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Method to compute atomic and molecular photoionization cross sections by use of basis sets
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An alternative approach is presented to the problem of computing atomic and molecular photoioniza-
tion cross sections by use of basis sets. The present method is based on a simple integral equation that
relates the real polarizability on the imaginary frequency axis to the photoionization cross section.
Hence the computational work consists in obtaining polarizabilities for imaginary frequencies. Many-
body perturbation theory is used for that purpose, and the perturbation expansion is complete to second
order in the Coulomb interaction. In that way there is a comprehensive inclusion of correlation effects.
Techniques to invert the integral equation to obtain photoionization cross sections from the computed
polarizabilities are discussed, and results are given for the atomic systems neon and argon as test cases.

I. INTRODUCTION II. THEORY

The development of accurate methods to compute
atomic and molecular photoionization cross sections by
use of basis sets (algebraic approximation) has been a
long-standing problem in atomic and molecular physics.
Sophisticated numerical techniques of current use in the
atomic case are quite problematic for molecules due to
the difhculties involved in obtaining accurate continuum
orbitals for multicenter systems.

For light diatomic hydrides like CH, OH, and FH,
single-center expansions have been found to provide a
useful method for obtaining continuum orbitals of
reasonable accuracy [1-4]. However, for molecules with
several nuclei of approximately equal charge, the single-
center approximation method is hardly of any interest.

Another problem in atomic and molecular photoion-
ization calculations is that reliable predictions require a
rather thorough inclusion of correlation effects in the ini-
tial, as well as the final, electronic state of the system. In
the rather few molecular calculations that are available so
far the emphasis has mainly been put on obtaining con-
tinuum orbitals, which means that the molecular results
are normally on the Hartree-Pock level of accuracy.
Various variational techniques are commonly used to
derive the continuum orbitals in the molecular case [3-5].

The Stieltjes method [6-8] represents an algebraic ap-
proach to the problem which is somewhat different from
the techniques mentioned above. By the Stieltjes method
no explicit recourse is made to the continuum orbitals,
and the continuum of the system is represented by a
series of pseudostates obtained from general techniques in
quantum chemistry. Although the Stieltjes method has
been quite successful in several molecular cases [9, 10], it
is still of considerable interest to work out different ap-
proaches to the difFicult problem of computing atomic
and molecular photoionization cross sections.

The present work presents an indirect algebraic ap-
proach with no explicit recourse to continuum orbitals,
and which basically does not discriminate in any way be-
tween atomic and molecular systems. The feasibility of
the method is, however, in the present discussion demon-
strated only for the atomic systems neon and argon.

A. Atomic and molecular polarizability

The dynamic polarizability a(co) is expressed in terms of
the eigenvalues Ek and eigenstates ~%'t, ) of the total
zero-field Hamiltonian, and the polarizability of the state
~4„) is given by [11]

N
at~)= —z I e, xz, e„)~'

k (Xn) i =1

1 1X +-
E, —Eg —~ E„—Eg +co

(3)

In the equation above the summation sign represents a
sum over bound excited states, and an integral over con-
tinuum states. Hence a reliable computation of a(co) re-
quires accurate knowledge of bound as well as continuum
states of the total unperturbed Hamiltonian.

B. Determination of a(co)
by many-body perturbation theory

In the present work the problem of computing dynam-
ic po1arizabilities wi11 be attacked by use of many-body
perturbation theory. The total zero-field Hamiltonian is
then written as follows:

The dynamic polarizability a(co) represents the linear
response of an atomic system to an external electric field,
and is defined by the equation

p=a(co)F,

where p is the electric dipole moment and F is the ap-
plied external field. The external field will be assumed to
be of the form F cos(cot), directed along the space-fixed z
axis, and the interaction with the external field adds a
time-dependent perturbation given by

N

V,„(t)=F cos(cot ) g z, =
—,'(e'"'+e ' ')Fd, .
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H =Hp+H',

N
H'= g —gV;,

i(j=l ij i =1

(4)

