(z, ) .=2
0

(2.6)

In the following we will call the infinite strip the II plane
and H& the physical plane. Moreover, there exist a con-
tinuum set of self-similar solutions [12] in the absence of
surface tension parametrized by the relative width
which varies from zero to one, at least for —~ ~ 0o + m/2.
Among this double-continuum set of solutions (indexed
by both A, and Hp) the steady-state patterns of the linear
geometry are no more than the restriction for 0o=0. Fi-

vergent flow regime. The experiment [1] shows regular
self-similar patterns only after some times which can be
chosen as our time origin. With this choice, the continui-
ty equation [Eq. (2.3)] is time independent, but the La-
place law [Eq. (2.4)] is time dependent so we deduce that
adding capillary effects breaks down this class of dynami-
cal self-similar solutions. If one wants to keep the self-
similarity which greatly simplifies the analysis of this in-
stability, one must imagine a time-dependent surface ten-
sion which of course does not exist. Anyway, if T/A (t)
is a slowly varying function, it is reasonable to admit, as
in Refs. [1], [9], and [10], that the dynamical pattern is
given by a self-similar solution selected by a slowly de-
creasing surface tension parameter. We will explain some
dynamical aspects of the experiment in the last section by
assuming this hypothesis, reasonable at long times. As
noticed in [10], another way to maintain rigorously self-
similarity is to realize an experiment such that

A (r)A'(t)=+I so /I (r)=(1+3r)'/

d8i (jP dl i 1 (jP
n, V,P= r, — e(m. 8)—

s& rr si r

with ds, =(dr i+r,d8, )'/ and e(x) the sign of x. Since
the polar coordinates are simply related to z via Eq. (2.6):

20'
0O

=2x = In(ri), y =
0

we deduce without any difficulty the velocity continuity
equation in the II plane:

I ~plri I ~pl
n VP= n V P= exp(8px)cos(6) (2.7)1 1

with 0 the angle in the II plane between the interface
normal and the x axis [see Fig. 1(c)]. As expected, this
quantity is always positive since —m. /2&6&m/2. The
curvature in polar coordinates is given by

2r) r)r( +r)
Q)= e

(r2+p&2)3/2 dg

r' (r") means the first (second) derivative with respect to
the polar angle 0&. These derivatives can be written in
terms of x and y and we get

0,
l

exp( —Opx /2 )
2
g ( 1 + i2)3/2

2

ly'I

( 1 +y ~2)1/2

(2.8)

Henceforth we do not need the intermediate polar
coordinates so y' and y" mean the derivatives with
respect to x. We deduce the Laplace equation in the II
plane:

2~
I ~pl ng— (2.9)

with cr the effective surface tension parameter given by

nally the A, parameter, selected either experimentally or
by the DLA simulations [11],deviates quite linearly in Op

from the well-known 0.5 value, at vanishing surface ten-
sion. All these reasons indicate a continuous behavior:
this is why we have decided [12] to recover the linear
geometry instead of the wedge one, via the conformal
map [Eq. (2.6)].

Figures 1(a) or 1(b) and 1(c) show the corresponding
characteristic points in the two planes: ED means the
upper wall, A indicates either the tail of the convergent
finger or the origin of the petal in the divergent Row re-
gime. The nose 8 of the finger fixed at (1,0) in the IIi
plane becomes our frame origin in the II plane. The
center of the sector is sent either at + oo (for the conver-
gent flow) or —~ otherwise. The two walls ED and
E'D' are parallel and distant from two length units. Our
notation is that of Ref. [7]. In the II plane, the velocity
potential remains Laplacian and the walls plus the center
line BC (C is at infinity) are always stream lines. Anyway
one has to adapt the boundary conditions on the inter-
face: Eqs. (2.3) and (2.4). This adaption is easiest if one
introduces first polar coordinates: r, and 0& in the II&

plane. With these coordinates, the normal gradient is
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III. INTEGRO-DIFFERENTIAL EQUATIONS

