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Viscosity of high-temperature iodine
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The viscosity coefficient of iodine in the temperature range 500 ~ T ~ 3000 K is calculated. Because of
the low dissociation energy of the Iz molecules, the dissociation degree of the gas increases quickly with
temperature, and I+ I2 and I+I collisions must be taken into account in calculations of viscosity at tem-
peratures greater than 1000'. Several possible channels for atom-atom interaction are considered, and the
resulting collision integrals are averaged over all the important channels. It is also shown that the rigid-
sphere model is inaccurate in predictions of the viscosity. The approach of the present work is general
and can be used for other diatomic gases with arbitrary dissociation degree.

INTRODUCTION

Because a significant dissociation of iodine can be
achieved at low temperature, it is a particularly attractive
candidate for theoretical and experimental studies of
chemical nonequilibrium in continuous Aows. However,
viscosity and other transport coeKcients of iodine have
neither been measured nor calculated. Therefore, in this
paper, we calculate the viscosity of high-temperature
(500~ T ~ 3000 K) iodine in equilibrium by considering
the fact that the gas dissociation degree, and subsequent-
ly the frequency of atom-atom and atom-molecule col-
lisions, increases rapidly with temperature.

Viscosity of gas with particles of mass m at tempera-
ture T can be calculated as [1,2]

5 (7rmkT)'
7l=

~~2/ (&,2) +

where k is Boltzmann's constant and o is the particle col-
lision diameter. The so-called collision integral Q' ' '* is
a dimensionless quantity that depends on the temperature
and on the force law (for the interparticle potential)
through the collision scattering angle g. The scattering
angle is averaged over all possible initial impact velocities
g and all possible impact parameters b to produce the col-
lision integral which has the following form when inelas-
tic collisions are neglected:

0' '*=o J y exp( —y )dy f (1 cos X)bdb—,
0 0

(2)

where y =mg /4kT. If inelastic collisions are taken
into account, the expression for the viscosity is the same
as Eq. (1), but the collision integral for viscosity is more
complicated [3]:

0' ' "=(2m) '(crQ;„, ) g exp( —E; —E, )
i,j,k, I

p exp p dp sin+ p 1 —cosg +—

x I;, (g x 4)dxd 4»

where the internal partition function for the target parti-
cle is

Q;„,= +exp( —E; ), (4)

and where the internal quantum states of the colliding
particles are denoted by the subscripts i, j, k, I, and
c; —=E; /kT, with E; being the energy of the ith quantum
state. A binary collision of two particles initially in states
i and j results in scattering of particles through the polar
angle X and the azimuthal angle P, with the particles end-
ing up in states k and I, respectively. The di6'erential
cross section for the scattering is I,"(g, X, tt ), and
Ac, =ok+ cl —E.;

—c. =y —y', where the prime refers to

the relative kinetic energy of the particles after the col-
lision.

Since momentum is conserved in elastic as well as in-
elastic collisions, both types of interactions can contrib-
ute to transport of momentum and hence viscosity of the
gas. However, taking the following discussion into ac-
count, one can say that the contribution of inelastic pro-
cesses can be neglected in iodine gas at temperatures
below 3000 K.

The three lowest electronic states of the I2 molecule are
the ground state X 'X+, the 8 II„state, and the D 'X„+

state, with energies of the excited states equal to 1.95 and
5.09 eV, respectively. The three lowest electronic states
of the I atom are 5p P3/2 5p P»z and 6s P5&2, with
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X J ( 1 —cos X)I,1 sinXd X, (5)

where I,1sinXdy=bdb The appr. oximation (5) can be
verified by investigation of the ratio of the gas viscosity
when inelastic collisions are included to the viscosity
when the inelastic collisions are neglected. This ratio can
be given as [3]

4 le1'+l5 p-
(1—

—,
' (sin2X) ) (6)

where (sin X) is the average value of sin X, c;„, is the
internal heat capacity per molecule, p is the gas pressure,
and ~ is the relaxation time for the energy transfer be-
tween translation and internal states. When the scatter-
ing is isotropic ( ( sin X ) =—', ), the correction term in Eq.
(6) vanishes. In other words, inelastic collisions have a
small effect on the gas viscosity if the anisotropy of the
scattering is not significant.

Since the degree of ionization in iodine at T (3000 K
is very small, we neglect in what follows any effects
caused by charge exchange during collisions. [It is well
known that resonant charge transfer between an ion and
a molecule (atom) of the parent gas can significantly
affect some transport properties (especially the ion
diffusion coeKcient and conductivity coefficient, much
less gas viscosity). ] A similar remark applies to collisions
between identical atoms in different states in which reso-
nant transfer of a quantum of internal energy can occur.
We neglect the contribution of the resonant processes to

the excitation energies of the excited states equal to 0.94
and 6.77 eV, respectively.

