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By combining the hypothesis that the thermodynamic curvature is the correlation volume with the hy-
pothesis that the free energy is the inverse of the correlation volume, I propose that the thermodynamic
curvature is proportional to the inverse of the free energy near the critical point. This hypothesis leads
to a partial differential geometric equation for the free energy which a generalized homogeneous func-
tion reduces to a third-order nonlinear ordinary differential equation whose solution is consistent with
two-scale factor universality. The resulting scaled equation of state is, overall, in very good agreement
with mean-field theory, the three-dimensional Ising model, and experiment for the pure fluid. Universal
ratios among the critical amplitudes are also in good agreement with known values. For the non-mean-
field theory exponents, the solution considered here is not analytic in the whole one-phase region; the
second derivative of the free energy suffers a discontinuity.

I. INTRODUCTION

Thermodynamics is. generally done in the limit of
infinite system size, where collective macroscopic laws
govern [1,2]. These laws of equilibrium thermodynamics
may be connected to microscopic mechanics with statisti-
cal mechanics [3]. In its rigorous version [4], statistical
mechanics offers a proof of a number of properties in the
thermodynamic limit for several general classes of micro-
scopic models.

Less clear is the application of thermodynamics to
finite systems, to problems such as fluctuations. Despite
a lack of rigor, however, rules such as Einstein’s thermo-
dynamic fluctuation theory [3,5] have become well estab-
lished and connected, at least heuristically, to statistical
mechanics. Thermodynamic fluctuation theory is written
in terms of thermodynamic properties and its expression
does not rest on any microscopic model. Many treat-
ments of thermodynamics include fluctuation theory in
the domain of thermodynamics [1,2]. Lewis [6] has ar-
gued that this inclusion is logically necessary.

More complicated is the case near the critical point
where fluctuations reach macroscopic proportions and
where new thermodynamic rules appear, such as power-
law divergences, the scaled form of the free energy, and
universality. These rules may be connected to microscop-
ic mechanics by renormalization-group theory [7], which,
though not rigorous either, lends insight and computa-
tional power.

Since many of the rules of critical phenomena are gen-
eral statements about thermodynamic behavior, one may
inquire as to what extent they might follow from some
sort of unifying thermodynamic principle. In this paper I
discuss this question in the context of a thermodynamic
hypothesis that follows from combining the results of a
Riemannian geometric theory of thermodynamic fluctua-
tions with a well-known relation between the singular
part of the free energy and the correlation length. This
hypothesis is: the thermodynamic Riemannian curva-
ture is proportional to the inverse of the free energy.
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The hypothesis takes the form of a partial differential
equation for the free energy. I show that a generalized
homogeneous function reduces this equation to a third-
order nonlinear ordinary differential equation whose solu-
tion yields a free energy in agreement with two-scale fac-
tor universality. In addition, the resulting scaled equa-
tion of state is in good agreement with mean-field theory
(MFT), the three-dimensional (3D) Ising model, and with
experiment in the pure fluid. The universal critical am-
plitude ratios also agree well with what is known. As in-
put into the solution it is necessary to supply only the
values of the critical exponents.

For the non-MFT exponents the solution to the
geometric equation is found to be nonanalytic in the one-
phase region. This requires an additional assumption; I
assume that the solution is generally as smooth as possi-
ble, and, specifically, is smooth on the critical isochore in
the one-phase region. These assumptions limit the
nonanalyticity to a single point where the second deriva-
tive of the free energy suffers a discontinuity. Such a
point of nonanalyticity is at odds with usual beliefs. For
example, it has been proved rigorously that the Ising
model has no nonanalyticities away from the coexistence
curve [4]. This issue is discussed.

In this paper I start by summarizing the relevant con-
cepts in critical phenomena. Then, the geometric equa-
tion is stated and its solution discussed for a number of
systems. Though the method should generalize, I consid-
er here only systems with ordinary critical points, charac-
terized by a single order parameter. I confine myself to
power-law divergences with a positive heat-capacity ex-
ponent. In addition, I consider only the behavior very
close to the critical point and do not include ‘““corrections
to scaling.”

II. THEORY

In this section I present the relevant theoretical struc-
tures. First, I summarize some fundamental concepts in
the modern theory of critical phenomena, both to set the
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context and to introduce notation. Second, I describe the
Riemannian geometry of thermodynamics, with particu-
lar emphasis on the thermodynamic Riemannian curva-
ture scalar. Third, I discuss the resulting partial
differential equation for the free energy.

A. Critical phenomena

I consider the case of systems with a reduced tempera-
ture

(2.1)

where T is the critical temperature, and a single order
parameter m, with conjugate ordering field h. Near the
critical point, thermodynamic quantities behave as power
laws characterized by critical exponents and critical am-
plitudes; see Table I. The critical exponents are related
to one another by scaling relations, which leave only two
exponents independent. These scaling relations can be
deduced from the assumption that the singular part of
the free energy per volume can be written as a general-
ized homogeneous function:

FA“ LA n)y=Af(t,h) , (2.2)

where a, and a,, are critical exponents and A is a positive

. =1/ .
constant [8—10]. Setting A=|¢| “ and using standard
values for the critical exponents leads to

f,n)=nt|>*~ Y (nyh|t] =P, 2.3)

where I have introduced two constant scaling factors n,
and n,. The function Y has two branches, one for >0
and the other for ¢ <O.

An essential quantity in critical phenomena is the
correlation length £, which gives the range of the pair-
correlation function [10]. It is the characteristic size of
organized fluctuations near the critical point. The corre-
lation volume §d, where d is the spatial dimension, is re-
lated to the free energy per volume through an additional

TABLE 1. The basic notation for critical phenomena. The
scaling hypothesis predicts that a=a’ and ¥y =y’'. The comma
notation indicates partial differentiation.