C. The shifted Hamiltonian

Other partitions of the Hamiltonian H than that of Eq.
(4) are often useful in many-body expansions. In the
present work the shifted or Epstein-Nesbet Hamiltonian
[14, 15] will be given special attention. In this partition

H =&0+&'

where V; represents appropriate single-particle poten-
tials. To obtain an expression for a(co) the time-
dependent wave function to first order in the external
field strength F will be needed. According to the time-
dependent linked-cluster many-body expansion [12, 13]
the first order wave function qI"'(t) of the ground state is
obtained in the form

with

1=0

k&Il =0

(10)

(4"'(r)) =e ' (~%0)+ ~V+ ) ,'Fe' '—

+~q-)-'F -'")

and where [ ~ 41 ) I is the complete set of eigenstates of
Ho. Now,

~q+-, ) =g H'
p p+CO

1
~ ~ ~

Ep —Ho+ e

where Fo denotes the lowest eigenvalues of Ho of Eq. (4),
and qlo) denotes the ground state of the total zero-field
Hamiltonian H. ~V,

+ ) is obtained from a linked-cluster
expansion in which there is just one interaction with the
e' ' part of V,„(t) of Eq. (2), and an unlimited number of
interactions with H of Eq. (4). In a similar way ~%', )
refers to just one interaction with the e ' ' part of V,„(t)

The linked-cluster expansions for ~ql& ) are, according
to Kelly [12],given by

and the eigenvalues of &0 are consequently shifted com-
pared with those of Hp. Thus, if the linked-cluster ex-
pansion is based on the partition H =&0+&', the
denominators will be shifted, and since k&I in the ex-
pression for &' there will be no diagonal elements of &'
in the linked-cluster expansion. The use of the shifted
Hamiltonian actually leads to an all-order inclusion of
some normally important classes of diagrams in a finite
many-body expansion. Hence a comparison of the results
obtained with the two diff'erent partitions yields valuable
information on the importance of the neglected higher-
order terms.

X
' -H ~~&.

0 0
(6) D. The generalized complex polarizability

In the expansion above the interaction with d, [cf. Eq.
(2)] may occur in all positions relative to H', and in all
denominators to the left of the interaction with d, there
is a term +-co. ~4&0) denotes the ground state of the un-
perturbed Hamiltonian Ho of Eq. (4). It is also to be not-
ed that the states ~%& ) are frequency dependent, but
time independent. The linked-cluster expansion of Eq. (6)
with no interaction with d, yields the correct expression
for %0).

The mean value of the electric dipole moment p for the
s~a~e ~e'"(r) & is

e'(i) —z z, e' "I t ))
i =1

&q'"(r)~q'"(r) &

and the polarizability a(co) is then in accordance with Eq.
(1) given by

o
— ~; 0'i+ + %'o

&e,ie, )

The linear response of a physical system to an external
perturbation is described by the generalized polarizability
(or susceptibility) a(co) given by [16]

n(co)= J™a(t)e'"'dt. (11)

Here a(t) is a function of time which depends on the
properties of the system, and which is finite for all posi-
tive values of t. ~ may now be regarded as a complex
variable, i.e., co~co+iri, and it follows that a(co) is an
analytic function in the upper half of the co plane.

The theory of complex functions may now be used to
derive some very general properties of the polarizability.
First of all there are the Kramers-Kronig dispersion rela-
tions relating the real and imaginary parts of a(co) on the
real axis (i) =0),

R ( )=—PJ d
7T p Q)

'2 2

Imcz(co) = ——Pf, dao',1 Rea( co' )

77 —oo CO CO

where P indicates that the Cauchy principal value of the
integral is to be taken.

From the definition of n(co) [Eq. (11)] it follows that
a(iq) is real, i.e. , a(co) is real on the imaginary axis. It
can also be proved [16] that a(i i) ) decreases monotonical-
ly from a positive value a(0) at q =0 to zero as ri~ ~.
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2 ~ co Ima(co)
d

1T 0 7J + co
(13)

The cross section of photoionization cr(co) is given by
Ima(co) through the well-known relation [11]

Finally, there is an important relation between the real
values of a(ig) and the imaginary part Ima(co) on the
real axis,

(a)

I
(

II

—~

(c)

—X

4m.
o (co)= co Ima(co), (14) I--—x

and inserting o'(co) in Eq. (13) we have (e)
—X

c ~ o(co)a(ig) = dco .
2& o 'g +co

In the present work values of the photoionization cross
section cr(co) will be derived from the relation above.