The ionization potential of the I2 molecule is 9.31 eV,
which is high enough to maintain a low ionization degree
of the gas under the conditions considered here. The
atomic ionization can also be neglected under these con-
ditions because of the relatively high atomic ionization
potential (10.45 eV). In addition, the relative number of
excited atomic and molecular ions in the gas is very
small. A crude measure of the ionic excitation eKciency
is the value of half of the ground-state ion'zation poten-
tial, which is relatively high in ions considered here; this
is equal to 10 eV [12+(X II )] and 9.55 eV [I+(Sp P2)].

In iodine, the typical amount of energy b.E;„/k
transferred during inelastic collisions to molecular rota-
tion and vibration is very small: less than 100 K in case
of the translation-rotation exchange and less than 300 K
in case of the translation-vibration exchange. Thus,
at higher temperatures, the average ratio b,s/y
=26,E;„/E„(E„is the impact energy) is always distinc-
tively less than 1. Therefore, the terms with Ac, can be
neglected in Eq. (3) and one can approximate the
differential cross section for inelastic scattering I;.' by the
cross section for elastic scattering I„. In addition, the
summation over internal states can be carried out in-
dependently from the translational states. Taking this
into account and assuming that the intermolecular poten-
tial is a central-force potential, one obtains

0' '*=a I y exp( —y )dy
0

the gas viscosity because the atomic excitation in iodine
is inefficient under the conditions considered in this work.

VISCOSITY OF DISSOCIATING IODINE

/mix (7)

where

H ~ x

x ~ 0 H

H1N x1

HNN xN

xN 0

(8)

H11 H1N

fH„, /

—=

HNN

(9)

and x is the mole fraction (depending on the gas dissoci-
ation degree) of the qth component of the mixture. The
elements H are given by the expressions

„,„,pn, „M,+M„
3 M„1+—

(10)

and

2xqxq

p2)qq Mq +M,

whef e Mq is the molecular weight of the qth component,
is the viscosity of the pure qth component, 2) is the

coefficient of mutual diffusion of the components q and
q', 8 is the universal gas constant, and p is the total gas
pressure. The units of 2) are usually cm /sec. Before
calculating 2) ~ one must define R and p in consistent
units. If p is in atmospheres, R must be in
cm atm/mol'K (82.056); if R is taken as 8.3143X10
erg/mol 'K, then p must be in dyn/cm . The ratio 2 ", is
defined as the ratio of the average values of the products

2 ~(l, s)e
~qq' qq'

( 2 ~(2, 2)e )
qq qq

( 2 II(1,1)e )qq' qq'

(12)

where oq ~ is the collision diameter for interaction of
species q and q'. Q' '. ' is given by an expression similar
to Eq. (3) except that it now refers to a collision between
two unlike molecules q and q'; 0"'"*is the collision in-
tegral for diffusion (see below). The expression for q)

given by Eq. (7) has the same form regardless of whether

The viscosity of mixture of several components de-
pends on viscosities of the pure components; in the case
of a gas being a mixture of X components, the gas viscosi-
ty can be expressed as the ratio of two determinants
[4—6],

H ~ x

x ~ 0
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molecular collisions are elastic or inelastic [4]. In the
first-order approximation, the corrections to A' ~ ac-
counting for inelastic collisions are negligible and one can
use calculated A *

~ for elastic interactions between the
particles.

The viscosity of a binary mixture such as high-
temperature dissociating iodine (mixture of I atoms and
Iz molecules) can be obtained from Eq. (7) as

T

H12
2

1—
H11H22

2X 1X2H12

H11H22

X X1 + 2

H11 H22

(13)

where the subscripts 1 and 2 denote properties of the I2
and I components, respectively,

2X1X2RT8 = — (1 ——'A* ),
p2), ~(M, +M~ )

(R ) =Ro —(2p) 'ln 1— (20)

where D (equal to 12 582 cm ') is the dissociation energy
referred to the minimum of the intramolecular potential,
and P (equal to 1.799 A ') is the constant in the Morse
function,

V(R ) =D(1—e '
) (21)

Ro =R, +4l +(J+ 1)/R, , (22)

where R, (equal to 2.667 A) is the molecular bond length,
J is the rotational quantum number,

which approximates the intramolecular potential of the
rotationless molecules.

