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Probabilities for temperature differences in Rayleigh-Benard convection
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This paper reports the behavior of the probability density functions (PDF's) of temperature
differences, between different times, but measured at the same point, which is at the center of a helium-

gas cell. One objective of this work is to study how these PDF s evolve as the separation time increases.
Data from seven Rayleigh numbers (Ra), which range from 10 to 10" and are above what is called the
soft-to-hard turbulence transition, are studied. These PDF's are symmetric and non-Gaussian, and are

fitted approximately by a stretched-exponential form e '" . As the separation time ~ increases, the pa-
rameter l3 starts from 0.51+0.05 (for the smallest separation), remains approximately constant for r ~ r„
then increases, and finally at ~= ~2, it saturates to 1.7+0. 1 (1.6+0. 1 for the two largest Ra studied). For
Ra & 7.3 X 10'o, l3 increases as r —0 ', while for Ra ~ 7.3 X 10', the increase has to be described by two
powers: for lower r, l3 first increases slower as r "+—

, then for r~ ~i„ it increases as r +. At-—
tempts are made to understand the origin of these time scales and to relate them to time scales previous-

ly identified in the problem.

Rayleigh-Benard convection can be used for studying
turbulence in Auid mechanics, which has long been a
challenge to understand. By using low-temperature heli-
um gas [1], a wide range of Rayleigh numbers can be
covered. A series of experiments, directed by Libchaber
[2—4] was conducted to study the transition to turbulence
[2] and the properties of various statistical quantities; for
example, the Nusselt number, the histogram of local tem-
perature fluctuations, and the mean velocity field, in the
difFerent turbulent states [3,4]. These experimental stud-
ies established that there exists a transition between the
soft and hard turbulence, which occurs at Ra —10 .
More recently, the frequency power spectra of local tem-
perature Auctuations in a bigger experimental cell have
also been studied [5]. A change in the behavior of the
power spectra was found to occur at Ra-10", indicating
a new regime within the hard turbulence. We have pro-
posed the wrinkling or roughening of isothermal surfaces
as a unified mechanism for aH these changes or transi-
tions [6]. In this paper, I shall present results on the
probability density functions (PDF's) of temperature
differences, between different times but at the same point,
in the hard turbulence regime of this new cell. These
PDF's and the power spectra are not unrelated. On the
one hand, the structure function of temperature
differences, defined as

interesting to understand how the PDF evolves as the
separation time increases.

Previous workers [7—11] have devoted considerable
efforts to the study of the small-scale structure of tur-
bulence with a view to understanding intermittency [12].
For instance, high-order moments of the PDF (equivalent
to high-order structure functions) of diIFerences of veloci-
ty [9,10] and passive scalars, e.g. , temperature [11],were
measured. The intermittency parameter p was then
determined and compared with predictions by the log
normal [13,14] and the P models [15]. However, it is
found in this present case, the second- and higher-order
structure functions do not scale with the separation time
r (except for the initial region when the separation is
small enough for the difference to be approximated by the
derivative).

The details of the experiment studied here have been
described in previous reports [2—4]. The experimental
system is a cylindrical cell, of 20 cm diameter and 40 cm
height, filled with helium gas at about 5 K. The cell is
heated from below by a dc power input and the tempera-
ture of the top plate is regulated. Local temperature Auc-
tuations at various points inside the cell are measured by
arsenic-doped silicon bolometers of about 0.2 mm in size.
The control parameter in this experiment is the Rayleigh
number which is defined as

S(~)= ( [T(t +~)—T(t) ]')
=2[( [T(t)]')—( T(t)T(t+~) )I,

is the second moment of the PDF's. On the other hand,
the frequency power spectrum is the Fourier transform of
the correlation function, ( T(t)T(t +r) ). Thus,
specifically, the power spectrum gives us information
about how the second moments change as the separation
time changes. The PDF's should therefore contain more
information than the power spectra. In particular, it is
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where a is the volume expansion coefBcient, g is the ac-
celeration due to gravity, 6 is the measured temperature
difference between the bottom and top of the cell, L is the
height of the cell, and v and K are, respectively, the kine-
matic viscosity and the thermal diffusivity of the helium
gas. Using ~ and L„we can construct a diffusive time
scale L /tc [which is similar to the viscous time scale
I. /v, as the Prandtl number ( =v/a. ) is of order 1 in this
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experiment]. For the rest of the paper, we shall use this
time scale, L /hr, and its inverse to normalize times and
frequencies, respectively.