From the Kramers-Kronig relations of Eq. (12) we ob-
tain by use of Eq. (14)

I

Rea(co)= P J27T 0 CO Q)
(16)

so that knowledge of cr(co) enables a subsequent computa-
tion of Rea(co). Furthermore, for a dilute gas containing
N atoms (or molecules) per unit volume the index of re-
fraction n (co) is given by the approximate relation [17]

FIG. 1. Zero- and first-order diagrams contributiong to cx(co).
The heavy dot indicates interaction with the dipole operator
(see text). Diagrams (e) —(g) occur with all possible arrow direc-
tions on the lines.

cited (virtual) states.
In the next order of approximation we have the correc-

tions involving one interaction with H, and the corre-
sponding first-order diagrams are shown in Figs.
1(b)—1(g). In Figs. 1(e)—1(g) the cross represents matrix
elements of the form

n(co) =1+2vrN Rea(co) . g (an~O~bn) —(a &~b),
n=1

(20)

E. Diagrammatic representation of a(co)

To compute a(co) from Eqs. (6) and (8) we first of all
have to make a choice of single-particle potentials V, so
that single-particle states qr„(r;) and orbital energies E„
can be obtained from the single-particle Schrodinger
equation

(18)

In the present investigation the single-particle wave func-
tions will be represented by analytic expansions in terms
of a finite set of known basis functions. This means that
the continuum is described by a finite set of virtual orbit-
als. The Hartree-Fock potentials will be the present
choice of single-particle potentials V;, and the virtual or-
bitals are then based on the so-called V type of poten-
tials.

Equations (6) and (8) enable a simple diagrammatic
representation of a(co). In the lowest-order diagram
there are no interactions with H' either in ~%0) or in
~%& ). The corresponding diagram which represents the
Hartree-Fock approximation to a(co} is shown in Fig.
1(a},and the contribution is

P, l

Ep E; CO

Here p indicates occupied single-particle states, and i ex-

where

0=(1—P,2)
1

P')2
(21)

and where P, 2 is the operator which permutes the coordi-
nates of electrons 1 and 2. Thus with a Hartree-Fock po-
tential all diagrams containing an interaction represented
by a cross will vanish for closed-shell systems.

The relation between many-body theory and Hartree-
Fock theory has been investigated by Chang, Pu, and Das
[18] in the case of the static polarizability (co=0). They
found that the contributions from the diagrams of Figs.
1(b)—1(d) are all included by the coupled Hartree-Pock
method. Thus the perturbation expansion has to be car-
ried to higher orders to include true correlation eA'ects in
the static case.

Some typical diagrams containing two interactions
with II' are shown in Fig. 2. Terms involving two in-
teractions with H' are referred to as second-order correc-
tions, and a complete list of diagrams to this order is
found in the monograph by Wilson [14]. A complete list
of second-order diagrams like those of Fig. 2 actually
contains 38 distinct diagrams for closed-shell systems.

All diagrams like those shown in Fig. 2 were included
in the present investigation, i.e., a total of 38 distinct
second-order diagrams in addition to the lower-order dia-
grams of Fig. 1. Using basis sets to represent the single-
particle states the computation of any diagram is in prin-
ciple straightforward.
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P„(co)=co'e (25)

(a)

where l is an integer larger than two, and k„ is a positive
constant. To ensure linearly independent functions the
constants k„may be selected according to the simple re-
lation

(26)

(g)

FIG. 2. Examples of second-order diagrams contributing to
o;(co) (arrows on the lines omitted). There is a total of 38 such
distinct second-order diagrams for closed-shell systems.