The position of the minimum of the rotational-
vibrational intramolecular potential is

X 1 2X1X2+T 3M2 3 12H11= + 1+
p2), ~(M, +Mq ) 5M'

X 2 2X1X2RT 3M12 12
H22 = + 1+

ply, ~(M, +M~ ) 5M~

(15)

(16)
and

2I3(2pD )
'/

A' J(J+1)
2pR o

E=hc[co, ( U+—,')—co,x, (U+ ,') +B,J(J—+I)

(23)

(24)

where

D, ~
=2.628 X 10 T (p ( a'IqQIq"* ) )

t M, +M,
2M, M,

0

where D12 is in cm /sec, p is in atm, and o.
12 is in A.

VISCOSITY CONTRIBUTIQN QF Iq+ Iq CQLLISIONS

We assume in this section that the I2+I2 interactions
are governed by a single force law specified by the
Lennard- Jones (12-6) potential,

12 t6

ULq(r) =4E o
(18)

o. =—', (R )+c, (19)

where c. is the potential we11 depth and o. is the inter-
molecular distance, other than infinity, at which the po-
tential vanishes.

The potential parameters c and o. for collision systems
involving atoms and molecules are denoted by subscripts
mm (molecule-molecule interaction), aa (atom-atom in-
teraction), and am (atom-molecule interaction); for exam-
ple, c, means the potential well depth for the I+I2 in-
teraction.

The collision diameter for interaction of two identical
diatomic molecules can be given as [7]

where

b;

2(r, +r, )' ' (26)

D,J (J+—1) ], (25)

where E is the rotational-vibrational energy of molecule
excited to the U, Jth vibrational-rotational level and
where the other constants have their usual meaning.

Hirschfelder and Eliason suggested [7] that c in Eq.
(19) is equal to 1.8 A. However, a comparison of collision
diameters obtained from Eq. (19) with corresponding
measured values [10,11] for various collision systems sug-
gests that a more accurate value is c=1.6 A, which is
consistent with the conclusions of Pauling [12]. Using
c = 1.6 A and ( R ) =R, one obtains from Eq. (19) that
o. =5.156 A when the colliding molecules are in the
ground rotational-vibrational-electronic states.

One finds from Eq. (56) that the mean radius [13]of the
iodine atom in the ground electronic state is ( r, ) = 1.324
A. This value is close to that obtained from the relation-
ship (r, ) =R, /2 suggested by Hirschfelder and Eliason
[7] for diatomic homonuclear molecules in the ground
electronic state. Consequently, using c = 1.6 A and
( r, ) = 1.324 A one obtains from Eq. (19) that
o. =5.13 A.

The intermolecular potential function for interaction of
diatomic molecules can be obtained from the Slater-
Kirkwood theory [14]. According to the original formu-
lation of the theory, the parameters of the LJ potential
for interaction of a particle i and a particle j are [14,15]

where c is a constant and (R ) is the mean internuclear
distance (a function of the rotational and vibrational
quantum numbers) in the molecules [8,9],

3eho, ;u
b; =

v 2 I/2[( /~ )I/2+ ( /~ )I/2]
(27)
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and where e is the electronic charge, m, is the electronic
mass, r,- is the van der Waals radius of the ith particle, a;
is the polarizability of the ith particle, and N,. is the num-
ber of the valence-shell electrons in the ith particle. A
study [16] of intermolecular forces in a number of sys-
tems (including the halogen system C12+C12) showed
that more accurate potential parameters are obtained
when using the so-called "modified" Slater-Kirkwood
method. In the latter approach the potential well depth
is obtained by multiplying the value obtained from the
original formula (26) by a factor /3, that depends on the
product N;e&. In the case of the I&+ I2 interaction
N;a; =5306 A (N; =5 and a;=10.2 A ), which gives
/3, =2.2

The van der Waals radius r, for the I2 molecule is ob-
tained by assuming that 2r, /2r =o. /o„, where r is
the van der Waals radius for the I atom [15,17] and the
collision diameter o.„for two iodine atoms is given by
Eq. (55). Consequently, one obtains from Eq. (26) that
c, /k =557 K.

The values of the collision diameter o. =5.156 A
and the potential well depth c /k=557 K obtained
from the "modified" Slater-Kirkwood theory agree well
with the corresponding values obtained from viscosity
measurements [2], o =4.982 A and E jk =550 K.
The latter values of the potential parameters are assumed
in the present work for interaction of two iodine mole-
cules in the ground electronic states.

Using the potential (18), it is possible to derive an ex-
pression [18] for the reduced collision cross sections
S'"(K)

(29)

where

((,)( )
1 1+(—1)'
8 )+I

s+2

X J exp( xK )K—'+'S' '(K)dK, (30)

with x =slkT. The analytic fits to the function W"'(x)
are given in the Appendix.