FOR THE INTERFACE

with U(t) and R, (t) the instantaneous velocity and posi-
tion of the nose finger in the physical plan'e II,. Note
that this quantity has been measured in Refs. [1] and [9]
during the growth experiment. The rescaling of (t by
~80~ /2 shows that the classical ST instability in the linear
geometry is a particular case corresponding to Op=0 and
to asymptotic long times. If the fIuid Aux decreases with
time as t ', o. is no longer time dependent and is only
related to the finger position at time t=O. In this case, it
reads

b T 1

12p Zp' ~p

A. The Green's-function formulation

We are ready now to establish the integro-differential
equation for the interface since we know the Green's
function of a Laplacian field in an infinite strip. When
the profile is symmetric, it reads

G(M, MO) = —
—,'(xo —x)h (xo —x) — ln(A, )+c.c.1

(3.1)

with A+=1 —exp[ vr~x ——xo)+i'(yo+y)], h (x)=1 for
positive arguments x and h (x)=0 otherwise.

The velocity potential P on the interface satisfies

Now we know the equations in the II plane. As it is
usual now, let us transform the free-boundary problem in
the II plane in a unique equation for the interface suitable
for the numerics.

int = —f dS Gn VP+ fdS(P;„, (t)o—)n VG (3.2)

with dS the profile arclength. Let us transform this equa-
tion into a form more suitable for numerical purposes:

Xp Xp

4o Q()[l —y(xo)] f dx(y —k)exp(8ox)[1+8o(x —xo)]+4of .dx y'Qe — [Z++Z +( Y+ —Y )+c c ]=.0.,
~e

(3.3)

0 p dQg
Z+ = f dx y'exp(80x)ln(A+), Y+ =i4ofdx . e(x —xo)ln(A+) .

dx

We introduced these notations in a previous paper con-
cerning directional solidification at low velocities [17]. In
this case, the Green's-function case is rather close to the
viscous-fingering one: we only have to adapt the bound-
ary conditions. In [17], we have explained extensively
our numerical procedure and our algorithm which here is
appreciably more simple. The numerical algorithm is
iterative and requires a starting function. Most of the
time, we have chosen the ST analytical profile [4]:

=+ 2~ 7TX
y (x)=+ arccos exp

7T 2 1 —A,
(3.4)

eo( 1 —k)/2m
x, =e(8o)s ' I'

() (1 il)/2~—.
3'].

8()(2—A, ) A, 8OXF —'+ 1 3

A, t9p

, —', 1 —s
2~ 2

with

We can modify this choice at large o. or Op because the
iterative scheme diverges. At large o., we use the descrip-
tion given by Dombre and Hakim [18] in terms of the
pendulum function. Ideally, we could also use as a start-
ing shape the exact analytical expression of the family of
solutions at o. =O. In the II&, they have the rather com-
plicated form [12]

A, e(8O)8O
A =2 tan

2

I (1—8 (2 —
A, )/2')I (1+A8 /2m)

I ( —' —8 (2 —k)/2~)I ( —,'+X80/2m)
(3.5)

with F a hypergeometric function and I the gamma func-
tion. s is restricted to [0,1]. Do not forget that this set
has to be transformed following Eq. (2.6) before the nu-
merical integration. In any case, at large values of the
sector angle, numerical problems occur due mainly to the
presence of the exponentials: exp(80x) in the integrand.
Finally, one can determine the asymptotic shape of the
finger in the tail by a careful analysis of Eq. (3.3) (see the
Appendix). The derived algorithm does not need the
asymptotic expansion. This is probably why it is less
efficient for large angles where the exponentials are the
natural cutoff of the integrals.

The Green's-function technique is one way to trans-
form a free-boundary problem in a unique integro-
differentia equation for the profile. Although very com-
plicated and impossible to solve analytically except for
some asymptotic values of parameters, this equation is
really an improvement and allows numerical treatments.
Nevertheless, for Laplacian systems, the conformal map
[4] and the hodograph method, first introduced by
Mclean and Saffman (MS) for the viscous-fingering prob-
lem [7], represent a priori an alternative way to trans-
form a free-boundary problem. In the next section, we
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explain how to apply this method to the viscous fingering
in a wedge.