I shall concentrate on results at the center of the cell,
as the Aow there is believed to be characteristic of free
convection Bow. Results of one Rayleigh number are
used for illustration and the differences for the other Ray-
leigh numbers are pointed out when necessary. The Ray-
leigh number taken is 7.3X10' . A typical time record-
ing of temperature fluctuations is shown in Fig. 1(a). The
data are normalized by the root-mean-square Auctua-
tions, denoted by 5, . The PDF of these normalized fluc-
tuations is shown in Fig. 1(b). [The PDF is not as ex-
ponential as found before in the smaller (aspect-ratio one)
cell [2,4] but it is clearly non-Gaussian. ] We define T, to
be the temperature difference over a time interval ~ that
is 2 times the experimental sampling interval ~o,

T, =T(t+r) T(t) —where r=2"ro .
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FIR. 1. A typical time recording of the temperature Auctua-
tions normalized by the root-mean-squared fIuctuations 6, and
the corresponding PDF, P(x) with x =(T—(T))/A„at the
center of the cell for Ra=7. 3 X 10' . The dotted line is the stan-
dard gaussian distribution.

FICx. 2. Time recordings of the various T, [see Eq. (3)] nor-
malized by (( T, ) )'~ at the same Rayleigh number 7.3 X 10' .
x is T, /((T, ))' with r=2"rc, where rc is the experimental
sampling intervals. (a) n =0, (b) n =6, and (c) n =12. The
dashed lines are the position of +6, .
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The time recordings of T, normalized by their root
2 1/2

oo mean
squares ((T, )), with n =0, 6, and 12, are shown in
Figs. 2(a), 2(b), and 2(c), respectively. For comparisomparison,

, is also shown in these figures (the dotted line). For
n =0, it is more probable to have large temperature
differences relative to the root mean square (but smaller
than b,, ) and the data look quite different from the origi-
nal temperature fluctuations. As n increases, the temper-
ature differences resemble more the original temperature
fluctuations shown in Fig. 1(a).

The PDF's of these temperature differences are corn-
puted from the corresponding histograms (the number of
bins used ranges from 650 to 1000) and are shown in Fig.
3. It has been checked that the PDF for n =12 is like
that for very large n In f. act, for large enough r, T(t+~)
becomes statistically independent of T(t), so we have

f (T,)=—,
' f [P(T)P(T+T,)+P(T —T, )P(T)]dT,

20

10—

0.5—

0.2
10 10 10 10

n

10 10

(4)

b T, ,(7)= t ([T(t+r)—T(&)]')]' '

f T,f (T, )dT, (5)

Thus AT, ,(r) is the square root of the structure func-
tion, which is related to the frequency power spectra, as
mentioned before. The log-log plot of b, T, ,(r) as a

where f (T, ) is the PDF of temperature difference
separated by time r; P ( T) is the PDF of the original tem-
perature fluctuations. One sees that f ( T, ) is always sym-
metric for large enough ~. Another way to check that
the PDF for n = 12 is already asymptotic is to look at the
root mean square of the temperature differences,
b, T,~,(r), which is the square root of the second mo-
ments:

FI~. ~G. 4. Root mean square of the temperature differences
AT, ,(~), as a function of ~ for Ra=7. 3 X 10' . ~ is in units of
L /x. For small ~, AT, , (~) increases linearly in ~. The dotted
lineine is a line of slope one in the log-log plot. The time for
T(t +~) and T(t ) to decorrelate, ~d„, is also shown.

function of ~ is presented in Fig. 4. As ~ increases,
T(t+r) and T(t) decorrelate, with the correlation func-
tion ( T(t)T(t +r) ) becoming ( T ), and b T, ,(r) tend-
ing to 2b, , [see Eq. (1)]. The decorrelation time ~d„can
be estimated from the beginning of the flat region in the
curve. We expect T(t+r) and T(t) to become statisti-
cally independent of each other when ~ is of the order of
~d„and we check that n =12 lies in the Hat region of the
curve in Fig. 4.