The collision integrals of rigid spheres with collision
diameter o. are

( fl(l, s )
)RS

1/2
~kT

,
[1+2l—( —1)']

[4(1+1 )]
(31)

and the dimensionless collision integrals 0"'* are
defined as

n"'~(I,S)g
(fl(l, s))

RS
(32)

The viscosity g of a pure component can now be written
in the form

1/2

where K is the impact kinetic energy in units of c., and 5
is the collision impact parameter in units of o.. Subse-
quently, the collision integrals 0"' of Chapman and
Cowling [1]are obtained from

1/2

n"'= ' w"'( )
p

1

S'"(K)=4 2—
1+l J ( 1 —cos("y )5d 5,

0

V(x)
w""(x) ' (33)

V(x) = 1+
2

b»&22 —& 12
2

(28) where V(x) is a slowly varying function of x,
I

(34)

b 11 (b12 23 b22b13 )

(bllb22 b12) (bllb22b33+2b12b13b23 b12b33 b23bll b13b22)
(35)

VISCOSITY CONTRIBUTION OF I+I COLLISIONS

b „=4W""(x),
—7W(2, 2)(x) 2W(2, 3)(x)

b =(—"')W' ' '(x) —7W' ' '(x)+ W' '(x)22

—
(

65
) W(2, 2)(X) (

9
) W(2, 3)( )+( 1

) W(2, 4)( )

= (
""

) w""(x)—( —"'
) w""( )23

+( —", ) w""(x)—(-,')w""(x),
—

(
251 37

) W(2, 2)( ) ( 1755 ) W(2, 3)(X)+(
381

) W(2, 4)(X)
256 32 32

—(-') w""(x)+( —')w""(x)+(-')w""(x)
8 16 2

(37)

(41)

Atoms of partially dissociated gases interact according
to multiple force laws, each law corresponding to a
different alignment of the electronic spins during the
atom-atom interaction. In principle, the Chapman-
Enskog kinetic-theory problem should be solved when
the multiple force interactions are included. It was
shown by Mason, Vanderslice, and Yos [19] that the for-
mula (1) retains its original form (and is valid for all de-
grees of the Chapman-Enskog approximation for mix-
tures of any complexity) in such a case, but each collision
integral must be replaced by a statistical average over the
different possible force laws. In other words, for a given
pair of co11iding atoms, the following replacement is
necessary in Eq. (1):



3600 STEVE H. KANG AND JOSEPH A. KUNC

2II(l, s)s ( 2II(l, s)s ) ~ 2II(l, s)s~$'io I (42) TABLE I. The integrals A"' and 3' ' given in Eq. (45) for
several values of the exponent t; of Eq. (43).

where 0, and Q' '* are the collision diameter and the
collision integral, respectively, for the ith force law, and

p, is the probability that the colliding atoms will follow
the ith potential curve. This probability is obtained as
the ratio of the degeneracy of the molecular electronic
state corresponding to the ith potential curve to the sum
of the degeneracies of all molecular states that can result
from interaction (along different potential curves) of these
two atoms. The possible potential curves for the interac-
tion of two atoms in particular electronic states can be
determined from the Wigner-Witmer rules. The two
lowest electronic states in iodine atoms are 5p P3/2 (the
ground state) and 5p Pi/2. According to the Wigner-
Witmer rules, an interaction of two P atoms can lead to
the following molecular states: 'X+, 'X„, 'H, 'II„, '6,
X„+, Xs, II, II„, and b, „. (The potential curves for

the possible molecular states for P3/2+ P3/2,
P3/2 + 1/2 and P] /2 + 1/2 atom-atom interactions

were given by Mulliken [20].) The excitation energies of
the first (5p P;/2) and the second (Sp 6s P5/2) excited
atomic states are 0.94 and 6.77 eV, respectively. Thus, in
the range of temperatures considered here, one can as-
sume that most of the atoms are in the ground state, and
the dominant atom-atom interactions are those between
atoms in the ground ( P3/2) electronic states. Therefore,
we take into account in averaging (42) only the interac-
tions between two ground-state iodine atoms. The corre-
sponding potentials (a total of ten; see Fig. 1 in Ref. [20])
represent the molecular states that dissociate into two

P3/2 iodine atoms.
When the atom-atom potentials have a minimum

(three curves out of the ten Mulliken's potentials men-
tioned above), the collision integrals of I+I interactions
are calculated (fitting first the particular I+I potential
curve to a Lennard-Jones curve) in the same way as the
collision integrals for I,+ I2 interactions.