_T—Tc

t e

m(=—f,)=B(—1t)F t<0 h=0
X(=—Ffm)=Tt77 t>0 h=0
x=r"(—17" t<0 h=0
Chl=—f )=At™° t>0 h=0
C,=A'(—t)" t<0 h=0
h=Dm|m|>! =0

z="h|t| =P t70

f(t,h)=|t]*"2Y (2) t#0

z=t|h| "1/ h#0
f(t,h)=|h\1ﬂ/67(7) h=0
x =t|lm| /¢ m7#0
h=m|m|® h(x) m=~=0
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hypothesis of critical phenomena. The basic idea [11] is
that the (extensive) free energy associated with fluctua-
tions at volumes of the order of £% is kp T, where kjp is
the Boltzmann constant. This free energy is equated to
the singular part of the (extensive) free energy near the
critical point and, therefore, the singular part of the free
energy per volume

kpTc

é—d
where k; is a dimensionless constant of order minus uni-
ty.

“Two-scale factor universality” [12] includes the above
statements about scaling and the correlation volume and
adds two more. It can be written as four independent
statements: (1) f(z,h) is a generalized homogeneous
function of its arguments; (2) Y is universal up to the two
material-dependent constants n; and n,; (3) f(¢,h) is pro-
portional to the inverse of the correlation volume; and (4)
K, is a universal constant. ‘“‘Universal” means the same
for any system in a given universality class characterized
by the spatial- and order-parameter dimensions [10].

f,h) =K, , (2.4)

B. Geometry of thermodynamics

Turn now to the Riemannian geometry of thermo-
dynamic fluctuations [13], which was recently reviewed
[14]. The discussion begins with a summary of thermo-
dynamic fluctuation theory. Consider a finite, open sub-
system A’ of an infinite thermodynamic fluid or magnetic
system A. A’ has fixed volume V’. Denote the thermo-
dynamic state of 4 by a =(a;,a,)=(t,h) and the corre-
sponding thermodynamic state of 4’ by a’=(¢',h’). The
Gaussian approximation to the classical thermodynamic
fluctuation theory asserts that the probability of finding
the thermodynamic state of 4’ between a’ and a’'+da’ is

(3]
P(a,a’')da‘da),

Vl ’ 2 , ,
= |5, |exp ——2—#,v=1gw(a)Aa#Aav
XVgla)daida, , (2.5)
where Aa, =a, —a,,
1 3% f 1
=— =— , 2.6
8ula)= =3 da,0a,  kyTc o 2.6
and
g(a)=det[g,,(a)] . 2.7)

The comma notation in Eq. (2.6) denotes partial
differentiation of f(¢,h). (I have replaced a factor of 1/T
in front of the second derivatives of f by 1/T, since it is
assumed the system is very near the critical point.)

The quadratic form in Eq. (2.5),

2
(A= 1g,“,(a)Aa;tAai, ,
pov=
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constitutes a positive definite Riemannian metric on the
two-dimensional thermodynamic state space of points
with coordinates (#,/4) [13]. Physically, the interpretation
for distance between two thermodynamic states is clear
from Eq. (2.5): the less probable a fluctuation between
two states, the further apart they are. Note also that the
quantity

Vg (a)da\da) (2.9)

is the Riemannian thermodynamic-state space-volume
element [13-15].

The metric defines the fourth-rank Riemannian curva-
ture tensor R in terms of derivatives of the free energy.
The complete contraction of R, the Riemannian curva-
ture scalar R, has units of real space volume for the
metric here, regardless of the dimension of the
thermodynamic-state space [16]. It has been found to be
zero for the monocomponent ideal gas [13,17], and to
diverge in the same way as the correlation volume £ near
the critical point of pure fluid or ferromagnetic systems
[13].

The metric and its curvature have been placed in the
context of a covariant thermodynamic fluctuation theory
that was proposed as the correct way to extend thermo-
dynamic fluctuation theory beyond the Gaussian approxi-
mation [16,18]. This theory, in the path-integral form
[16], predicts that the absolute value of the curvature sca-
lar R is the volume where classical thermodynamic fluc-
tuation theory breaks down. Near critical points, the
breakdown volume is physically expected to be the corre-

lation volume &% Therefore
R =i,&%, (2.10)

where «, is a dimensionless constant, with absolute value
of order unity, related to how £9 is defined. The constant

J

(f,ttf,thhf,thh '"f,zhf,thhf,tth —f,ttf,hhhf,tth +f,hhf,tthf,tth +f,thf,hhhf,ttt _f,hhf,thhf,m)
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K, should be trivially universal if the definition of &7 is
consistent between materials.

The sign of the Riemannian curvature scalar depends
on the choice of sign convention. With the sign conven-
tion in this paper [19], the thermodynamic curvature is
negative near the critical point for all the cases con-
sidered in this paper. I add that Janyszek [20] has sug-
gested that, for a given sign convention, the thermo-
dynamic curvature must have the same sign for all sys-
tems in the critical regime. This hypothesis places con-
straints on the values of the critical exponents which are
in accord with what is observed.

C. Geometric equation

Combining the hypothesis connecting the free energy
and the correlation volume Eq. (2.4) with the hypothesis
connecting the curvature and the correlation volume Eq.
(2.10) yields

kgT,
R(t,h)=xfft’hc) , (2.11)
where
K=KK, . (2.12)
In words, this geometric equation states: the thermo-

dynamic curvature is proportional to the inverse of the free
energy. As will be seen in the solution process near the
critical point, kz T cancels out and « is a universal con-
stant.

