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Rigid rotator under slowly varying kicks: Dynamic autoresonance and time-varying chaos
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We investigate numerically and analytically the dynamics of a rigid rotator under the action of
"kicks" with slowly varying strength and period. We derive a discrete map for this model and use the

map to study three effects. The first of them is the dynamic autoresonance, which can lead to a
significant regular acceleration or deceleration of the rotator. We find conditions for which the effect

occurs, including the condition for an unlimited acceleration. The second effect is the transition to glo-
bal chaos that arises due to the increase of the stochasticity parameter with time. We find that this tran-
sition occurs through bifurcation of the main island (the bifurcation parameter being simply time) and
the development of a complicated separatrix structure. Also, slowly evolving global chaos is studied nu-

merically, and a time-dependent analog of the "quasilinear" diffusion equation is shown to describe quite
accurately the numerical simulations.

I. INTRODUCTION

The kicked-rotator model (and the "standard, " or
Chirikov-Taylor, mapping derived from it) describes a
rigid rotator, kicked periodically by 5-function impulses.
Being a very special model, it nevertheless proved to be
rather useful in various physical problems. Also, it
presents a good local approximation to a still larger num-
ber of systems (this justifies the name "standard map-
ping") and therefore has been extensively studied [1—3].
The standard mapping has the following form:

I„+&
=I„+KsinO„,

0„+j =0„+I„+), (2)

where I is the normalized action variable, 0 is the phase
variable, K is the parameter of the mapping (stochasticity
parameter), and n is the discrete time. Mapping (1), (2)
serves as one of the "working models" describing the
transition from local to global chaos in time-dependent
deterministic Hamiltonian systems with one degree of
freedom. It was found that for K larger than approxi-
mately 0.97, the motion described by mapping (1), (2) be-
comes globally chaotic, while for K (0.97 the chaos
remains local [1—3].

The standard mapping (1), (2) refers to the simplest
case when both the kick strength and the time interval
between any two successive kicks (the kick period) are
constant. In the present work we shall somewhat gen-
eralize this model and allow kicks with slowly varying
strength and period. This complication of the model
proves to be justified because it enables us to study three
generic effects, which are absent in the standard map.
The first of them can be called the dynamic autoreso-
nance (DAR), and it refers to the regions of the phase
space where the motion is regular. It presents a large
(though completely regular) increase or decrease of the
action variable I (the rotator acceleration or decelera-
tion), caused by a slow monotonic variation in the kick

period. Different versions of this effect were studied in a
number of applications and, first of all, in many charged
particle acceleration schemes. Probably, the first theoret-
ical work describing this effect was the classical work of
Bohm and Foldy [4] on the theory of synchrotron. How-
ever, to the best of our knowledge, no attempts have been
made before to consider the DAR in the framework of a
simple mapping and thus considerably simplify the prob-
lem, otherwise too complicated for a detailed analytical
analysis.

The second effect we are going to discuss is a direct
descendent of the first. It can occur in nonlinear systems
(oscillators or rotators) with a negative nonlinearity and
presents "dragging" the system from local to global
chaos via the DAR mechanism. Also, we shall consider
the case of a well-developed global chaos to study the
nonstationary diffusion of the action variable resulting
from the slowly variation of the kicks. Such a nonsta-
tionary diffusion regime is characteristic of deterministi-
cally chaotic systems, parameters of which slowly vary in
time, and this generally complicated problem looks much
simpler in the framework of the mapping.

The organization of the paper is the following. In Sec.
II we derive a "generalized standard mapping" for the
problem of a kicked rotator with the variable kick
strength and period. Then we apply the mapping to the
case of a slowly decreasing kick period to demonstrate
the DAR effect. In the same section we employ the
isolated-resonance approximation, which helps one to
better understand the effect. Section III is devoted to the
case of a negative nonlinearity of the "rotator" and slow-
ly increasing kick period. Here our numerical computa-
tions show a time-dependent transition to global chaos
through a sequence of doubling and multiplying bifurca-
tions, where the bifurcation parameter is simply time.
The nonstationary diffusion occurring in the case of a
well-developed global chaos is considered in Sec. IV. In
Sec. V we present a simple example of a physical system
which can be approximately described by the generalized
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standard mapping. Finally, Sec. VI presents a brief sum-
mary of the results.