Returning to Fig. 3, we notice that the PDF's are
essentially symmetric. For comparison purposes, the
PDF's are normalized such that the second moment is
equal to 1.

n=0
------ Gaussian f x p(x)dx =1, (6)

0
—4

FIG. 3. Probability density functions (PDF's) of the normal-
ized temperature differences for the three cases in Fig. 2. Again
x is T, /((T, })' with v=2"roas defined in Eq. (3). The dotted
line is the standard Gaussian distribution.

where x =T, /((T2))'~2 [p(x)=f (T,)((T ))' ] Note

peak value is larger than that of the Gaussian distribu-
tion, but the difference decreases as ~ increases.

The non-Gaussian shape of PDF's is not unfamiliar.
In fact, P(T) itself is non-Gaussian [2,4] [see Fig. 1(b)].
This has stimulated some recent theoretical works
[16—22]. Measurements made by Gagne [23] on velocity
and temperature differences in high-Reynolds-number
turbulence also revealed similar shapes to the ones ob-
served here. To explain the statistics of these velocity
differences, Castaing, Gagne, and Hopfinger [24] have
developed a model based on the superposition of approxi-
mately Gaussian PDF's whose invariances have log nor-
mal distributions. Several recent numerical simulations
of both shear turbulence [25—27] and convective tur-
bulence [28,29] have also found non-Gaussian PDF's of
velocity and temperature gradients.

One objective of this work is to study how the PDF
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evolves as ~ increases. To this end, we fit the PDF by a
stretched-exponential form [29]

p(x)=p(0)e '~"~ c P&0 (7)

Note that @=2 corresponds to Gaussian distribution and
P= 1 corresponds to exponential distribution, while P ( 1

indicates a flatter intermittent distribution. We also note
that the stretched-exponential form appears to be a very
general form for relaxation phenomena in condensed-
matter physics [30,31].

In order to obtain estimates for the parameters c and P,
p(0) is taken from the data and 1n[ln[p(0)/p(x)]] is plot-
ted versus in!xi. If Eq. (7) is a good representation of the
PDF, a straight line with slope 13 and y intercept inc will

be obtained. If the PDF's are symmetric, plots for x )0
and x &0 should give the same results. It is found that a
reasonably good straight line is obtained for a region near
the tail of the PDF. A least-squares fit to this region
gives estimates for the slope and y intercept. The values
of c and P are obtained by taking the average of these es-
timates from both the x )0 and x &0 curves. Note that
the fitted form obtained this way may not have the
correct normalization, j p(x)dx = 1. With these
values of c and P, the PDF's are compared with Eq. (7).
The comparisons are shown in Fig. 5. We see that, ex-
cept around the peak region, Eq. (7) fits well for the
PDF's in all the three cases. This is different from the
hyperbolic intermittency [p(x)-x for large x] ob-
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FIG. 5. Comparison of the stretched-exponential forms [Eq. (7)] with the PDF's for Ra=7. 3X 10'0. The dotted line is the fitted
form and the solid line is the PDF p(x) and x = T, /(( T2 ) )'~2 and r=2 r . (a) n =0, (b) n =6, and (c) n = 12. The positions of +6,
are shown as dashed lines.
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tained by Schertzer and Lovejoy [32] in atmospheric dy-
namics. For n =0 and 6, the peaks of the PDF's are
more rounded off than the fitted form. The p values ob-
tained in these cases are less than 1 (see Fig. 6), so that
the fitted forms have infinite slopes when approaching
from both sides of the peak. Since the PDF is smooth,
we expect the fit not to work near the peak region.

The evolution of p as a function of ~ is plotted in Fig.
6. When plotted in a log-log graph, the p(r) curve can
reasonably be fitted by four straight lines as shown. That
is, p starts at 0.47+0.01, remains approximately constant
for 7 ii then it increases as ~ ' — . At ~-v.&, the
rate of increase is faster and p increases as r — . Fi-
nally, at ~=~2, it saturates at a value of 1.7+0.1. This
behavior of p is basically the same for Ra ~ 7.3 X 10',
with the average values of the first and second powers
equal to 0. 15+0.03 and 0.27+0.02, respectively. Howev-
er, for Ra=6.0X10 and 4.0X10, the rate of increase is
described by a single power, -~ —,so the time scale

is not present. The average initial value of p is
0.51+0.05. This is consistent with what Gagne [23]
found for PDF's of velocity and temperature differences
for separation lying in the dissipative range. The average
saturated value is 1.7+0. 1 for the five smaller Rayleigh
numbers (with Ra (10' ) and 1.6+0. 1 for the two largest
Ra. The p(r) curves for the seven Rayleigh numbers
studied are plotted in Fig. 7.

