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Green-Kubo relations for weak vector processes in strongly shearing fluids
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By extending a recent calculation of self-diff'usion in shearing systems [Cutnmings et al. , J. Chem.
Phys. 94, 2149 (1991)]we derive a Green-Kubo formula for the thermal-conductivity tensor in fiuids sub-
ject to planar Couette Bow. These expressions are valid for weak heat flows in strongly shearing Auids.

I. INTRODUCTION
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The lubrication of an elastohydrodynamic contact by a
fluid involves the combined processes of shear flow and
thermal conduction [1]. If both processes are weak,
Curie's principle states that there is no effect on the
viscosity of the fluid by the presence of the heat flow and
conversely, no effect on the thermal conductivity by the
shearing process [2]. Industrial lubricants are often sub-
ject to much more extreme conditions. Shear rates are
often so large that nonlinear shear thinning of the fluid
occurs [1]. Under such conditions the assumption of
linearity implicit in Curie's principle will lead to errors.
The macroscopic equation for heat flow in the presence
of a flow field u(r) =iyy is
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where r, =
~ r; ~

=
~
r —r, ~. We define the instantaneous

contribution of particle i to the internal energy as

In these equations r; is the laboratory position of particle
i, m the particle mass, and F; the interatomic force on
particle i due to the other particles. At low Reynolds
number the streaming velocity at the position of particle
i, is iyy;. Thus p; Im is the peculiar velocity of particle i
The ap, term in (3b) represents the thermostat [4].

At low Reynolds number therefore, the instantaneous
internal energy of the system Ho is [4]

where e(r, t) is the internal energy per unit volume, P„ is
the shear stress, and A, z- is the thermal diffusivity tensor,
defined by the relation

A, =pcU A, y (2)

In this equation p is the mass density, A, the thermal-
conductivity tensor, and c, the constant volume specific
heat per unit mass. In Eq. (2), we define the specific heat
in terms of the isochoric derivative of the internal energy
of the shearing system with respect to the thermodynam-
ic temperature of an equilibrium system with the same
internal energy and density as the shearing system.

In this paper we will derive a fluctuation expression for
the thermal-conductivity tensor A, valid for strongly
shearing fluids subject to weak energy (temperature) gra-
dients. The method we use to derive this expression is
also applicable to self-diffusion in shearing fluids and
yields results which generalize those we recently derived
[3] for self-diff'usion using a quite difFerent method.

II.MICROSCOPIC ENERGY
CONTINUITY EQUATIONS

The thermostatted equations of motion for a fluid un-
der shear are the Sllod equations (so-named because of
their close relationship to the Dolls tensor algorithm) [4]

e, (t)= + —,
' gP(r;, ) .

2m

As we shall see, it is convenient to define the Lagrang-
ian position of a particle as the integral of its peculiar ve-
locity,

& p;(s)
q, (t)=r, (0)+I ds .

0 I
Actually the laboratory positions of all the particles move
to their convected positions r, (t)=r;(0)+iyty, (0). If all
the particles move at the local streaming velocity, iyy;,
all the pi will be zero for all time and thus
q;(t)=q;(0)=r, (0). Therefore the Lagrangian energy
density is

e (q, t)= ge, (t) 5 (q, (t) —q) .

The time derivative of (7) will give the streaming hydro-
dynamic derivative De/Dt, We find it convenient to
work with the Fourier transform of the Lagrangian ener-
gy density,

e(k, t) =pe, (t)e

=pe, (t)+ik- gq, (t)e;(t)+O(k ) .
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gq;e;=Jq V —y gq;P„(i)—a+ q;
d . PE.
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where P„(i) is the instantaneous contribution of particle
i to the shear stress, P,«(t) = g, «P„«(i)/V,

Pixy'yiP (i)= —
—,
' gy; F;

m
(10)

and where F;. is the x component of the force oni due to
particle j. Jq(t) is the instantaneous heat fiux vector,

We will choose our thermostat such that, the energy
ge,.(t) is independent of time. We can then ignore the

1

zero wave-vector component in (8).
It is now straightforward to show from our equations

of motion (3) that

c(k, t )—:(e(k, t )e( —k, O) ) (17)

where ( ) indicates an average over the thermostat-
ted, shearing steady state, we find, as at equilibrium [4]

c (k, O)

ico+ k.A.T(k, co ) -k
(18)

Defining

The derivation of a Green-Kubo-like formula for the
thermal diffusivity now proceeds in a very similar way to
the equilibrium case [4].