II. GENERALIZED STANDARD MAPPING
AND THE DYNAMIC AUTORKSONANCE

Let us consider the Hamiltonian function H(I, O, t) of a
nonlinear oscillator (or rotator) perturbed by 8-dependent
6-function impulses at some arbitrary time intervals
ti, t2, t3, . . . , tk, . . . (t; &t fori & .j):

H (I,8, t) =Ho(I) +cosO g V„5(t t„)—
k = —co

(3)

where Vk is the time-dependent strength of the kicks. I
and 0 are the action and angle variables, respectively,
defined by the unperturbed oscillator with Hamiltonian
Ho(I). We can directly integrate the equations of motion
following from the Hamiltonian (3) to find a mapping
which expresses I and 8 immediately before the (n +1)th
kick in terms of these quantities immediately before the
nth kick:

In+ &
=In+ V„sinO„,

8„+i
=8„+co(I„+i )T„+i (mod2m. ),

(4)

where co=BHO/BI is the unperturbed oscillation (rota-
tion) frequency, T„+i=t„+i t„ is —the time interval be-
tween two successive kicks (n+1)th and nth (the kick
period). From now on phase 8 will always be meant to be
taken modulo 2m. It is seen that, in contrast to the stan-
dard mapping, parameters of mapping (4), (5) (i.e., V„
and T„+,) depend explicitly on the discrete time n

Let us start with the case of a positive nonlinearity.
Further simplifying the problem, we assume the simplest
dependence co(I) =coo+co'I with positive coo and co', and
change variables from I to I'=I +(coo/co'). In doing this
we replace a general nonlinear oscillator by a rigid rota-
tor. We will call variable I' "the physical action" and
omit the prime in the following. Then, defining
g„=co'T„, K„+,= V„g„+i, and 5„+,=(f„+,—g„)/g„,
and transforming to a new variable J„=g„I„,we arrive
at the following mapping:

Jn+ i
=J„+K„+ising„+6„J„,

8„+,=8„+J„+, (mod2~) .

(6)

(7)

Mapping (6), (7) generalizes both the standard mapping
(1), (2) and two more mappings, originating from the
standard mapping. First, it is reduced to the standard
mapping (1),(2) in the case of T„=const and V„=const.
Indeed, in this case J„becomes I„multiplied by a con-
stant, while 6„=0and K„+&

=const.
Second, if T„ is kept constant, but V„ is not, mapping

(6), (7) coincides with that considered by Dana and
Reinhardt [5]. In this case J„=const I„and 5„=0,but
K„+i%const.

Finally, there is one particular case in which mapping
(6), (7) takes the form of the "standard dissipative map-
ping, " or Zaslavsky mapping [6]. This is the case when
variations of V„and g„preserve the constancy of

(9)

We shall call the islands, corresponding to the stable
period-1 fixed points of the auxiliary mapping, "the main
islands. " Only those fixed points are stable (they are
stable foci) for which

8, =m. +arcsin( 2m l 5„/K„+, ) . (10)

The tangent mapping, obtained from the auxiliary
mapping in the vicinity of any of the stable period-1 fixed
points, has two complex conjugate eigenvalues with the
following absolute values:

Assume that for all n, K„+& is less than the critical
value K„;,(I) at which the lth period-1 fixed point loses
its linear stability:

K„+i&K„;,(l)=(4+25)/cosO~ .