In the cases of the atom-atom interactions following a
repulsive potential,

2
3
4
6
8
10
12
14

0.397
0.311
0.298
0.306
0.321
0.333
0.346
0.356
0.500

0.527
0.353
0.308
0.283
0.279
0.278
0.279
0.280
0.333

.
t,. —1/2

1 z
y(P) = ir —2 1 —z ——— dz,

0 t; p
(47)

where the upper limit of the integral is the smallest posi-
tive root of the expression in the brackets.

For the repulsive potentials, it has been shown [22,23]
that only the region of potential energy near U, (r) =kT is
important in calculating transport coefficients at the tem-
perature T. Furthermore, Hirschfelder and Eliason [7]
made a conceivable supposition that the separation be-
tween two atoms r is related to the effective collision di-
ameter cr in such a way that the average kinetic energy
kT is comparable to the potential energy U, (o ). By using
that supposition, the adjusted values of o. and 0. 0"' are
derived. In order to express the rigid-sphere collision di-
ameter in terms of constants c; and t;, the collision in-
tegral (44) is equated to the collision integral (31), which
gives

A '"4(1+I)(t; c; /kT) 'I (s+2 (2/t, ))—
(s + 1)![1+2l —( —1 )']

(48)

If this o is substituted into Eq. (43), the constant c, of
repulsive potential cancels out, and

tween y and p can be obtained from the equation of
binary collision trajectory [21]

U, (r)= (43) U;(o )= kT (s+ 1)![ 1+21—
(
—I )']

4(l+l)A'"I (s+2—(2/t;))

.
t,. /2

(49)

(r is an interatomic distance, and c; and t; are constants),
the collision integrals are [7]

where t; can be obtained from

1/2
1TkT
2p kT

2/t, .

A("r[s+2 —(2/t;)], (44)

dU, (r)

U;(r) dr
(50)

where p is the reduced mass of the collision system,

A'"= f (1—cos'g)PdP, (45)

[ro is the distance between the two atoms when

U,.(r) =k T]. Because the coefficient of viscosity is
defined in terms of O' ' '*, Eq. (49) can be rewritten,
since s =l =2, as

. 1/t, .

pg
2t, c,

U, (o. ) =0„;„kT,
where

(46)

The values of the integrals 2'" are finite for all values of
t; greater than 1 (see Table I), and the relationship be-

2
—t. /2t

(51)

(52)
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5 (~mkT)'"
2~ 2~(1 s)e

7TO ~P 0,
(53)

where the sum is taken over all I+I potential curves tak-
en into consideration.

VISCOSITY CONTRIBUTION OF I+Iq COLLISIONS

The usual mixture rule for evaluation of the collision
diameter for unlike particles in terms of the diameters for
like particles is

o, =(cr„+o )/2, (54)

where the collision diameter for interaction of two
ground-state iodine atoms can be given as [7]

Summarizing the above, one can say that the first step
to determine the adjusted values of o. from the particular
repulsive potential curve is computing the effective value
of t, . After that, the appropriate value of 0„„is calculat-
ed, and 8„;„is substituted into Eq. (51) to determine
U;(o ). The corresponding value of cr, obtained from the
potential curve, is the effective (adjusted) value of the col-
lision diameter. Since the collision integral Q"'* of the
hard sphere is equal to 1, the value of o. 0"'* of the
repulsive potentials is equal to o. .

Procedures of calculating o.; and 0' '" are applied to
each potential curve of I+I interactions, and the contri-
bution to the gas viscosity coming from I+I interactions
is obtained from

rotational-vibrational state.
Using the radical molecule complex (RMC) mechanism

[26,27], Blake and Burns calculated [28] the potential pa-
rameters for iodine-atom —iodine-molecule interaction.
Their result for the potential well depth for the hard-
sphere interaction between I and I2 was c., /k =3069 K,
while for the Sutherland interaction s, /k =2767 K (the
latter value was recommended for the well depth for the
I+I2 interaction). Similar values, 2968 and 2666 K, re-
spectively, were obtained by Thompson [29] from the
Monte Carlo quasiclassical trajectory calculations and by
Bunker and Davidson [30] from thermodynamic con-
siderations; these values are in agreement with the con-
clusions of Porter [31]. The geometrical average of the
potential well depths obtained by Thompson and by
Bunker and Davidson gives E, /k =2813 K.