By a standard formula for the Riemannian curvature
scalar in terms of the metric elements, and the thermo-
dynamic metric Eq. (2.6), one can show that the
geometric equation is [21]

2(f,ttf,hh —f,thf,th )2

Because of the form of the metric elements the fourth
derivatives of f cancel in calculating the curvature; this
has been emphasized by Janyszek and Mrugala [22]. Gil-
more has also made this point [23]. Of interest is the
solution of this partial differential equation near f =0,
which corresponds to the critical point.

In the hypothesis connecting the free energy to the
correlation volume it is only the singular part of the free
energy that is relevant. However, in most previous treat-
ments of the thermodynamic curvature it was the total
free energy that was used. With one exception [24], how-
ever, the presence of an additive background term was
not very important. By an elementary examination of the
Taylor series, one may demonstrate that, if f(z,4) is an
even function of A, >0, and 86> 1, then the singular
part of the free energy Eq. (2.3) will dominate a regular
background free energy in every term of the Taylor series

K
- . (2.13)
f

in the expression for the thermodynamic curvature.
Therefore, the background term is irrelevant very near
the critical point in the cases considered in this paper.

III. SOLUTION METHOD

In this section I discuss the method of solution of the
geometric equation. The method starts on the critical
isochore in the one-phase region, proceeds to the critical
isotherm, and ends on the coexistence curve.

A. Reduction to an ordinary differential equation

Guided by what is known about critical phenomena, I
try as a solution to Eq. (2.13) a generalized homogeneous
function:

Fn)=tlY (hlt| "), (3.1)
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where a and b are constants that the geometric equation
does not determine. Each group of terms in the numera-
tor and denominator on the left hand side of Eq. (2.13)
contains the same total number of derivatives with
respect to both ¢ and A4, four. This, coupled with the ab-
sence of explicit factors of ¢ and h, results in the reduc-
tion of the geometric equation to a third-order nonlinear
ordinary differential equation for Y (z) in the independent
variable

z=hlt| b

Y3N2)=F[2,Y(2),Y(2),Y"(2)],

(3.2)
(3.3)

where, because of its length, F,, a ratio of polynomials, is
not written out explicitly here [25]. The third derivative
Y'®(z) appears linearly in the geometric equation, so F,
is unique. This differential equation consists of two
branches, one for ¢t >0 and the other for ¢ <0, which
must be joined at the critical isotherm ¢ =0. Table II
shows the notation used for the differential equations.

A third-order differential equation in the form of Eq.
(3.3) can be solved uniquely in the neighborhood of any
nonsingular point provided exactly three constants of in-
tegration are given [26]. These constants of integration
are connected with the following three conditions. The
first two are readily proved from the geometric equation:
(1) if Y (z) is a solution, then n,Y(z) is a solution; (2) if
Y(z) is a solution, then Y (n,z) is a solution. Here, n,
and n, are constants. The third constant is connected
with the following standard assumption: (3) the order pa-
rameter m = — f , is zero in zero field at a temperature
above the critical temperature.

Conditions (1) and (2) are exactly consistent with the
prediction of two-scale factor universality. In addition,
they imply that the geometric equation is a scale invari-
ant differential equation, which means that its order can
be reduced by an appropriate change of variables [27].
This is done below. It can be shown that condition (3) re-
sults, with the geometric equation, in a free energy that is
an even function of A.

TABLE II. Notation used in the course of the solution of the
differential equations. The x here differs from the one in the
scaled equation of state in Table I and f(y,v) differs from the
free energy f(t,h). Comparing Eqgs. (2.3) and (3.1) provides the
link between the standard critical exponents and those used in

conjunction with solving the differential equation:
a=B(6+1)=(2—a) and b =p35.
z=h|t|"? 140
f,m)=1tl"Y (2) 170
a=B6+1)=2—a
b=pBs
x =In(z) t#0, h+0
w=In(—Y) Y#0
y =dw/dx
v=dy/dx
dv _
E—f(y,v)
z=t|n|"1/® h+#0
f(t,h)=h|*""Y(2) h#0
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B. Series solution on the critical isochore (z =0, ¢ > 0)

I consider first the behavior of Eq. (3.3) near the criti-
cal isochore z =0, ¢t >0, where I will assume that Y (z) is
regular. The geometric equation certainly does not re-
quire this assumption, and my reason for it is that
rigorous treatments of statistical mechanics [4] as well as
experiments have shown this to be true in a number of
cases. Since m is zero in zero field for ¢t >0, I am interest-
ed in a solution with Y'(0)=0. However, the denomina-
tor of F, is zero if z and Y'(0) are both zero. To avoid a
diverging Y3)(z) as z—0 it is necessary that the numera-
tor of F, be zero as well in this limit. This obtains, in-
dependent of Y(0) and Y"'(0), if and only if the constant in
the geometric equation

_(b—1)2b —a)
=2 1 Reb —al

aa—1 (3.4)

With this choice of k, which I make in the remainder of
this paper, F, is regular on the critical isochore, where it
goes to zero. Note that k depends only on the critical ex-
ponents and is hence universal. This implies that k, is
universal as well, in accord with another prediction of
two-scale factor wuniversality. I solve, hence, the
differential equation:
Y32)=F[2,Y(2),Y(2),Y"(2)] . (3.5)
I shall display F explicitly for the MFT exponents below.
I shall construct a Taylor-series solution

Y(z)= 2 y2n22n ’
n=0

(3.6)

to Eq. (3.5) about z=0. It can be proved that y,=0
forces all the odd coefficients to be zero; this corresponds
to an even function solution. Thermodynamic stability
requires y, <0 and y, <O; otherwise, y, and y, can be
picked freely and are simply related to the scaling con-
stants n; and n,. I shall pick convenient values for y,
and y, and match experiment as necessary by scaling Y
and z appropriately.