It is natural to assume that for 6„«K„and small
enough values of l, the size of the area from which trajec-
tories of the auxiliary mapping are attracted to the corre-
sponding stable focus is close to the size of the main is-

EC„+i=V„g„+i, while 5„ is also constant. It means that
both the kick period and the kick strength are varying
with n according to some geometric progressions with re-
ciprocal factors. The case of a normal (positive) dissipa-
tion corresponds to 6„&0. It should be mentioned that
while mapping (4), (5) for the physical action I and phase
8 is area preserving (therefore there is no real dissipation
in the system), the term with 5„causes dissipation in
mapping (6), (7) for variables J and O. Note also that the
physical time t can be expressed in terms of the discrete
time intervals in the following way:

n 1 n

t(n)= g Tk =
k=1

In the following we are interested only in the case
when variations in V„and g„are very slow, so that after
a small number of iterations the mapping remains very
close to the standard mapping (sometimes we shall have
to impose more rigid conditions). This means, in particu-
lar, that 6„ is very small: 6n «1. However, even in this
case the term containing 5„ in Eq. (6) makes the mapping
nonperiodic in J, in contrast to the standard mapping
[mapping (4), (5) for the physical variables is nonperiodic
in I also]. One of the important consequences of this fact
is the absence in mappings (4), (5) and (6), (7) of the "ac-
celerator modes" [1), which present a nongeneric curiosi-
ty of the standard mapping.

Our first aim is to demonstrate the DAR effect in map-
ping (6), (7). Let us start with an auxiliary mapping,
which is obtained from mapping (6), (7) by setting
K„+,=const and

~ 5„~=const && 1. The auxiliary map-
ping has the following period-1 fixed points (O„J, ):
J, =2~l, sinO„= 2nl5„/K—„+„. where l =0, 1,2, . . ..
For 5„%0 the number of the period-1 fixed points is al-
ways finite and equal to I,„+1,where l „is the max-
imum value of l for which
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(I„)=2vrlg„' . (13)

Since g„ is proportional to T„, we see that by slowly de-
creasing (increasing) the kick period, we can significantly
increase (decrease) (I„), that is, accelerate (decelerate)
the rotator. The necessity to decrease T„ in order to ac-
celerate results from the positiveness of the rotator non-
linearity.

Equation (13) can be rewritten as a DAR condition:

lands of the standard mapping. In other words, the ma-
jority of points lying within the lth main island are
mapped by the auxiliary mapping to points lying within
the same island. Now, let us apply mapping (6), (7) with
variable K„+& and 5„ to a point lying within an island not
too close to the island border. If we change parameters
K„+, and 5„with n sufficiently slowly (the characteristic
time of these changes must be larger than the "non-
linear" period of the particle motion inside the island; see
Sec. III), and if K„+, remains lower than K„;,(I), we can
expect the motion to continue being regular and confined
within the (adiabatically evolving) island. In particular,
period-1 fixed points of the auxiliary mapping will be-
come adiabatically evolving period-1 "quasifixed" points.
In other words, the average value of J„, which we will
denote by (J„),will remain constant and equal to J, .
Then, going back to the physical action I„=J„/g„, we
immediately obtain the following simple, but important
result:

lQ„=co((I„)), (14)

where 0„=2~/T„ is the time-dependent angular kick
frequency. Therefore, despite large (but sufficiently slow)
variations of the driving frequency 0„, the rotator fre-
quency remains locked in the lth resonance, which can be
called DAR acceleration/deceleration. It is important
that relations (13), (14) are independent of the initial con-
ditions, i.e., the same resonance involves a large fraction
of trajectories, initially lying within the island. DAR is
also possible for higher harmonics of frequency co. For
example, the second-harmonic resonance condition has
the following form:

I0„=2m)((I„)),
which corresponds to the (slowly evolving) period-2
quasifixed points of mapping (6), (7).

All these considerations are supported by numerical
simulations, as can be seen from Figs. 1 —3. Here are
shown three typical examples [denoted by (a), (b), and
(c)j, of the DAR acceleration on the third, second, and
first harmonic, respectively, as described by the general-
ized standard mapping (6), (7). All the three examples
have the common set of parameters 5„=—0.005=const
and E„=0.995" (that is, V„=const) and differ in the ini-
tial phase and action. For all these particular cases, con-
dition (9) of existence of the period-1 quasifixed points
can be rewritten as
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FIG. 1. Phase 0 is shown as a function of n for the mapping (6), (7) with a constant 6„,5„=—0.005, Kp =1, i.e., K„=0.995". The
initial conditions are (a) Jp=6m+0. 2, Op=4. 1916' (b) Jp=47T+0. 2 Op=4. 1916 (c) Jp=27T+0. 2 Op=4. 1916. From Eq. (16) (a)
N&=471, (b) N&=552, and (c) Np=690.
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n (n~(l) =In(0. 0052wl)/1n(0, 995). (16)