The I+I2 interaction can have some channels (for ex-
ample, atomic exchange [29]) that may have some impor-
tance when viscosity of iodine is considered. Unfor-
tunately, the efFiciency of these channels is not accurately
known [32—34]. However, the studies of Blake and
Burns [28] and of Thompson [29] have suggested that the
Lennard-Jones potential with parameters discussed above
is an acceptable approximation of the overall forces dom-
inating the I+I2 interaction, even though it ignores such
effects as, for example, the quadrupole-quadrupole r
term in the interaction. Keeping this in mind, we use in
this work the Lennard-Jones potential with o., =4.702
A and c., /k =2800 K as an acceptable representation of
the overall forces dominating the I+I2 interaction.

o..=2(r, )+c, (55) DISSOCIATION DEGREE
IN LOCAL THERMAL EQUILIBRIUM0

where c = 1.6 A and ( r, ) is the mean radius of the atoms
participating in the collision,

(r, )= J r, lyl dr, . (56)

The wave function g is given by a series expansion on the
basis-set Slater orbitals [24,25] (with constants C;, n;, g; ),

g„,m(rg, 0,$)= gC; R„ i(r, ) Yi (8„$,), (57)

where n;, l, and m are the quantum numbers of the
outer-shell electron, Y& (0„$,) is a normalized spherical
harmonic, and the radial part of the wave function is

R„ i(r, )=[(2n;)!] '~ (2g;) ' r, ' exp( —
g,.r, ) . (58)

o, =c+(r, )+2(R )/3, (59)
0

so that o., =4.702 A if the molecule is in the ground

Assuming that ( r, ) = l. 324 A and c = 1.6 A, one finds
from Eq. (55) that o„=4.248 A; this value differs from
the value of o.x, x,=3.888 A, which is sometimes as-
sumed [10,11] for the I+I interaction because xenon is
iodine's neighbor in the Periodic Table.

The collision diameter for the atom-molecule interac-
tion, when the atom and the molecule are in the electron-
ic ground states, can now be obtained from the expres-
sions (19), (54), and (55) as

The law of mass action for a gas of homogeneous dia-
tomic molecules leads to [35]

exp( —8d /T),
1 —y 2pV

(60)

where 8d =Do/k (Do is the dissociation energy), m is the
mass of the atoms forming the molecules, p and V are the
mass density and volume of the gas, respectively, and the
dissociation degreey =N, /N, N=N, +2N (N, and N
are numbers of free atoms and free molecules in the gas,
respectively) is a constant number of atoms, both free and
those bound in the molecules, available in the gas
with ongoing dissociation. Here, Q, =Q,'Q; and
Q =Q' Q" Q' Q' are total partition functions of atomic
and molecular components of the gas, respectively, with
the superscripts t, r, U, and e referring to translational, ro-
tational, vibrational, and electronic freedom degrees of
the species, respectively. The last relationship is valid if
all four kinds of energies are independent of one another;
such an assumption is well justified in iodine at T & 3000
K. Here Q' =23~ Q,', Q,'=V(2rrmkT/h ) ~, the rota-
tional partition function Q" = T/20„(0„=hc8, /k ),
and the vibrational partition function
Q~ =[1—exp( —0', /T)] ', where 0",=hcco, /k;
Q;=g, o+g, iexp( E, i/kT) and —Q' =g
+g iexp( E i/ kT), where E—, i and E i are the exci-
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or

2
3'

1 —y

C(&1+4/C —1)
(61)

where

C = n 'exp( —Od /T )

3/2
mmk

2

(Q;)'
O„T' [1—exp( —8„/T) j

tation energies of the first excited electronic states in
iodine atom and molecule, respectively. Using the above
and assuming that the relationship pV=(N, +N )kT is
valid, the expression (60) can be written as

gas viscosity then increases monotonically with tempera-
ture, as expected for gas containing only one kind of par-
ticle.

A numerical analysis shows that the contribution of
the rotational-vibrational excitation of molecules to the
viscosity of iodine in local thermal equilibrium is very
small. (This contribution depends on the collision diame-
ters which in turn depend on the mean internuclear dis-
tances of the rotationally and vibrationally excited I2
molecules. ) This is because in most cases the degree of
dissociation of iodine in local thermal equilibrium is high
when the gas temperature is close to or higher than 1500
K. Therefore, the impact of the rotational-vibrational ex-
citation of molecules on the gas viscosity would be mean-
ingful only at temperatures less than about 1500 K.
However, at these temperatures the contribution of the
rotational-vibrational excitation of iodine to the gas
viscosity is negligible.

with n = N/ V, where V is the volume of the gas.