C. Numerical solution to the critical isotherm (z — o0 )

Very helpful in carrying the solution from the critical
isochore (z =0, ¢t >0) to the critical isotherm (z— o) is
the change of variables:

x =In(z) (3.7)
and
w=In(—Y). (3.8)
Define also
—dw_z .,
= dx Y (3.9)
and
dZw 2Y’ ZZYII 22( YI)2
= = .———_|_______—7 .
v dn? Y Y y? (3.10)
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This coordinate transformation is well behaved except for
z=0,z— o, Y=0, and Y— . The case z=0 is han-
dled with the Taylor series in the preceding section. The
critical isotherm z — oo is handled by computing limits as
described below. Y is never found to be zero, but it ap-
proaches — o as z— 0. This is also handled with the
limiting procedure below.

This change of variables is useful for two reasons.
First, both z and Y (z) vary over many orders of magni-
tude in cases of interest. The more gradually varying x
and w (x) are more manageable, particularly in numerical
solution schemes. Second, and more important, it is
straightforward to show that this change of variables
reduces the geometric equation Eq. (3.5) to a second-
order autonomous differential equation:

d?y _
dx?
where f(y,v) is shown explicitly in two examples below

[and should not be confused with the free energy f(¢,4)].
This second-order differential equation may be ex-

(y,v), (3.11)
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may be integrated to obtain w =w (x) given y (x) and the
initial condition. This solution scheme yields the values
of (x,w,y,v) along the entire trajectory; these may be con-
verted to (z,Y,Y’,Y") by inverting the transformation
equations (3.7)—(3.10).

It is straightforward to show that (z,Y,Y',Y")
=(0,—1,0,—2) on the critical isochore corresponds to
(x,w,y,v)=(— 0,0,0,0). Therefore, the solution trajec-
tory in the (y,v) plane starts at the origin. It is also
straightforward to demonstrate that the scaling factors
n, and n, contribute additive terms to x and w, but have
no effect on y and v. Hence, the solution trajectory
v =v(y) in the (y,v) plane is independent of n, and n,.

On the critical isotherm (z =0), the fact that f(¢,h) is
a generalized homogeneous function leads to

f(,h)=|h|""*Y(z), (3.15)
where
F=¢|h| 1/, (3.16)

pressed as two coupled first-order autonomous Since f(z,4) is assumed symmetric in 4, we can without
differential equations: loss of generality take # >0 and z>0. Equating Egs.
d (3.1) and (3.15) and taking derivatives with respect to Z
d—” =£(y,v) (3.12)  yields (with positive z and Z)
x
and z=z"1%, (3.17)
dy
Y-y, (3.13) S Y(2)
dx Y(z)——za/b , (3.18)
which may be solved for y =y (x) and v =v(x) given ap-
propriate initial conditions, computed with the series Eq. o dY _aY(z)—bzY'(z)
(3.6). In addition, the auxiliary differential equation Y'(z)= o ga-vm (3.19)
dw
—= 3.14 and
a7 (3.14)
|
2y _ 2 7] _ ’ 2 ’ 2.2y
7(z)= d°’Y _ —aY(z2)+a°Y(2)+bzY'(z)—2abzY’'(2)+b"2Y'(2)+b"2"Y"(2) ) (3.20)

dfz z(a—Z)/b

D. Series solution on the critical isotherm (¢ =0)

Substituting the form of the free energy Eq. (3.15) into
the geometric equation (2.13) yields a third-order non-
linear differential equation for Y(Z) in terms of z:

Y¥(2)=F|z,Y(2),Y'(2),Y"(2)], 3.21)
where F is a ratio of polynomials. This differential equa-

tion can be solved in the neighborhood of the critical iso-
therm with the Taylor-series method about zZ=0:

Y(z)= i y.z". 3.22)

The first three coefficients, which follow from Egs.
(3.17)-(3.20) by taking limits z— o, together with the

[

geometric equation suffice to determine all of the other
coefficients.

E. Numerical solution to the coexistence
curve (z =0, t <0)

The critical isotherm series can be used to generate ini-
tial conditions for Eq. (3.11) for the start of the solution
process to the coexistence curve. This involves decreas-
ing z and x, and hence requires a negative step size Ax in
the numerical solution scheme. One may readily verify
that the critical amplitudes on the coexistence curve are

'=—a(a—1)Y_(0), (3.23)
B=—-Y"_(0), (3.24)

and
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TABLE III. Limiting values for several variables.
z Y Y’ Y” x w y v v/y
h=0,t>0 0 -1 0 -2 — 0 0 0 2
t=0, h>0 + — — 0 + o + o 1+1/8 0 0
h=0, t<0 0 —A"/[2—a)l—a)] —B —I — InfA'/[Q—a)l—a)l} 0 0 1
'=—Y"(0). (3.25) IV. RESULTS

The minus subscript on Y refers to the branch # <0. The
critical isotherm amplitude
-5

D= —ﬁm1+% (3.26)

The ranges of the variables used here are given in Table
III.

Of considerable interest is the Griffiths form of the
equation of state [28]:

h=m|m|® h(x), (3.27)
where
x=tlm|~1E . (3.28)

(Note, this x should be distinguished from the one used in
connection with the differential equation in Table II.) It
is straightforward to show that

hix)=|z| |Y'(2)| 8
and
x =sgn(1)|Y'(z)| 718, (3.30)

where sgn(z) is the sign of . Define as well the standard
constants

hozh (x)|x=0=D ,

(3.29)

(3.31)

(3.32)
|

_ —p—1/
xo=—x|4-0:c0=B""".