B. The hodograph method

Since the extension of this method to our case is not
obvious, we recall here the strategy of this method ap-
plied first for the linear geometry and show how it can be
extended to any geometry. Note that this method espe-
cially requires Laplacian fields. For 00=0, once rescaled,
the equation for the normal velocity (2.7) is

Qo =f dS'exp(0ox)cos(6) .
0

(3.11)

We also construct a generalized potential which trans-
forms the finger into a stream line

S is the curvilinear positive coordinate defined on the
finger, from the nose. Moreover, we will impose the con-
dition that Im[H(z)] vanishes on the center line and is a
constant on the wall: Qo/A, . Here, Qo (which is dimen-
sionless) represents half the fluid fiux across the interface.
It is equal to A, for the linear ce11:

n Vg=cos(6)=
Bs

(3.6)
H(z—)

(1—
A, )Qo/A,

(3.12)

Equation (3.6) introduces the stream potential f which is
the imaginary part of a generalized complex potential N.
Both the real (P) and imaginary (g) parts of 4 satisfy the
Laplace equation. We recall the boundary conditions on
the walls and at infinity:

0 when x~ —~ and k(~y~ &1
A,x when x ~ oo and —1 &y (1,

(3.7)
=0 for y =+1 .

Bg

Here, these equations are dimensionless. Mclean and
Saffman [7] have introduced an analytical function whose
imaginary part vanishes on the finger. In the linear
geometry, this function is easily found:

ay*
BS

1 i)~le 8 Re(H) q
(1—A)Qo/1, BS BS (1—A)

(3.13)

As in [7], we have introduced the analytical function:

We recover the same situation as above [Eq. (3.8)] and
we will follow exactly the same strategy: the conformal
map from II to X. The only difference comes from the
absence of physical meaning for the generalized potential
and of a closed-form analytical expression for H (z)
which makes the following algebra a little more compli-
cated.

Let us first write the Laplace equation (2.8) and (2.9) in
terms of 4*.

4—z
1 —

A,
(3.8) d4* q exp[i (6+m /2) ] .

X=s +it =exp[(Po —4*)m.] . (3.9)

Po is the potential at the nose. Since the unknown finger
has been transformed into the stream line g' =0, it is lo-
cated on the segment s E [0,1]. The center line, which is
also a stream line, occupies half of the line 1 & s & ~, and
the upper wall (g*=—1) occupies the negative s axis—~ &s (0. All the remaining treatment is a rnatter of
algebra, the keypoint being the localization of the un-
known interface in the II plane on a segment of the real
axis in the X plane. The extension of the MS method to
arbitrary geometry seems to present serious difticulties
due to the continuity equation [Eq. (2.7)]. This is only
true in appearance. Let us construct an analytical func-
tion of z, H(z), whose imaginary part on the unknown
finger is given by

Im[H(z)] = f dS'exp(8ox)cos(6)
0

=f dS'exp(8ox) (3.10)
0

Note that the center line BC and the finger are stream
lines (g'=0) and, because of the normalization, so are
the walls y =+1 with g'=+1. @*has an obvious physi-
cal meaning: it is the velocity potential in the frame of
the finger but, for the following, its main interest is to
transform the finger into a stream line. The MS method
then consists of eliminating the walls by transforming
half of the infinite strip in an upper-half X space. X is
given by

In the linear geometry, it represents the complex fluid
velocity. We calculate Re(H) using the Cauchy integral
theorem, taking advantage of the fact that Im[H(s)—(Qo/A, )h ( —s)] vanishes for every real s value outside
[0,1]. We deduce, without any difficulty, that

8 Re(H) Qo

Bs A, m's

exp( Oox )cos( 6 )
P Gt

m's o q (t —s)
(3.14)

since dS = —ds ( 1 1,) /n. qs. P —denotes the principal
value of the integral. Now, we define r=6 —m/2 in or-
der to use the same notations as [7] and we derive from
the Laplace equation the integro-differential equation of
this free-boundary problem:

OOX
scqs exp

a

—
q

1 —A,

a~ 0
qs + (1—

A )sin(r) —
qBs 2&

q i exp( Oox )slil(1 )
dt

m Qo/A, o q (t —s)
(3.1S)

ln(q) = ——f dt
s 1 r(t)

o t(t —s)
(3.16)

with «=4m 0./(1 —A, ) Qo/A. and the following boundary
conditions: r(0)=0, r(1)= —m. /2, q(0)=1, and q(1)=0.