In the following, we shall try to understand the shape
of the p(r) curves and the origin of the different time
scales. The saturation region at large v is easily under-
stood:

(8)

.;~&-+4

0.5— +-4--7

10 10 10 10 10 10 10 10 10

FIG. 7. The P(r) curves for Ra=6.0X 10', 4.0X 109,
7.3X10', 6.0X10", 6.7X10', 4. 1X10', and 5.8X10' . Th
curves L and H are for the lowest and highest Ra, respectively.
r is in units of L /v. The biggest errors in P are also shown.

As mentioned before, both f (T, ) and [((T,) ) ]'
[=&S(r)]become independent of r, and so are p(x) and
P, when r is larger than rd„. Thus we have r2-rd„. We
expect the decorrelation time to be of the order of the
turnover time of the large-scale flow. This turnover time
was estimated previously [2,5] as I/co„where co is the
outer frequency scale in the power spectra of the temper-
ature fiuctuations [5], which was found to scale as Ra'
For this new experimental cell, we confirmed this Ra'
dependence, and the prefactor is found to be 0.08, name-
ly,

I

I

I

I

7b

—~ ———E3- ——o

co =0.08Ra (9)

In Fig. 8, we compare ~2, rd„, and I/co„. The agreement
is good; thus we can conclude that ~d„and ~2 essentially
describe the same physics as co .

To understand the flat region for small ~, recall that

T(t+r) —T(t)
[([T(t +r) —T(t)]2) I

'/'

If we assume that T(t) is differentiable, we get

0.5

10 10 10 10

I

I

I

I

10 10

p(x)=p 2, /2 [I+0(r)] .
T'(t)

[ T~( t) ]2 ]
1/2 (10)

Thus for small enough r, p(x) is approximately indepen-
dent of ~ again. One way to estimate this small ~ is to
check when the approximation

T (t +r ) T(t) —rT'(t )—
fails. Recall from Eq. (5),

Flies. 6. Dependence of the parameter P in the stretched-
exponential fit [see Eq. (7)] as a function of the separation time
7 =2 7 0 for Ra =7.3 X 10' . The three time scales ~„~&, and ~2

are indicated. The times are normalized by L /~. The biggest
errors in P are also shown. +O(~') (12)
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FIG. 8. Comparison of the three time scales ~&, ~d„, and
1/co~. The time scale ~~ is obtained from the saturation region
of the /3 curves in Fig. 7, while ~d„ is the decorrelation time es-
timated from the Aat region in the hT, ,(~) curves (see Fig. 4)
and 1/co~ (solid line) is the estimated turnover time of the
large-scale Aow. All the time scales are normalized by L /~.
Errors for every second data point of ~2 are shown.

quency above which dissipation becomes important and
is the analog of the Kolrnogorov length scale. Thus, for
Ra& 10",one gets

1/2
5 3 1

~s ~d=
4 6

(16)4~ 65 cod

For Ra) 10",Eq. (15) no longer holds and the functional
form of P(co) is not known a priori Th.us, there is not a
corresponding well-defined dissipative frequency or time
scale in this regime. We plot ~, [computed using Eq.
(13)],~d (with cod obtained from Ref. [6]), and r, in Fig. 9.
As expected, ~d agrees with ~, for Ra~10". Both of
them are about the same order of magnitude as 7, and
have the same Rayleigh-number dependence for
Ra & 10' . Thus for Ra & 10', r, is just I/cod up to a pre-
factor of order 0.1. However, for Ra~10', ~, deviates
from ~& significantly; in particular, the two time scales
have a different dependence on Ra. This change occurs
at about the same Rayleigh number at which the power
spectrum of temperature Auctuations changes behavior
[5]. In Ref. [6], we suggested that the change in power
spectra is a result of the roughening of the thermal
plumes. Another interesting thing to note is that 7~
scales as a power of Ra:

w) -Ra (17)

If Eq. (11) holds, b, T„,(7.) should increase linearly in ~
for small ~. This is confirmed by the data presented in
Fig. 4. We define ~, to be the time when the piecewise
slope of b, T, ,(w) in the log-log plot equals 0.9. From
Eq. (12), we find

~„-Ra . +— for Ra ~ 10" . (18)