Y(3):

Y4—14YY2Y"+6zY3Y" +922Y'?Y""2— 18Yz2Y""?

In this section I present results. I start with the mean-
field theory exponents, proceed to the 3D Ising ex-
ponents, and conclude briefly with the pure fluid ex-
ponents. The considerations in this section lead to fur-
ther statements about the regularity of the solution.

A. Mean-field theory

An important approach in critical phenomena consists
of mean-field theory which results, essentially, from ig-
noring fluctuations [10]. MFT has power-law diver-
gences governed by the ‘“classical” exponents (=1 and
6=3). The equation of state is of the form

h=cymt+c,m?*, (4.1)

where ¢; and c, are system-dependent constants. One
frequently sees higher powers of m, but they are usually
neglected, since m is small near the critical point. Since
the solution of the MFT is well known, and since it is rel-
atively simple to treat with my method, it offers a good
starting point. In addition, much of what is learned can
be applied to more complicated cases.
For the MFT exponents, a =2, b =3,
these values the differential equation for Y (z) is

and k=1. For

(4.2)

16Y2Y' —18YzY'2+48Y%zY" — 18Yz2Y'Y"”

The function Y (z) can be expanded in a Taylor series
about z =0 for ¢ > 0:

Y(2)=3 yuz?",
n=0
where the y,,’s are constants. Substituting this series
into Eq. (4.2), and using the convenient values y,= —1
and y, = —1 as the starting point in a recursive solution
scheme, yields a linear algebraic equation corresponding
to each power of z:

4.3)

0[z°: 0=0,

Olz']: 24y,=2—y,=7,

0[z*}: 0=0, (4.4)
0[z%]: 120y4=—Q—yp,=—1L,

0[z*]: ,

This procedure can be used to uniquely determine all of
the series coefficients. The result is
28 z_8 11z 10

4
_ 24 2
=—1-z22+Z —Z 4
Y =12 56 T 92~ 1296

91z
15552 '

4.5)

Calculating the series for the order parameter with this
equation and inverting it for A yields the classic MFT
equation of state:

h=1mt+Lm?. (4.6)

I have done this calculation up to O (z%), and never

found a term in the expansion for 4 beyond the third or-

der in m. Indeed, a change of variables reveals this to be

an exact solution of the geometric equation. This solu-

tion serves as a useful test of numerical solution schemes.
For the MFT exponents, Eq. (3.12) becomes
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14402 —18v3— 1920y — 14402y +64y 2+ 3520y %+ 902y % — 160y 3 —204vy 3+ 148y *+ 360y * — 60y >+ 9y

dv _ _
dx =f(y,v)

and

dx v
By standard existence and uniqueness theorems [29],
this pair of differential equations possess a unique solu-
tion passing through any point (x,y,v) provided that
f(y,v) is sufficiently smooth at that point and provided
that f(y,v) and v are not both zero. Smoothness obtains
unless the denominator of f (y,v) is zero. Points at which
f(y,v) and v are both zero are called singular points, and
they have considerable influence over the solution trajec-
tories. Necessary, but not sufficient, conditions that a
point be a singular point is that it be on the y axis and
that the numerator of f (y,v) is zero. The location of the
curve of zeros of the denominator and the three points on
the y axis, (0,0), (%,O), and (2,0), where the numerator of
f(y,v) is zero, are indicated in Fig. 1.
For autonomous differential equations, the dependence
of y on v is entirely independent of x because we can
write

dv _ fpv)
dy v ’

(4.8)

(4.9)

which involves only y and v. This makes the solution tra-

/ [

0.8
0.6

0.4 ~

02|/ F ]
y oo~
v o X
0.0 05 1.0 15 20
y

FIG. 1. The curves with arrows are (mostly unphysical) solu-
tion trajectories to Egs. (4.7) and (4.8). The solid curve without
arrows passing through the origin is the locus of zeros of the
denominator of f(y,v), where existence and uniqueness
theorems break down. There are three points on the y axis
where the numerator of f(y,v) is zero: (0,0), (%,0), and (2,0).
The critical isochore and coexistence curve corresponds to the
origin, and the point (%,0) corresponds to the critical isotherm.
The dotted curve corresponds to a curve of zero numerator; it
intersects the line of zeros of the denominator at the point
(1.497 474, 0.034507), which some trajectories, including the
physical one, use to bridge the curve of zeros of the denomina-
tor.

48v —32y — 18vy +48y2—18y3

4.7)

jectories in (y,v) space, also shown in Fig. 1, very reveal-
ing.

The standard approach to a singular point (y,,0) starts
by linearizing the differential equation in the neighbor-
hood of that point [29]:

dv

dx =a,(y —yo)ta,v, (4.10)
and

dy _

Tx v, (4.11)

where a; and a, are constant Taylor-series coefficients.
Trying a solution to these linear differential equations of
the form

y(x)—yo=re™ (4.12)
and
v(x)=se™ | (4.13)

where A, r, and s are constants, leads to a characteristic
equation for A

A2—a,A—a; =0 (4.14)
as a necessary condition that there are nonzero solutions
for r and s.

Let us look at the three singular points individually.