(62)

RESULTS AND DISCUSSION

2.0x]0

The viscosity coefficient of dissociating iodine in local
thermal equilibrium was calculated in a broad range of
temperature, and the results are shown in Fig. 1. (The
approach of this work can also be used to predict viscosi-
ty of the gas in thermal nonequilibrium if the dependence
of the dissociation degree on the gas parameters is
known. ) At low temperature, the dissociation degree is
low, and collisions involving atoms have no impact on
the viscosity of the gas. As the temperature of the gas in-
creases, the collisions involving atoms become important,
and at temperatures greater than about 1000 K, these
collisions start to dominate the transport properties of
iodine. The decrease of the viscosity of iodine (see Fig. 1)
at temperatures about 1000—2000 K is caused by a rapid
increase of dissociation and, subsequently, a rapid in-
crease of the I+I2 and I+I collision frequencies at those
temperatures. The potential well depths c. for the I+I2
and I+I interactions are much larger than the well depth
for the I2+ I2 collisions which are dominant at lower tem-
peratures. It was shown [36] that the viscosity of gas
consisting of particles interacting according to a potential
characterized by well depth c and collision diameter o.

can be given as

CI
O

00

(00
U
(6)
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C7

1/2 1/2 (63)

Therefore, at temperatures 1000—2000 K, the increase of
the viscosity resulting from the increase in temperature
competes with the decrease of the viscosity, resulting, as
indicated by the relationship (63), from the significant in-
crease in the potential well depth of the I+ I2 and I+I in-
teractions. As the temperature of the gas continues to in-
crease, the gas becomes highly dissociated, and I+I col-
lisions dominate the kinetic properties of the gas. The

FIG. 1. The viscosity of iodine as function of gas tempera-
ture. Solid and dashed line represent viscosities of pure atomic
(fully dissociated) and pure diatomic (undissociated) iodine, re-
spectively. The dash-dotted curves represent the viscosities of
iodine of particle density n when atom-atom (I+I), atom-
molecule (I+ I&), and molecule-molecule (I~+I, ) collisions are
taken into account; the dissociation degree of the gas is taken as
that of the gas in the local thermal equilibrium. (n =n, +2n
where n, and n are particle densities of free atoms and free
molecules, respectively. ) The circles and crosses denote the
values of viscosity of fully dissociated and undissociated iodine,
respectively, as predicted by the rigid-sphere model.
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kT
2B,hc

kT
2B,hc

(64)1

2

where B, is the rotational spectroscopic constant; one
can see from Eq. (64) that the T dependence of the rota-
tional quantum number J is stronger than the T depen-
dence of the vibrational quantum number v .

Using v =1 and J given by the relationship (64), one
obtains from Eqs. (24) and (25) that

E —30 6',x, kT1+
D COe 3hc cue

R,
R0

(65)

where we neglected the higher terms in the expression
(25), used the fact that J (J +1)=J, and used the ex-
pressions

A quick estimate of the role of the rotational-
vibrational excitation of molecules to the viscosity of
iodine can be made by use of a simple approximate ex-
pression for the mean internuclear distance (R ) in a
"typical" (that is, representing majority of the gas mole-
cules) molecule in iodine of temperature T. Such an ex-
pression can be obtained in the following way. In local
thermal equilibrium the ratio of the population of the
first excited vibrational level (v =1) to the population of
the vibrational ground state (V=0) is equal to 0.36 (at
T=300 K), 0.74 (at T= 1000 K), and equal to about 1 (at
T= 1500 K). Thus, the majority of molecules in iodine at
T ~1500 K is in the v=0 and 1 vibrational states.
Therefore, the vibrational quantum number of the typical
molecule in such gas is a weak function of temperature T.
Consequently, it is reasonable to assume, when calculat-
ing the rotational-vibrational energy E in the relationship
(20), that the vibrational quantum number of the typical
molecule is U = 1. (The choice of U = 1 over v =0
makes the contribution of the vibrational excitation to
the gas viscosity slightly greater than it is in reality. )

The rotational quantum number of the typical I2 mole-
cule can be taken as the most probable rotational quan-
tum number J in the gas in the local thermal equilibrium
at temperature T. The value J can be obtained from the
LTE distribution of the rotational levels after approxima-
tion of the distribution by a continuous function of J;
such a procedure is justified because the rotational levels
in iodine are closely spaced. Then, the most probable ro-
tational quantum number J is an integer nearest to

1/2 1/2

The ln(1 —x ) in Eq. (20) can be expanded into a series:

ln(1 —x )= —g x "/n = —x,
n=1

(68)

because x =(E—Ao)/D is much less than unity at tem-
peratures less than about 1500 K. Consequently, Eq. (22)
gives the following expression acceptable at temperatures
less than about 1500 K:

4coexe kT
R0=R, +

hcR, P co,
(69)
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where we used the fact that 1 —(R, /Ro) «4/PR, . In
the case of iodine one obtains from Eq. (69)

=1+1.62X10 T,
R,

where T is in degrees Kelvin. This linear dependence be-
comes a crude estimate when the gas temperature is close
or greater than about 1500 K. Then the dependence of
(R ) /R, on temperature is much stronger, but is still not
strong enough to affect the viscosity of iodine
significantly [37]. At temperatures higher than 2500 K
the relationship (70) is invalid. In such a case the ratio
(R )/R, departs substantially from unity [8,9,37], but
this fact is practically meaningless because the number of
diatomic molecules in iodine is insignificant at the higher
temperatures.

We also show in Fig. 1 the viscosities g0 of pure dia-
tomic (no I atoms are present) and pure atomic (no Iz
molecules are present) iodine calculated from the rigid-
sphere model, where

90
5 (mmkT)'

(71)
mo'

Summarizing the results of the present work, one can
say that in high-temperature ( ~ 1000 K) iodine (1) disso-
ciation processes should not be ignored in calculations of
viscosity, (2) the viscosity of atomic iodine is greater than
the viscosity of molecular (diatomic) iodine, and (3) the
rigid-sphere model is inappropriate for calculations of the
gas viscosity.

One should add that the decrease of viscosity with tem-
perature takes place, to a different degree, in most disso-
ciating gases. However, in most cases it happens at tem-
peratures well above 3000 K.

and

hc Q)qD=
4coe xe

Be
4mcpR,

(66)

(67)
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APPENDIX

The analytic fits to the integrals W"'(x) [Eq. (30)] are

W '"(x)=—'x [2.111 14x ' +1.43329(x+0.439) ' +566.494)x+3 675)

—0.020 77 exp( —0.8093x ) —0.2159 exp( —0.5867x ) +0.003 726 exp( —0.2552x ) ]
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W" '(x)= —'x [6.00619x +3.58323(x+0.439) +2903.85(x+3.675)

—0.016 81 exp( —0. 8144x ) —0.012 67 exp( —0.6089x ) +0.000 9506 exp( —0.2895x )],
W" '(x)= —,'x [23.0938x +12.5413(x+0.439) '+17789(x+3.675)

—0.013 69 exp( —0.8196x ) +0.000 2752 exp( —0.3239x ) —0.007 714 exp( —0.6311x ) ]

W' ' '(x)= —'x [6.88155x +2.89488(x+0. 19) "+7.33242(x+0.67742)

—660079(x+6.7461) ' '+0.039 50 exp( —0.9274x )

+0.037 32 exp( —0.8291x )+0.038 88 exp( —0.6161x ) —0.009 625 exp( —0.2211x )]
W' '(x)= —'x [26.528x +9.29546(x+0. 19) "+24 2190(x+0.67742)

—4627 150(x +6.7461) ' '+ 0.036 63 exp( —0.9349x )

+0.030 94exp( —0.8314x )+0.023 95 exp( —0.6232x ) —0.002 128 exp( —0.2489x )]
W' '(x)= —'x [128.795x +39.1432(x+0 19) "+104.214(x+0.67742)

—37 063 500(x +6.7461) '+0.034 25 exp( —0.9425x )

+0.025 73 exp( —0.8336x )+0.01493 exp( —0.6303x ) —0.000 5298 exp( —0.2767x )]
W(2, 5)(x) 1 x 7[754 p95x

—6.855+203 975(x +p 19)
—6.211+552 647(x +p 67742)

—6.303

—333 942 000(x +6.7461) ' '+0.032 28 exp( —0.9501x )

+0.021 45 exp( —0.8359x)+0.009 408 exp( —0.6374x ) —0.000 1466 exp( —0.3045x ) ]

W' ' '(x)= —'x [5169.32x +1266.89(x+0.19) ' "+3483 33(x+0.67742)

—3342750000(x+6.7461) " '+0.03067exp( —0.9576x)

+0.017 93 exp( —0.838 lx ) +0.005 997 exp( —0.6446x )
—0.000 044 63 exp( —0.3323x )],

W' ' '(x)= —'x [132.154x +29.9505(x+0. 135Q) ' +175.386(x+Q.49593)

—737 383 000 000(x +7.5377) ' —0.091 63 exp( —1.0424x )

—0.002 420 exp( —0.9133x ) —0.001 657 exp( —0.4796x )

—0.003 243 exp( —0.4646x ) —0.016 29 exp( —0.6493x ) —0.008 924 exp( —0.8070x )] .
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