F. Computation of photoionization cross sections

From the computed many-body values of a(ig) it is
possible to invert the integral equation of Eq. (15) to ob-
tain the photoionization cross section cr(co). Equation
(15) is an example of a Fredholm integral equation of the
first kind. The standard method to invert this type of
equation is to expand o(co) in a set of known basis func-
tions g„(co), which in principle should be a complete set
for the interval (O, cc) [19]. In practice a finite expansion
with N terms has to be used, and we assume

N
o.(co)= g a„g„(co) . (22)

Inserting Eq. (22) in Eq. (15) we obtain

Ca(iq)= g a„g„(g),
n=1

with

g„(co)
g„(g)=f,",dco .

'g + CO

(23)

(24)

The set of functions g„(ri) is in the next step orthonor-
malized by the Gram-Schmidt procedure, and Eq. (23) is
reexpressed in terms of the new orthonormal set of func-
tions. It is then in principle easy to find the set of
coefficients a„, and the problem is solved.

To make this method of solution work in practice we
need to find a set of linearly independent functions g„(co)
which represents o.(co) rather well so that the series of
Eq. (22) can be terminated after a few terms. Otherwise
the set of functions g„(g) of Eq. (23) may turn out to be
nearly linearly dependent, with the consequence of no
unique solution for the set of coefFicients a„. From Eq.
(24) it follows that to avoid a singularity at the origin the
functions f„( )shcoould tend to zero for co~0 faster than
co . On the other hand it is known that o(co)~0 as
cu~ ~. These requirements are fulfilled by the choice

where C is a real constant larger than one.
An alternative way to determine the coefficients a„of

Eq. (23) is to carry out a least-squares fit to computed
values of a(ig) for a series of discrete g values. The
method of least-squares fitting also yields the covariance
matrix for the coefficients a„, and hence a valuable test of
the linear independence of the functions g„(g).

By the present method o (co) (or actually the coefficient
of photoabsorption) will obviously be obtained in the
form of a smooth curve in the frequency range co=0 to

Hence there will be no abrupt rise from zero to a
finite value at the ionization threshold, but a reasonable
solution should show a steep increase in o.(co) around
that frequency. The computation of a(ig) is in principle
unproblernatic since there are no poles on the imaginary
axis, and a fast improvement in the rate of convergence
of the many-body expansion for a(iq) is to be expected
with increasing g.

III. COMPUTED RESULTS

A. Polarizabilities of the neon and argon atoms

Computed results for the closed-shell atoms neon and
argon will be presented in this section. These atoms have
been selected since they are complex enough to yield
reasonable tests of the present basis set method on real
many-particle systems, but small enough to avoid dis-
turbing relativistic effects. In both cases extensive and
accurate measurements are available, as well as computed
results based on the sophisticated numerical techniques
that have been developed for atomic systems.

The aim of the present investigation is not to improve
on the theoretical results available in the literature, but
rather to see whether the present indirect method to corn-
pute o(co) can compete with numerical methods involv-
ing explicit use of continuum orbitals. The next step will
then be to apply the method to other systems, e.g. , dia-
tomic molecules, where current atomic methods are
inapplicable due to the difficulties involved in obtaining
accurate continuum orbitals.

The basis sets used for the present atomic calculation
are extensions of the sets of Slater orbitals with optimized
exponents published by Clementi and Roetti [20]. The
extensions consist in inclusion of several extra difFuse s
and p orbitals, which are more important for polarizabili-
ty calculations than they are for energy optimization. In
addition a rather large set of excited d orbitals will be re-
quired.

In the case of neon the 6s, 4p basis of Clementi and
Roetti was extended by three diffuse 2s Slater orbitals
with exponents /=0. 5, 0.8, and 1.3, respectively. The p
basis was extended by two extra diffuse 2p orbitals with
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0 3
TABLE I. Computed values of a(i g) (in a.u. , 1 a.u. =0.1482 A ) for the ground state of Ne.