1. Singular point at (0,0)

Though the numerator of f(y,v) is zero at (0,0), so is
the denominator, and a Taylor series is not possible.
Since the numerator and the denominator of f (y,v) have
no common factors, the curve of zeros of the numerator
and zeros of the denominator do not coincide. Therefore,
f (y,v) is infinite along the curve of zero denominator and
the limit of f (y,v) as the origin is approached along this
curve does not exist. One may readily show, however,
that the substitution in f(y,v) of a straight line with
slope ¢,

v=cy , (4.15)

results in a cancellation of y’s. The function f(y,cy) is
now regular at the origin, provided that c72, which cor-
responds to a line through the origin tangent to the curve
of zero denominator. A first-order Taylor series yields

fy,v)=—2y+3v . (4.16)

Since the physical solution trajectories are asymptotically
straight near the origin with ¢72Z, this is the relevant ex-
pression, and we can apply the analysis for singular
points.

At this point
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A=12, (4.17) 1.0
y(x)=be*+bye? (4.18) s
and
N 2x 0.6
vix)=b,e*+2bye”*, (4.19) v
. . 0.4
where b, and b, are arbitrary constants. Since the roots
A are real, positive, and unequal, this point corresponds
to an unstable singular point from which trajectories 02
emerge as x increases from negative infinity [29]. Near
the origin (x — — o0 ) the solution trajectories are straight 0.0 <"y
lines with slope v/y =1 if b, is not zero and slope 2 if b,
00 02 04 06 08 1.0 12 14 16

is zero.

2. Singular point at (%,0)

Here the denominator as well as the numerator of
f(y,v) is zero, and the limit of f(y,v) does not exist for
essentially the same reason as at the origin. Substituting
a straight line

v=c(y —3%) (4.20)

Wl

into f(y,v) results in the cancellation of a factor of
(y —%), and the ratio of polynomials

fyely —4)]

is regular in the neighborhood of this point if ¢70, which
is the slope of a line tangent to the curve of zero denomi-
nator. A first-order Taylor series leads to

F=5—p—H—tv . 4.21)

This expression reveals that f(y,v) goes to zero if this
point is approached along a straight line with nonzero
slope, as the physically interesting solution trajectory
does. Therefore, this point is a singular point. However,
this case is more complicated than the form of Eq. (4.10),
since the series coefficient a; depends on c¢. I will not at-
tempt a full analysis here, but rather will proceed with
numerical methods.

3. Singular point at (2,0)

At this point, the denominator of f(y,v) is not zero,
and f (y,v) admits a Taylor series:

Sfy,v)=2w,

which results in

(4.22)

?(3)=

— (T2 —2¥Y"|[MT')—2FF" —42¥' 7" +2%(T" ]}

y

FIG. 2. Trajectory (curve with arrows) followed by MFT as
it traverses from the critical isochore to the coexistence curve.
The trajectory starts at the origin with slope 2 and crosses the
singular curve at a bridge point (1.497 474, 0.034 507), indicated
with a horizontal arrow, where the numerator of f(y,v) is also
zero. It then approaches the singular point (£,0), the critical
isotherm, which is crossed using the series Eq. (3.22), and goes
back to the origin (with negative step size Ax), reaching limiting
slope 1.

A=0or2. (4.23)
This is an indeterminate case because of the zero root
[29]. However, this singular point plays no role, since the
physically interesting trajectory does not go near it.

The numerical solution process is standard. I used the
fourth-order Runge-Kutta method [30]. Figure 2 shows
the complete trajectory from the critical isochore to the
coexistence curve. Initial conditions were computed with
the series Eq. (4.5), with z=0.01 and a series up to
O (z?°). The trajectory starts at the origin with slope 2,
as expected from Table III, and crosses the curve of zero
denominator of f(y,v) at a “bridge” point (1.497 474,
0.034 507), where the numerator is zero as well and where
the solution trajectory appears to cross without any
discontinuity. It then crosses the y axis and turns back to
the singular point at (4,0), which corresponds to the crit-
ical isotherm, which it approaches increasingly slowly as
X —> 00,

Figure 3 shows f(y,v) as a function of z in a range in-
cluding the bridge point. As can be seen, there are no
anomalies for the MFT exponents because the zero of the
numerator of f (y,v) cancels the singularity caused by the
zero in the denominator. The MFT solution is regular in
the entire range from the critical isochore to the coex-
istence curve.

For the MFT exponents, Eq. (3.21) is

(4.24)

2Y[2PY —3z(Y' 2 +2¥2Y" +22Y' Y]
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FIG. 3. The function f(y,v) along the physical solution tra-
jectory as a function of z for both the MFT exponents and the
3D Ising exponents in a range including the intersection with
the curve of zero denominator of f(y,v), which occurs at
z=4.8931 for the MFT exponents and z =3.7193 for the 3D Is-
ing exponents. The curve for the MFT exponents shows no
anomaly because it intersects the singular curve at a bridge
point where the numerator of f(y,v) is zero as well. For the 3D
Ising exponents, the solution curve misses the bridge point and
f(y,v) diverges to — oo at the intersection point.
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A Taylor-series Eq. (3.22) solution method yields a
unique solution given the first three coefficients. During
the computation the series coefficients 7, ¥;, and y, were
computed with the limits in Egs. (3.17)-(3.20).

This series allows a computation of the initial values of
(z,Y,Y',Y") for the solution to the coexistence curve. It
proceeds with negative Ax. Limiting values for the criti-
cal amplitudes on the coexistence curve were computed
with Egs. (3.23)-(3.25). Table IV shows 4, B, and I'’ as
a function of |Ax|. Convergence to the known exact
values is seen to be excellent.