We multiply both sides of (15) by e ( —k, O) and take a
canonical average over the initial equilibrium state used
at t = —~, to generate the shearing nonequilibrium
steady state at t ~ 0. Defining the steady-state energy au-
tocorrelation function as

Jq(t)V= g + ~q; g F;.(r; ) P(k, t )—:— c(k, t)
dt2

(19)

We note that this involves the peculiar velocity p; /m, the
Lagrangian coordinate q;, and in both e; and F;, the lab-
oratory coordinates of the particles, r;, r .

If we choose a as

yP„,(t) V—
a(t) =

gp,'/m
l

we see that the internal energy is a constant of the
motion. Furthermore, since

(12)

d
gq, e, =J,(t) V Q(t)yP„—(t) V

1

2

—Q(t)a(t) g +O(X'")
m

(13)

where Q( t) =g; m q; /gm, the thermostat will, in the
thermodynamic limit, cancel the term involving
Q(t)yP„«(t)V. This is because in the thermodynamic
limit Q(t)= g,.mq;/g, m=g, .q;P (i)l g,. P„(i)
=g,. q;p; /g, .p;. We therefore obtain, to leading order
in k,

P(k, t)=kk:(J (k, t)J ( —k, O)) (20)

Substituting (19) and (20) into (18) and eliminating c (k, t),

k-AT(k, co)-k=
c(k, O) —P(k, co)/ico

The term p(k, co) is proportional to k . Since we are us-

ing a canonical average over initial states, together with
constant energy dynamics,

(21)

pk, T2
c(k, O)=

V
Cp. (22)

Substituting (22) into (21) we find, using (2), that in the
zero wave-vector limit,

lim limA, (k, co)=A.=
2 f dt(Jq(t)Jq(0))« .

co~0 k —+0
(23)

Thus the thermal conductivity of a thermostatted, shear-
ing steady state is related to fluctuations in steady-state
heat Aux.

and using the stationarity of nonequilibrium steady-state
averages together with (16), one obtains [4] to leading or-
der in k,

e(k, t)=ik J (t)V+O(k ) . (14) III. DISCUSSION

We assume that the frequency ~ and wave vector k,
dependent macroscopic constitutive relation

Jq(k, co) = AT—(k.co) i,ke (k, co) (15)

can be applied to the average relaxation of steady-state
fluctuations in the microscopic heat Aux and energy den-
sity. We are therefore assuming that the thermal Quctua-
tions are weak and a linear constitutive relation such as
(15) can be applied. We note that by symmetry, even
large strain rates cannot generate a Aow of heat although
they do modify the thermal conductivity. Substituting
(15) into (14) gives to leading order in k,

icoe(k, co)—e(k, O)= —k A, T(k, co) ke(k, co) . (16)

=V-D-VG, (24)

where G (r, t) is the number density of a tracer particle at
a point r and time t.

The Fourier transform of the Lagrangian tracer densi-
ty G(k, t)

G(k, t) —g e (25)

Exactly the same arguments can be used to describe an
expression for the self-diffusion tensor D in Quids subject
to shear. The self-diffusion tensor is defined by

BG DG
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p;(t) p;(0)
l

0= dt
0 Nl Pl

(26)

This expression was first derived by Cummings et al. [3]
using quite diFerent methods. In fact our previous
derivation [3] was limited, for technical reasons, to the

is analogous to (8). Following the same steps, it is
straightforward to derive a Green-Kubo formula for D of
the form

case where D is diagonal. We conjectured the above gen-
eralization for the case where the diftusion tensor is of ar-
bitrary symmetry. Our present derivation is therefore
more general than our earlier work.
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