0
Standard Hamiltonian, Eq. (4)—order

1 2 Total
Shifted Hamiltonian, Eq. (10)—order

2 Total

0,00
0.25
0.50
1.00
1.50
2.00
3.00
4.00
6.00
8.00

10.00

1.908
1.861
1.738
1.402
1.099
0.864
0.560
0.387
0.212
0.132
0.090

0.265
0.231
0.153
0.004

—0.071
—0.096
—0.093
—0.076
—0.047
—0.031
—0.022

0.296
0.260
0.184
0.057
0.008

—0.008
—0.010
—0.006
—0.002
—0.001
—0.000

2.469
2.352
2.075
1.463
1.036
0.760
0.457
0.30S
0.163
0.100
0.068

2.361
2.268
2.042
1.524
1.122
0.84S
0.518
0.345
0.184
0.113
0.076

—0.135
—0.150
—0.173
—0.177
—0.147
—0.115
—0.070
—0.045
—0.023
—0.013
—0.009

0.401
0.356
0.263
0.119
0.054
0.027
0.010
0.005
0.002
0.001
0.001

2.627
2.474
2.132
1.466
1.030
0.758
0.457
0.306
0.164
0.101
0.069

exponents /=0. 7 and 1.0, respectively. A set of six even
tempered 3d Slater orbitals were used to describe the ex-
cited d orbitals, and the exponents were obtained from
the relation [14]

(27)

For neon a reasonable spread of the 3d orbital energies
was obtained by the choice (0=0.5 and R = 1.6.

For argon the 7s, 5p basis set of Clementi and Roetti
was extended by two diItuse 3s orbitals with exponents
(=0.80 and 1.45, respectively, and two extra difFuse 3p
orbitals (/=0. 5 and 0.9) were added to the p basis. A
basis set of five 3d orbitals with go=—0.5 and R=1.9 [cf.
Eq. (27)] was used in this case. All excited states were
computed in the Hartree-Fock potential of the neutral
system, i.e., a V type of potential was used.

Values of the real polarizability cz(iq) on the imaginary
axis were computed at about 25 diferent g values in the
range n =0.0 to 12.0 (in a.u. ). The many-body expansions
used to compute a(i ii) were for these closed-shell systems
complete to second order in the interaction with the
Coulomb term H' [cf. Eq. (4)] or &' [cf. Eq. (10)]. Com-
putations were carried out according to the shifted Ham-
iltonian of Eq. (10) as well as to the standard partition of
Eq. (4).

The results obtained are presented for some selected q
values in Tables I and II. Zero order refers to the dia-
gram of Fig. 1(a), whereas first order refers to the dia-
grams of Figs. 1(b)—1(d) (one interaction with H' or &').
In a similar way second order refers to the contribution
from all the diagrams involving two interactions with H'
or gf', a few of which are shown in Fig. 2.

From the results of Tables I and II it is clear that the
significance of the second-order contributions to a(i i)) is
greatly reduced for increasing g values in all cases.
Another indication of the enhanced rate of convergence
for increasing values of g is the fact that the discrepancy
between the total results obtained with the standard and
shifted Hamiltonians is also greatly reduced as g is in-
creased.

The errors introduced by the finite basis set are diScult
to estimate, but several test runs for various basis sets in-
dicate that the errors that stem from the basis are prob-
ably smaller than those arising from the termination of
the perturbation expansion. The present computed static
polarizabilities (i)=0) can be compared with experimen-
tal values and other theoretical predictions. In the case
of Ne the experimental value is 2.67 a.u. [21],whereas the
best current theoretical prediction seems to be the cou-
pled cluster value of 2.70 a.u. [22]. The agreement with

TABLE II. Computed values of n(ig) (in a.u. ) for the ground state of Ar.