B. 3D Ising exponents

Turn now to the 3D Ising exponents B=-% and §=5

[31], which correspond to a =% and b =2. The series
for Y (z) in small powers of z for ¢ >0 is
29z* 37697z
Y(z)=—1—z2+4 22— =22
(2) “ 7189 535815
8
136817332° 4.25)
303 807 105
where I have again taken y, =y, = —1. Initial conditions

for the numerical solution to the critical isotherm were
computed with this series to O (z2°) with z =0.01.
For these exponents, see Eq. (4.26),

% = f(y,v)=(26460v2—4725v>—38 808vy — 30 030v2y + 14 112y 2+ 83 244vy > +4050v2y2— 41 664y >
X
—57810vy>+45 872y*+ 12 825vy*—22 320y >+ 4050y %)
X (88200 — 7056y —4725vy + 115502 —4725p3)" 1,
[
and, again, f(y,v) results in a cancellation of a factor of y. The re-
dy sulting function is regular at the origin if c7%. A first-
e D (4.27)  order Taylor series leads to the same expression as MFT:

The curve along which the denominator of f (y,v) is zero
is shown in Fig. 4. The bridging point where the numera-
tor is zero as well is (y,v)=(1.311953,0.017 8747).
There are also three singular points on the y axis where
the numerator of f (y,v) is zero, discussed below.

1. Singular point at (0,0)

Though the numerator of f(y,v) is zero at this point,
so is the denominator, and the limit of f(y,v) does not
exist, basically for the same reason as at the origin for
MFT. Here again, the substitution of a straight line into

fyv)=—2y+3v, (4.28)
which yields
A=1,2, (4.29)

and diverging solutions of the form Eqgs. (4.18) and (4.19).

2. Singular point at (£,0)

Here both the numerator and the denominator of
f(y,v) are zero and a Taylor series does not exist. How-
ever, the behavior is very similar to that for MFT, and I
proceed in analogous fashion.

(4.26)
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TABLE IV. Limiting values for MFT for three critical am-
plitudes on the coexistence curve as a function of |Ax|. For
comparison, I show the exact values for B and I'" calculated
with Eq. (4.6). The exact value for 4’ is not known.

|Ax| A’ B r
0.01000 8.10693 4.964 38 1.01336
0.003 00 8.03190 4.918 47 1.003 99
0.001 00 8.01045 4.905 34 1.001 31
0.000 30 8.003 02 4.90078 1.000 38
0.000 10 8.000 88 4.899 48 1.00011
0.00003 8.00013 4.89901 1.00002
Exact: 8.000 00(?) 4.898 98 1.000 00

3. Singular point at (11,0)

This point has the same essential character as the
analogous point in MFT. However, the physically in-
teresting trajectory does not go near it.

The trajectories in (y,v) space for the 3D Ising ex-
ponents look qualitatively similar to those for MFT
shown in Fig. 1, and will not be reproduced in detail.
The major difference is that the physical solution trajec-
tory from z=0 to z— oo intersects the line of zero
denominator of f(y,v) at a point other than the “bridg-
ing” point. Figure 5 shows an enlargement of the inter-
section point where existence and uniqueness theorems
break down and special measures are called for.

Griffiths [28] proposed a set of thermodynamic postu-
lates for critical phenomena. His postulate C6 states:
“The free energy a(p,T) is an analytic function of both
arguments together everywhere in the vicinity of the crit-

1.0
B=5/16 6=5
0.8
0.6
v
0.4
0.2
0.0 7
00 02 04 06 08 10 12 14 16

y

FIG. 4. The curve without the arrows corresponds to the
curve along which the denominator of f(y,v) is zero. It has a
bridging point at (1.311953,0.017 8747), where the numerator is
zero as well. The curve with arrows is the solution trajectory
for the 3D Ising exponents. The solution curve misses the
bridging point, and this results in a discontinuous solution.
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ical point, except on the phase boundary.” Griffiths
points out that the rationale for this hypothesis follows
“neither from thermodynamic requirements nor (exclud-
ing special cases) from statistical calculations and merely
reflect the usual aesthetic desire in theoretical science to
use functions ‘as smooth as possible.”” It has been
proved rigorously, however, with statistical mechanics in
a number of dimensions that the Ising model has no
nonanalyticities of any kind except on the coexistence
curve [4]. This result provides strong support for the hy-
pothesis of Griffiths.

It is clear that the solution considered here to the
geometric equation for the 3D Ising exponents cannot be
smooth in accord with the hypothesis of Griffiths. I will,
however, still use this hypothesis for guidance, and seek
the smoothest solution possible. The first try is to assume
that the solution trajectory y =y (v) simply continues
across the curve of zero denominator. In this case all the
variables (x,w,y,v) can be kept continuous, and only the
derivative of v with respect to x suffers an infinity. How-
ever, this attempt does not work because f (y,v) changes
sign and becomes positive below the curve, forcing trajec-
tories to move up and to the right, away from the critical
isotherm. This region of positive f(y,v) is indicated in
Fig. 5 and must be jumped, forcing v to be discontinuous.

One may observe that if the solution trajectory is sim-
ply continued from the y axis directly below the intersec-
tion point, then it not only goes on to the critical iso-
therm, but x, w, y, and dy /dv may be kept continuous.

0.06

0.02

-0.02

-0.06 N

-0.10
1.10 1.15 1.20 1.25 1.30 1.35 1.40

FIG. 5. An enlargement of the region near the bridging
point. The dotted curves are curves of zero numerator of
f(y,v). The solid curve without arrows is the curve along
which the denominator of f(y,v) is zero. It dips slightly below
the y axis to the right of the singular point at (£,0). The bridge
point is indicated with a down arrow. The cross-hatched region
corresponds to a region of positive f(y,v), where trajectories
move upwards and to the right. This region must be jumped in
order to approach the critical isotherm at (£,0) from below, as
is the case for MFT. The solution curve corresponds to con-
tinuous x, w, y, dy /dv, and discontinuous v.
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TABLE V. Universal critical amplitude ratios for the MFT and 3D Ising model [31,33] compared with the values computed with
the geometric equation. Generally, the agreement for the ratios that do not involve the heat capacity is very good. I show also the
calculated universal amplitude ratios for the critical exponents frequently used for the pure fluid [35], but do not compare with exper-
imental ratios, since there is considerable uncertainly in them.