The second exponent, 0.4+0. 1, is consistent with the ex-
ponent obtained for [([T'(t)] ) ]

'~ . In Ref. [6], we

with x =0.73+0.06 and 0.4+0. 1 below and above
Ra-10", respectively. The first exponent agrees with
the result [6] that

(13)

[This definition of r, is quite arbitrary and we expect that
the correction terms in Eqs. (10) and (12) are in general
different, so our purpose is to see whether ~, and z& are of
the same order of magnitude. ] We note also that the
averages of the temperature derivatives are just integrals
involving the frequency power spectrum. Thus we can
also write

10

10

& T(

0

+

f co P (Q7)dc'
7 f co P ( co )d co

1/2

(14)
10

P (cu)— co/cod
e " for co)~

This conforms to the standard thinking about power
spectra in turbulence [33]. The frequency cod is the fre-

where P(co) is the frequency power spectrum. [P(co)
equals to

~ J oT(t')e' "'dt'~ /t, i.e., co is just the frequen-
cy but not angular frequency. ] It was found [5] that for
Ra & 10", the power spectrum P (co) is well approximated
by a power law followed by an exponential decay, name-
ly,

—7/5

10

10 "—
109 1010 1011 1018 1013 1014 1015

Ra

FIG. 9. Comparison of the time scales ~&, ~„and ~d. The
time scale r, is obtained from the initial fiat region of the P
curves, while ~, is computed using Eq. (13) and ~d is 1/cod up to
a prefactor of order 0.1 [see Eq. (16)]. All the time scales are
normalized by L /~. Errors for every second data point of ~&

are shown.



3628 EMILY S. C. CHING

found that

R —(0.4+0. 1)
7b a (20)

which again has an exponent similar to r, and Q
' for

Ra + 10".
To conclude, the PDF's of temperature differences are

—c~x~)fitted by a stretched-exponential form e '~ ~ . The behav-
ior of these PDF's as a function of the separation time is
then studied through the P curves. From the shape of the

P curves, one can identify three time scales, „rb,rand r2

(rt, is not relevant for Ra (7.3 X 10' ). One finds that r2
is just 1/ca and describes the decorrelation time or the
turnover time. For Ra%10", r, is 1/cod up to a small
prefactor of order 0.1. For Ra~ 10", r, and rb (and also

Q ') have a similar Rayleigh number dependence,
-Ra ' — ". The time scale ~b is found to be related to
the frequency cob at which the ——', power law ends. For
Ra~ 10", cob is just cud up to a prefactor, but for
Ra ~ 10", cob behaves differently. Thus a time scale scal-

with y =0.48+0.06 for Ra above —10".
One last thing is to understand the time scale rb. As

mentioned before in Eq. (15), the power spectra can be
approximated by a power law followed by an exponential
decay for Ra%10". For Ra&10", Eq. (15) no longer
holds [5] but nevertheless there is still a power-law region
of exponent ——', . We define cob to be the highest frequen-

cy when this power law ends. [Strictly speaking, this is
not too well defined for Ra & 10",as the functional form
of P (to) is not known. However, one can still get a rough
estimate of this frequency. ] This frequency cab is mea-
sured from the power spectra obtained in Ref. [5]. The
comparison of rb and 1/cob is shown in Fig. 10. The
agreement is not too good but the two time scales are
about the same order. If we fit the scattered data points
of ~b by a power law, we find

10

0 ~b

o 1/~b

10

1p12 10 1014 1015

Ra

ing as Ra ' —+ "appears, which may be associated with
the roughening transition of the thermal plumes [6], but
its precise physical meaning has still to be understood.

I thank L. Kadanoff for his guidance in this work and
his critical reading of the manuscript. I have also
benefited from many discussions with A. Libchaber, I.
Procaccia, X. Z. Wu, and R. Zeitak. Finally, I am grate-
ful to G. Yates of the Social Sciences and Public Policy
Computing Center in University of Chicago for his help
in the data transfer. This work is supported by NSF
Grant No. DMR 8815895.

FIG. 10. Comparison of ~& with 1/cob. The time scale ~b is
defined only for Ra 7.3X10' (see Fig. 6 for illustration). The
frequency co& is defined as the higher end of the —

—, power law

in the power spectra of temperature fluctuations. All the time
scales are normalized by L /~. The errors in 1/cob are similar
to those shown for ~b.
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