This equation relates three unknown functions: q, ~,
and x. We need two other equations which have already
been given in [7]. Since q exp[ i (r—n. )] is an analytical—
function of z, the Cauchy integral equation relates ln(q)
and ~:
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Here also we use the fact that r(s) vanishes everywhere
on the real s axis, except for s E [0,1]. The other relation
simply indicates that z is a function of any analytical
function so of N*.

1.0

0.8—

(3.17)

The reader can check that we recover the MS equations
for 00=0. In this case, the set is reduced to two coupled
equations. In the radial geometry, one has to solve three
coupled equations: one which is integro-differential plus
two integral equations, so the algorithm is a little more
complicated. Nevertheless, the code built on this method
remains more effective than the Green's function. Al-
though, with the hodograph method, for ~=0, we
succeed in finding analytical solutions [12], we do not
give here the analytical expression for q and ~, which are
much too complicated and not necessary for the follow-
ing.

0.6
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0.2—

0
-360

I

-260
I

-160
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-60
I I

40 140
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IV. THE NUMERICAL RESULTS COMPARED
TO THE EXPERIMENT

FIG. 2. Domain of existence of self-similar profiles. Crosses
indicate numerical verifications.

A. Numerical results without surface tension

It does not seem necessary to come back to the deriva-
tion of the analytical solutions [Eq. (3.5)] which are the
subject of a separate publication [12]. Let us recall that
this set of continuous solutions [Eq. (3.5)] both in A, and
00 have been found with the hodograph method. The
analytical shapes (Fig. 1 displays some examples) have
been compared to the numerical one, obtained with the
two codes. Note that only the Green's-function code can
give a complete independent proof since it rests on a
different method. A more precise test is the study of the
definition range since this treatment reveals a lower
bound for A, =2—m. /Oo for divergent fiow and 0 )90'

0
and an upper bound for convergent fIIow and 00( 180:
A, = —~/Oo. These restrictions are derived mathematical-
ly from Eq. (3.5) (the I functions cannot have a negative
argument) but another class of solutions forgotten in [12]
can appear. So it seems important to study these limits.
With the Green's-function code, one way to get solutions
in the forbidden ranges consists in relaxing the condition
of vanishing first derivative at the tip, in the hodograph
code in relaxing r= —m. /2 at the tip. Figure 2 shows that
the verification of these bounds was possible only for a
few sector angles since these limits are not always easy to
reach numerically. The reader may wonder about the
p ysical significance of these restrictions for the selec-h
tion. In fact we will show that the selected k at low sow sur-
ace tension is much lower than the upper bound for con-

vergent Aow and much larger than the lower bound for
the divergent Aow, so these limits will not perturb the

ha
se ection by surface tension. One can wonder too h t

appens for sector angle greater than 180 in divergent
flow. The experiment, for example, Refs. [1] and [2],
gives the answer by showing that the pattern splits into
several fingers in order to give an effective wedge angle
much smaller than the physical one.

B. Numerical results at low surface tension

1. The stable convergent jhow regime

0.9

0.8—

0.7—

0.6—

1 a ~

OA I

0.001
I

0.002 0.003

FIG. 3. Three computed eigenvalues, kI, A,2, A, 3, vs the
effective surface tension parameter cr: 0 for 0 = —20' 4 foro

0O =0'.

The convergent Aow spectrum appears rather classical
(see Fig. 3). For a given sector angle 0O= —20, the
different eigenvalues k„ increase monotonously with the
surface tension o.. When compared to the linear case, it
seems that only the first eigenvalue is afFected by the
geometry. It is shifted from A, ;„=0.5 (Ho=0) to

;„=0.42 ( Oo = —20'), values obtained for arbitrary
small o The e. igenvalues A, „(n ) 1) corresponding to un-
stable fingers seem less modified (see Fig. 3), a result we
have noticed before for the linear case with an anisotrop-
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ic surface tension. Nevertheless, it is likely that the
different eigenvalues X„split from a common A, ;„value
which is 00 dependent. The first eigenvalue A,

&

(8~= —20 ) behaves unambiguously like v ~ [given by
Eq. (3.15)], as A, I (8o=0') the well-known scaling of the
linear geometry [7].