System r/r’ A/A’ R,=TDB3%! Rc=ABT
MFT (exact) 2 1
Geo (B=1, 8=3) 1.999 96 0.249 996 1.000 04 0.166 665
3D Ising (series) 4.95+0.15 0.523+0.009 1.67+0.11 0.559+0.01
Geo (B=2, 6=5) 4.964 54 0.401 89 1.58377 0.247234
Geo (B=0.35, §=4.45) 3.91028 0.384 40 1.39130 0.23551

One could keep the first three of these variables continu-
ous by jumping vertically to any point below the region
of positive f(y,v). It is true also that a range of positions
eventually lead to the critical isotherm. However, the
only jumping point that, in addition, keeps dy /dv con-
tinuous is the y axis. Since I seek the smoothest solution,
I pick this jumping point for continuing the solution.
Figures 4 and 5 show a solution trajectory in accord with
this assumption.

The remaining solution procedure goes the same way
as for the MFT exponents, and I shall omit the details.
Of much interest are universal ratios among the critical
amplitudes [32]. Results are shown in Table V. My num-
bers for MFT agree with the exact ones [33] to a level ap-
proaching a small fraction of a percent, which gives some
indication of the general accuracy of the method. For
the 3D Ising exponents, the agreement of the ratios not
involving the heat capacity with the known 3D Ising
values [31,33] is also very good. The agreement with the

known values involving the heat capacity is not as good,
but in light of the disagreement about analyticity, some
discrepancy is not surprising.

Consider now the equation of state in the form Eq.
(3.27). Figure 6(a) shows h(x)/h, as a function of
(x +x4)/x, for the geometric equation; it depends only
on the values of the critical exponents. The discontinuity
in the variable v shows up as a discontinuous slope at the
place indicated. Figure 6(b) shows the known 3D Ising
curve [34]. The agreement is very close, within about
10% over the full range. The primary difference is that

the known curve looks a little “rounder” than that of the

geometric equation because of the presence of a kink in
the latter.

C. Pure fluid

Another important system is the pure fluid, which has
been experimentally found to have critical exponents

106
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(x + xg)/xg

(x + XO)/XO

FIG. 6. This figure shows h (x)/h, as functions of (x +x,)/x, computed from the geometric equation with =2 and 8§=35, and
from the known results for the 3D Ising model. The down pointing arrow in (a) corresponds to the place where the curve suffers a
discontinuity in the slope. The curves are in good agreement with one another, within about 10% over the full range tested.
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FIG. 7. This figure shows h(x)/h, as functions of

(x +x9)/xy, computed from the geometric equation with
B=0.35 and §=4.45, and from experiment in four pure fluids
[35,36]. The down-pointing arrow corresponds to the place
where the geometric equation curve suffers a discontinuity in
the slope. The match between theory and experiment is very
good.

B=0.35 and 6=4.45 [35,36]. The pure fluid exponents
lead to a solution that is qualitatively similar to that of
the 3D Ising exponents, including a discontinuous second
derivative of the free energy. Figure 7 shows Ak (x)/h as
a function of (x +x4)/x,. The figure includes data
points from experiments in four pure fluids [35]. The
match between theory and experiment is very good. The
agreement could be improved even further by varying the
critical exponents to produce the best fit.

V. CONCLUSION

In conclusion, I have proposed a thermodynamic hy-
pothesis from which several rules of critical phenomena
follow: the thermodynamic curvature is proportional to
the inverse of the free energy. This hypothesis may be ex-
pressed in terms of a partial differential equation that has
many solutions corresponding to different boundary con-
ditions and to different assumptions about regularity.
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I examined in this paper just one specific type of solu-
tion. I demonstrated that a free energy of the form of a
generalized homogeneous function of its arguments
reduces the geometric equation to a third-order nonlinear
ordinary differential equation. Furthermore, this free en-
ergy is predicted to be universal up to two material-
dependent constants (assuming that the critical exponents
are universal), consistent with two-scale factor universali-
ty. The only required inputs are the critical exponents. I
solved this differential equation explicitly for the ex-
ponents corresponding to the mean-field theory, the 3D
Ising model, and the pure fluid. Both the resulting equa-
tions of state and the universal critical amplitude ratios
are generally in good agreement with what is known by
other means.

To obtain solutions, I made two regularity assump-
tions, neither of which is required by the geometric equa-
tion. The first is that the free energy is regular on the
critical isochore 2 =0 for ¢ >0. The second assumption
concerns a point of singularity in the solution for both
the 3D Ising exponents and the pure fluid exponents.
Here the equation does not have a unique solution, and I
picked the smoothest one possible. Clearly, in light of
proofs from rigorous statistical mechanics, the existence
of a point of nonanalyticity raises questions about a
theory that otherwise produces very good results.
Whether or not this is a feature that will disappear with
another type of solution, or whether nonanalyticity is an
inevitable feature of this approach, is unclear. I em-
phasize, however, that my method is thermodynamic.
Hence, the presence of nonanalyticity, should it prove to
be inevitable, constitutes a disagreement with the results
of rigorous statistical mechanics but not any internal in-
consistency.
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