Standard Hamiltonian, Eq. (4)—order Shifted Hamiltonian, Eq. (10)—order
1 2 Total 0 1 2 Total

0.00
0.30
0.60
1.00
1.50
2.00
3.00
4.00
6.00
8.00

10.00

9.502
8.636
6.849
4.692
2.971
1.993
1.053
0.648
0.320
0.195
0.133

—0.195
—0.565
—1.015
—1.109
—0.878
—0.645
—0.362
—0.225
—0.108
—0.063
—0.041

0.244
—0.015
—0.246
—0.235
—0.144
—0.091
—0.049
—0.031
—0.016
—0.009
—0.006

9.558
8.057
5.S84
3.350
1.950
1.257
0.642
0.392
0.197
0.122
0.086

12.88
10.75
7.338
4.317
2.457
1.559
0.786
0.476
0.236
0.145
0.100

—5.46
—4.31
—2.55
—1.20
—0.550
—0.299
—0.125
—0.068
—0.030
—0.017
—0.012

2.75
1.83
0.789
0.250
0.063
0.009

—0.014
—0.014
—0.009
—0.006
—0.004

10.17
8.273
5.583
3.362
1.970
1.269
0.646
0.394
0.198
0.123
0.086
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TABLE III. The total computed photoionization cross section (Mb) of neon as a function of the pho-
ton energy co.

CO

(a.u. )

0.80
0.90
1.00
1.20
1.60
2.00
2.50
3.00
4.00
5.00
6.00
7.00
8,00
9.00

10.00

Standard
Hamiltonian, Eq. (4)

5.68
6.97
7.98
9.22
9.47
8.35
6.71
5.23
2.97
1.62
0.91
0.53
0.33
0.21
0.13

Shifted
Hamilton&an, Eq. (10)

6.21
7.40
8.28
9.13
8.57
7.13
5.64
4.65
3.44
2.57
1.89
1.34
0.92
0.61
0.39

Expt. [26]

6.34
7.71
8.47
8.96
8.40
7.40
6.22
5.25
3.70
2.49
1.71
1.22
0.86
0.64
0.49

the results presented in Table I is thus quite good, in par-
ticular for the value obtained with the shifted Hamiltoni-
an. The recommended value of the static polarizability
for argon is 11.07 a.u. [23], which is about 10% larger
than the computed values of Table II.

The second-order corrections to a(ig) are of particular
importance for the smaller q values, and they are in some
cases seen to be numerically larger than the first-order
contributions. There are significant second-order contri-
butions from all the different types of diagrams shown in
Fig. 2. A somewhat astonishing observation was that tri-
ple excitation diagrams like that of Fig. 2(g) are of great
importance in all cases. Such rather large second-order
terms may stem from the use of the V potential.

In many-body calculations of atomic polarizabilities
for closed-shell systems all contributions beyond the
lowest order are generally interpreted as correlation
corrections. However, the results of Tables I and II
demonstrate that the computed values to the lowest order
as well as those of the next orders are strongly dependent
on the chosen partitioning of the total Hamiltonian.
Furthermore, preliminary results obtained with V
type of single-particle potentials indicate that the role of

correlation is heavily dependent on the choice of single-
particle model. A similar conclusion was also made by
Amusia and Cherepkov [24]. Hence, by the present
method it seems hard to make a fruitful distinction be-
tween single-particle effects and correlation corrections.
The challenge is certainly to have a perturbation expan-
sion that includes both types of effects in the final answer
in a su%cient manner.

B. The photoionization cross sections of neon and argon

Photoionization cross sections were obtained from Eq.
(15) by use of the computed values of a(iq). This integral
equation which links a(iq) and o (co) was inverted as de-
scribed in Sec. II F. The crucial point in this process is
an appropriate choice of the set of basis functions g„(co)
of Eq. (22). These basis functions were chosen according
to Eqs. (25) and (26), with /=3. The selection of the
number of basis functions and the parameters ko and C of
Eq. (26) is a matter of some trial and error. Generally the
number of basis functions g„(co) should be kept as low as
possible to avoid linear dependence among the functions
g„(q) of Eqs. (23) and (24). The best criterion for a suc-

TABLE IV. The total computed photoionization cross section (Mb) of argon as a function of the
photon energy co.