The comparison with the experimental result is very
satisfactory. Le)t us focus first on the evolution of A, ;„
with the sector angle. At fixed surface tension o. =0.001,
the A, spectrum, as a function of 00, decreases slowly
when ~8o~ increases [see Fig. 4(a)]. The width A(8o) at
small o is "quasilinear" in 8o for small angles [Fig. 4(b)],
the approximate slope is of order 0.003/deg, a value close

to the experimental one 0.0032/deg (crosses in Figs. 4(a)
and 4(b) and Ref. [1]); the averaged DLA gives
0.0034/deg. The fit is better when the sector angle is not
too large in the convergent Row case. This comes from
the difficulty in obtaining centered fingers when the
wedge is large [19]. Numerically, at large angles, the be-
havior departs from linearity, a result not observed exper-
imentally [1,11]. The absence of singularity in the spec-
trum [Figs. 4(a) and 4(b), for negative 8o values] and the
low selected values A, explains why the experimental
finger seems more stable in this geometry. If one assumes
the stability analysis of the Saffman-Taylor finger [8] to
be also valid for the viscous fingering in a wedge, one im-
agines that only the first level is stable. This is consistent
with the fact that the levels n=1,2,3 are further apart
from each other so that noise does not induce a jump
from the stable level to the unstable ones. For a given in-
termediate value of the sector 00= —23', the agreement
between the calculated first eigenvalue A,

&
and the experi-

ment is rather good if one examines Fig. 5. A very slight
discrepancy remains at small o. values. Figure 5 shows
that the only eigenvalue relevant for experimental con-
siderations is the first one as for the linear geometry.
Note that the experimentalists have made a rather
difficult measurement of the instantaneous values of the
parameter o. (called B in their paper). This measurement
is rather uneasy at low o. which corresponds to fast
fingers.
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The most amazing numerical result is the presence of a
loop at fixed effective surface tension parameter o. in the
graph A, =f (8o), for divergent flow as shown in Fig. 4(a).
This loop is characteristic of the divergent How regime
(8o) 0), since it does not exist in the convergent flow re-
gime [Fig. 4(a), 8o(0] and in the traditional linear
geometry (8o=0). It means that, at low and fixed surface
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gle for convergent and divergent Row, at fixed effective surface
tension parameter o.=0.001. Crosses ( X ) indicate experimental
measurement [1].{b) Quasilinear behavior of the first eigenvalue

k& vs the wedge angle 0O for various fixed surface tension param-
eters o.. o =0.0004; R, o =0.002; , o =0.01;
o.=0.02. Crosses ( X ) are experimental measurements at
o.=0.002 [10].
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FIG. 5. Comparison between predicted and measured rela-
tive width A, vs the capillary "experimental" parameter 1/o. for
go= —23':,numerical values; X, experimental results [1].
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tension, when the sector an leang e becomes too large, two
eve s isappear: the first and second ones. As di

is loop occurs at low o. and seems to disa pp
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possible. At very low surface tension, the numerical
values are very sensitive to the grid, which also acts like
an anisotropy in the same way as in the experiment. So
the calculated A, values in this regime are lower than the
real ones. In good cases, it has been possible to reach o.

values of order 0.0003 and 0.0004 with the hodograph
code and 150 mesh points but this is really our ultimate
limit. Within this context, the reader can imagine the
difficulty in obtaining numerically the vicinity of the
loops for higher eigenvalues than A, , 2. In any case, the
two codes give the same results and offer strong evidence
for the existence of these loops.