K„
E„+) =K„1—

5~
(17)

In this case

EN
lim

N~~ Eo

lim
N~~ IO

(19)

This condition breaks at n& =690, 552, and 471 in cases
(a), (b), and (c), respectively. Figure 1 shows the evolu-
tion of phase O„with time. For all three trajectories the
phase initially oscillates around I9, . Also, the drift of 0,
is observed to proceed in agreement with Eq. (10), and
the breakdown points are clearly seen to agree with Eq.
(16) in all three cases. Figure 2 shows variable J„,which
oscillates with a decreasing amplitude around 2m. l, l =1,
2, and 3. Figure 3 shows the evolution of the physical ac-
tion I„ for the same trajectories. We observe that the
autoresonance acceleration stops at n&.

An unlimited acceleration can be achieved if variations
of 6„and K„+&

with n are chosen not to violate condition
(9). An example of such a regime is shown in Figs. 4—6.
We chose a simple relation between 5„and K„+„
5„=—K„+,/5~, and the logistic map (see, e.g. , [7]) for
E„+).

and we achieve an unlimited acceleration, provided con-
dition (9) is fulfilled. Indeed, it is easily seen that condi-
tion (9) never breaks down for the chosen value of 5„and
l =1. The period-1 fixed point of the auxiliary mapping
has 8„=2.73 (sino„=0.4), and is independent of n;
therefore it is also a "true" period-1 fixed point of map-
ping (6), (7). For I )2, condition (9) is violated from the
very beginning; therefore the acceleration on such / is im-
possible.

All these predictions agree well with our numerical cal-
culations. Also, the calculations reveal a more compli-
cated behavior of trajectories, initially close to separa-
trices. The latter includes both capture of initially free
trajectories (i.e., those not lying within the island), and
release of initially trapped ones. Figures 4—6 show 0, J,
and I, respectively, as functions of n. We chose Ko = 1

and considered three examples, denoted by (a), (b), and (c)
and differing by the initial conditions. Trajectory (a)
starts too far from any of the main islands. It passes by
the resonances at J=4~ and 2~ and then continues to-
wards the resonance J=O (see Fig. 5). Trajectory (b)
starts near the separatrix of the J =4~ resonance, and
"falls" into the "stochastic sea, " where it stays for some
time until it is captured by the main island around
J =2~, where it stays forever. In this case the main is-
land at J =2~ acts like a trap. Trajectory (c) begins in-
side the J=2~ island where it stays forever, oscillating
around O„with a decreasing amplitude. Case (a) corre-
sponds to an "untrapped" trajectory which is chaotic at
the beginning but later becomes regular, since I( „slowly

~ ~
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FIG. 4. Phase 0 as a function of n as described by mapping (6), (7) with 6„=—K„/5~, Kp = 1 and the following initial conditions:
(a) Jp=6~+0. 2 Op=3. 48 (b) Jp=47T+0. 2 Op=2. 9643 (c) Jp=27T+0. 2 Op=3. 48.
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decreases from a value of KO=1 to about K&=0.02.
Cases (b) and (c) show sinusoidallike behavior with de-
creasing amplitude and frequency. As is seen from Fig.
6, in case (a) I oscillates around approximately a constant
value (no DAR acceleration occurs). Trajectory (b) is
caught into the DAR and gets accelerated, while (c)
starts from autoresonance. In the cases (b) and (c), I„
grows, on the average, according to Eq. (13).

Of course, by a proper choice of 6„/IC„+& we could
satisfy condition (9) for any finite l. Note also that a
dependence in which the 6„/IC„ratio is kept constant is
the only one which provides "true" (i.e. , n-independent)
period-1 fixe points of mapping (6), (7).