CO

(a.u. )

0.60
0.70
0.80
0.90
1.00
1.20
1.40
1.60
1.80
2.00

Standard
Hamiltonian, Eq. (4)

25.29
31.68
33.86
32.08
27.45
14.96
4.51
0.00

Shifted
Hamiltonian, Eq. (10)

24.09
29.15
30.69
29.02
25.11
14.83
6.25
1.57
0.22
0.75

Expt. [26]

31.1
36.3
36.3
33.5
28.9
17.1
5.70
1.54
0.91
1.18
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cessful solution of Eq. (23) seems to be that the computed
values of o.(co) are stable within reasonable variations of
the parameters ko and C of Eq. (26). To search for the
best possible solution of Eq. (23) is obviously also an im-
portant criterion for the final choice of the parameters of
the basis functions. The best solution was defined as the
one that minimized the mean square deviation between
the left- and right-hand sides of Eq. (23) for the discrete
set of computed values of a(irI).

Computed values of the photoionization cross section
o(co) are given in Tables III and IV and visualized in
Figs. 3 and 4. Values of a(ii7} were computed at about
25 diferent values of q in the range q=0.0 to 12.0 a.u. ,
and the discrete values of a(ig) were fitted to a linear
combination of exponentials to obtain a smooth and con-
tinuous representation of the function tx(i'�). A set of five
basis functions P„(co) was used for neon as well as for ar-
gon. For neon the selection of parameters of Eq. (23) was
ko =0.75 and C= 2.0, and for argon ko =2.20 and
C=&2. The different choices of parameters for Ne and
Ar reflects the difFerent shapes of the o (co) curves in the
two cases. For Ar o(co) falls to nearly zero already at
photon energies of about 1.7 a.u. , whereas for Ne the
curve extends to much higher photon energies, requiring
a wider range of exponentials for an appropriate repre-
sentation.

Photoionization cross sections based on the standard
Hamiltonian of Eq. (4) as well as on the shifted Hamil-
tonian of Eq. (10) are given in Tables III and IV. The
disparity that exists between the results obtained with the
two diA'erent Hamiltonians indicates that the conver-
gence of the perturbation expansion of a(ig) is still not
complete, even with two interactions with the Coulomb
part included. With the shifted Hamiltonian several
classes of low-order diagrams will be included to all or-
ders, and the shifted Hamiltonian tends to yield the best
agreement with experiment for both neon and argon.
This conclusion is in accordance with other many-body
results on dynamic polarizabilities and photoionization
[12, 25].

In Figs. 3 and 4 the present results obtained with the

a(Mbj

I

2.5

FIG. 3. Computed total photoionization cross section of
neon. A —A —A, present results; 0 ——0 ——0, R-matrix results
of Burke and Taylor [27] (length form); 0——I——, experiment
[26].

cr(Mb}
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FIG. 4. Computed total photoionization cross section for ar-
gon. A —A —A, present results; 0 ——0 ——0, R-matrix results
(length form) [27]; —— ——,R-matrix results (velocity form

[27];~——~——~, experiment [26].

shifted Hamiltonian are compared with experimental
values [26], and with the results of the R-matrix calcula-
tions of Burke and Taylor [27]. The R-matrix calcula-
tions seem to be representative for the best current
theoretical methods, and only those results have been in-
cluded in the present work for comparison. Many other
important references to computations on Ne and Ar are
found in the work of Burke and Taylor [27]. The
pioneering calculations of Amusia, Cherepkov, and Cher-
nysheva [28] using the random-phase approximation with
exchange (RPAE), and the many-body perturbation
theory (MBPT) results of Kelly and Simons [29] in partic-
ular also need to be mentioned. As stated earlier, the ob-
jective of the present work is not to improve on existing
theoretical predictions for Ne and Ar, but rather to test a
new method which should hold the promise of a wider
range of applicability. The results shown in Figs. 3 and 4
indicate that the present approach is a competitive alter-
native to existing methods even for the simple atomic sys-
tems Ne and Ar. The agreement with experiment is in
the case of Ar seen to be somewhat inferior to the excel-
lent one for Ne. The reason for that is probably related
to the somewhat poorer prediction of the static polariza-
bility in Ar, which in turn seems to stem from an
insu%cient convergency of the perturbation expansion.

Dispersion curves [a(to)] obtained from Eq. (16) and
the computed values of cr(co) are shown in Figs. 5 and 6.
The most characteristic feature of the dispersion curves is
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