Experimentally, it had also been observed [1] that the
finger lost its stability at a limiting value of o., increasing
with Oo. If one assumes that only the first level is stable,
this stable solution disappears at the loop, for o. =o., 2.
So we can imagine the following scenario for the experi-
mental dynamics where the finger grows at constant ve-
locity. As time passes, the effective surface tension o(t)
decreases because the channel width increases. The ob-
served petal finger shows a relative width A,(t), which
slightly decreases following the stable branch A, &, as
shown in Fig. 7 for Oo =20 ~ When its shape has a A, very
close to A. , 2(80), it becomes unstable and tends to split
into two petal fingers. Afterward, sometimes, it is
characterized by an effective sector angle, the value of
which is half the experimental one. For this half sector
value, the petal finger recovers stability: as the angle is
smaller, its new characteristic o. is larger. Furthermore,
at this angle the instability threshold o i 2 is smaller. In
other terms, tip-splitting reduces the radius of curvature
at the nose, so increases the stabilizing effect of the capil-
larity. This scenario can be used to interpret the first
tip-splitting events in a radial growth experiment. Let us
recall that, at the first stages of growth, radial fingering
patterns [2] show independent fingers that seem to grow
in their own virtual sector (for a detailed discussion be-
tween sector constrained growth and unconstrained radi-
al growth see [1]). The number of independent fingers
cannot be exactly predicted. It seems to depend on the
initial growth conditions and varies from 5 to 7. Tip-
splitting of the fingers occurs as soon as the tip radius is
too large, so many times in the growth process, giving
rise to a ramified structure. Rauseo, Barnes, and Maher
[2] realized the first quantitative and statistical analysis of
this structure, in order to characterize their patterns. It
is possible at long times after many tip-splitting events.
In connection with this, Sarkar [3] recently has imagined
a cascade of successive tip-splitting instabilities in radial
growth, as soon as the tip finger has a width related to its
velocity by Eq. (1) of Ref. [3]:

tion, we deduce scaling laws for the average geometry
after n bifurcations. Our numerical study confirms this
starting point: that is, existence of this constant q but it
shows also that it cannot be taken as a constant during
the cascade process. First, it depends on the fictitious
sector value which is reduced after any bifurcation. A
WKB treatment [19] valid for small values of 8O reveals
that o,2(8o) 8O . This prediction is approximately
verified for arbitrary Oo values less than 70 providing
that one changes o,2(8o) in a,p(8O) following Eq. (3.15)
since the proportionality between o,2(8O) and a&p(8p),
valid at low Oo, is lost when the sector angle increases.
Second, the finger after a cascade is no longer centered in
the fictitious sector. Finally, the self-similarity is perhaps
much more questionable after tip-splitting. Maybe these
restrictions are only details in the Sarkar model which
mainly focuses on statistical aspects of the radial
geometry after a large number of bifurcations by tip-
splitting.

3. Comparison with the experiment

This scenario for the explanation of the tip-splitting in-
stability can be compared to the experimental results. In
Fig. 9, we have plotted numerical and experimental re-
sults of Ref. [1],for 8O =23 . The agreement between pre-
dicted A,

&
and measured A, values is excellent when o. , is

greater than o. , 2. So, as time passes, the o. parameter de-
creases and the time-dependent relative width of the
finger A, (t) follows closely the first level, which is really
the relevant one for the experiment. On the other hand,
the global evolution of the instability threshold observed
experimentally is well understood by the existence of
loops and the finger appears to destabilize at o.

& 2. As the
angle 00 increases so does the threshold. However, quan-
titatively there is a slight discrepancy, for instance, when
cr (or B) becomes smaller than o, 2, Ref. [1]and Fig. 9 in-
dicate a value which cannot be reproduced numerically.
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Clearly, this q value is proportional to our cr, 2(8O). So

as soon as the tip radius reaches the above value, it splits
in three equal parts, and the extreme parts of the pattern
instantaneously grow while the middle one is inhibited.
When the extreme parts show the same behavior as given
in Eq. (4.1), they split again and this scheme happens re-
peatedly. Neglecting what happens just after a bifurca-
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FIG. 9. Comparison between predicted and measured rela-
tive width A, vs the capillary "experimental" parameter 1/o. for80=23':,numerical values; X, experimental results [1].
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C. Numerical results for larger cr
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When o. increases and oversteps the looping domain:
cr )0.0005, the k spectrum as a function of o. has the usu-
al behavior whatever 8o (Fig. 10), except the value of the
upper bound cr,„(8o) which seems to decrease exponen-
tially when 8o increases (Fig. 11) [20]. This upper bound,
first predicted by Kadanoff, Shraiman, and Pomeau [21]
has been determined analytically [18] in the linear
geometry: o,„(8o)=0.35. For this value of surface ten-
sion, the finger completely fills the cell so A, = 1. It corre-
sponds to very strong capillary effects. In the hodograph
method, the capillary parameter ~ goes to infinity. This
explains why, at high surface tension, the Careen's-
function code is more eKcient than the hodograph one,
since in the first case, the capillary parameter o. reaches a
finite value instead of an infinite value ~ for the hodo-

F(IG. 10. The selected relative width A, vs o. for various an-

gles. Note that for divergent Aow, the curves begin for
o-&0.0005 (after the loops). A, Op=90 L5, Op=60' +,
Oo= 32 i + Op=0; 0, Op= 32; 0, Op= 60; &, O = 90'.

The experimentalist's interpretation [19] for this
discrepancy is the following. The experiments are per-
formed with a constantly decreasing o.. It is difficult to
detect the first deformation of the finger tip so it is only
for a finite disturbance that the instability is noted, as it is
seen too late it corresponds to a too small o.. The same
discrepancy is seen for several angles in Table I of Ref.
[1] and Fig. 6. It is also possible that the dynamics at
high growth rate is much more complicated than our
"adiabatic model. " In any case, we will keep in mind the
good agreement for o )cr, 2(8o) as shown also by Figs. 4
and 9.
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graph method. For larger values of the surface tension
than o,„(00) there are no finger or petal shapes. The
numerics indicates an exponentially decreasing behavior
of a,„(8o) (Fig. 11):

cr,„=O.35 exp( —a 80) with a =0.027/deg (4.2)

but an analytical treatment, perhaps following [18],
remains to be done. The common behavior shown by
Fig. 10 for arbitrary 0~ values between —90 &I9p&90
suggests a new plot: A, =g [o./a, „(80)]. Clearly, at very
low surface tension, what one can call the WKB range of
o. parameter, one cannot expect a universal behavior and
a superposition of the different plots for any Op. first be-
cause of the dependence of A, ;„(8o) in terms of 8O, second
because of the loop observed for divergent How. But as
soon as one oversteps this WKB regime, when
o/o, „(80) increases, all the curves nicely superimpose
as shown by Figs. 12(a) and 12(b). The agreement seems
better for convergent How than for divergent Aow, but
this is due to some numerical inaccuracy especially for
Op=90. We hope that it will encourage a theoretical
treatment and also new experiments. If one takes into ac-
count (4.2), one notices that the upper bound for cr has an
especially low value for Op) 90. Moreover cr must be
greater than o. ,z in order to select observable patterns. A
good estimate for o. ,z is about 0.005,0.006 as soon as
Op) 90. Noticing that o-,z must be less than o. „,we
conclude that this instability with a unique petal cannot
be observed for Op& 150, a value in agreement with the
experimental observation and the DLA finding [11]
Op= 144 .

V. CONCLUSION

This paper is devoted to the selection of self-similar
fingers in radial growth over the largest possible domain
of surface tension o. and wedge angle values. It shows
that for the WKB range of cr values (small values) the
selection is specific of any angle but, once this range over-
stepped, a scaling and universal selection relationship is
revealed numerically. In the WKB range of o. values and
for divergent Aow, the numerics indicate a lower o. bound
for the observation of a unique self-similar petal finger. It
is the tip-splitting threshold. In convergent fl.ow, it does
not occur. At arbitrary low surface tension, very narrow
fingers are selected with a relative width which decreases
as the wedge angle increases, a result which can be extra-
polated up to the complete open geometry: Op= —360'.

Note added. After the completion of this work I re-
ceived a copy of unpublished work from Yuhai Tu, who
explains analytically the results obtained at low surface
tension.
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APPENDIX

1. Asymptotic analysis of the Green's-function equation

As is often the case, we must involve two different situ-
ations: with or without surface tension.

y(x)=A, —Pexp(px) . (Al)

To estimate the asymptotic limit of each integral, we
will assume that, for large ~xo ~, the integral is only dom-
inated by the close vicinity of xp so in the integrals, we
replace the profile function y(x) approximately by its
asymptotic expansion (Al). The first integral in (3.3)
is easily estimated and behaves like [Pp/
(p+0o) ]exp[(p+80)x]. The estimation of Z+ is a little
more subtle and we refer to Appendix B of [17]:

Z+ +Z =~P p —cot(p+ 8O)P+ Op P+ Op

cos[(1—2A, )(p+ 80) ]

sin(p+ 0O)

Xexp(p, +80) .

We deduce without difficulty that

2(1 —
A, )

(A2)

b. Asymptotic tails in presence of capillary sects
For convergent fiow (0O (0), the curvature in the tail is

subdominant compared to each integral involved above,
so the asymptotic tail, as given by (A2), remains valid.
On the contrary, for divergent How, integrals involving
the curvature are dominant and we need the behavior of
Y+ (Appendix B of [17]):

a. Asymptotic behavior at vanishing surface tension

Let us assume that in the finger tails, when ~x~ is large,
the profile function in the II plane behaves like

sin[(2A, —1)(p—8O/2) ]Re( Y+ —Y ) = —n.4o p(p —00/2)P 2(A, —1)+ . —1 exp(p —00/2) .
sin [p —8o/2 ]
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Once balanced with the first curvature term in Eq. (3.3),
we get

Oop—
2(1 —A, ) 2

+ (A3)

This result is valid for any Oo) 0.

2. Asymptotic behavior of the hodograph method functions

a. End-point singularity when re=0

We seek a solution about s =0 of the form

r(s)=a, s +a2s + .

q(s)=1+
(1—

A, )x (s) = 1n(s),

(1—A, ) sy(s)=A, —a,

The study of the end-point singularities for r(s) and
q(s) is absolutely crucial for the derived algorithm, as it
has been claimed by Mclean and Saffman. Each comput-
ed integral occurring in the hodograph method requires
us to take into account these expansions very carefully to
give accurate numerical results and to make the algo-
rithm convergent. Anyway, the asymptotic treatment is
easier with this formulation compared to the previous
one.

b. End p-oint singularity with surface tension

The curvature term in Eq. (3.15) occurs in the asymp-
totic expansion only for Oo)0. For negative value or
convergent flow, the above result (A3) without surface
tension has to be maintained. For Oo) 0, the curvature
term is greater than sin[r(s)] in the tail of the finger. To
balance its contribution, one has to take into account the
Hilbert integral in Eq. (3.15). Let us recall the asymptot-
ic expansion of such a Hilbert transform [7]:

x 1 s
dx =—+ —mrs cot(~5)+, s~0 .

o x —s 6 5—1

(A4)

This result is valid only for positive 6 values less than 1.
In this case, the greater term is s which is equal to
5=a+m.8o/(1 —

A, ). Clearly such a contribution cannot
be balanced by s with 5' =u —m 8o/2(1 —

A, ). So 5 is
greater than 1. From Eq. (A4), we get for 1&5&2

f x 1 s s
dx = + +

o x —s 5 6 —1 6—2

—mrs cot[7r(5 —1)]+ . , s~O .

The major vanishing contribution is given by the term
linear in s which implies 5'=1. So, in the presence of
capillary effects and for divergent Aow, the asymptotic
expansion for r(s) is

The previous coefficient p is equal to )tt =am'/(1 —A. ) (Al).
It is not useful here to make an asymptotic analysis of
Eq. (3.15) since we know its exact solution, when surface
tension is neglected:

and for y

~0o

2(1—1, )

S
exp(8ox)sin(r) =

1 —s

1/2 op= +
2

and we deduce a= —,
' —8&(1—

A, )/rr and p=m/2(1 —k)
—

Oo, which is in agreement with the result given by the
Careen's-function technique (A2).

We recover the same result as that obtained previously
with the Green's-function technique but we note that the
L9o=0 value is singular since we do not recover the MS
expansion [7].
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