Higher-order islands corresponding to the quasifixed
points of a higher order can also trap some trajectories,
which leads to acceleration, transient or continuous.
However, the condition of existence of these islands is
more rigid than that for the main islands. We show in
Figs. 7—9 three examples of trajectories for which we
took 5„= IC„/20—m and To=1. Cases (a) and (b) show
trajectories which are temporarily trapped by period-2 is-
lands (Figs. 7 and 8) and thus involved in the (transient)
DAR acceleration on the second harmonic of frequency
co (Fig. 9); see Eq. (15). In case (a), the period-2 island at
J= 3m ceases to exist at n =90, then the trajectory by-
passes the J =2~ island, afterward the two J=~ islands,
and then approaches J =0. In case (b), the period-2 is-
land at J=a breaks down at n =550. In contrast to
cases (a) and (b), case (c) corresponds to the main island

and shows eternal stability (Figs. 7 and 8), leading to an
unlimited acceleration (Fig. 9). The details of the phase
behavior observed in case (a) are explained by the bypass
of resonances mJ =2~1, where m and l are integers. The
eternal existence of the main island, one of which trajec-
tories is shown in case (c), agrees with Eq. (9) and corre-
sponds to H, =sr —sin (0.1). For this trajectory we
have, on the average, that I„/Io=ICO/K„=7. 2 (see Fig.
9), in a good agreement with Eq. (13).

In order to provide a deeper insight into the DAR
effect and draw a parallel with other models, let us follow
Ref. [8] and employ a time-dependent version of the sin-
gle resonance approximation. Before this, however, it is
convenient to transform Hamiltonian (3) from the physi-
cal time t to a "new time" r, such that r=r(t) is a mono-
tonic function and r(tk)=k, so that in the new time the
kick period becomes constant and equal to 1. We pay for
this convenience by variation with time of the frequency
of the unperturbed Hamiltonian Ho, which now becomes
g(r)co(I), where g(r) =dt/dr. Actually, r(t) can be arbi-
trary between successive kicks, as long as r(tk) =k. We
can use this arbitrariness to choose g(k)=Tk, which
gives the following simple relation between g and g:
4=@k)~'.

Expanding the perturbation term of the Hamiltonian
in the Fourier series over the harmonics of frequency 2m.

(the Fourier coefficients slowly varying with time) and
keeping only the resonant term, corresponding to the
(evolving in time) lth main island, we shall obtain the fol-

~ ~

, , '1&

'Il
4

1

', I&
~t;

$~
~l,

go

~ i
~ I

ri , 1+r:.' '

1+

lo

'~r r+t
h ~ 'o
~ ~

4 ~rr'.
'~r

~
~'

g ~
~ g ' ~

I ~ ~
1

I ~ ~r
~\

o

0

r1

6.00.0 3.0
PHASE8, a

I I I I I I

,j

,1

l

I I I

0.0 3.0
PHASE8, b

p

I I I

6.0

(c)
~ ~

6.00.0 3.0
PHASE8, c

I I I I I I
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I= —V(r)sin(8 —2am~),

0=((~)eo(I(~)),
where V(r) = Vk(r =k). Let us define a new phase

P(r) =8 2~—mr+sr

(20)

(21)

(22)

and consider a rigid rotator for which coo(I) =I and hence
g& =g(k). Then, defining

J(r) =g(~)I(r),
we arrive at the following equations of motion:

(23)

lowing canonical equations of motion in the vicinity of
the lth resonance:

case there exist stable fixed points of Eqs. (24) and (25).
This condition corresponds to condition (9) for the auxili-
ary mapping.

Equation (26) was encountered in various physical
problems, such as, for example, particle dynamics in the
synchrotron [4,9] and interaction between the elec-
tromagnetic wave and electrons in the free-electron laser
[10]. If the corresponding time dependences of the pa-
rameters in Eq. (27) are slow on the time scale of the os-
cillation frequency, the solution for the trapped, or
phase-locked, particles has the character of oscillations
with slowly varying amplitude and frequency.

Equations (24) —(26) describe a particle motion in a
slowly time-dependent potential

J=+J—g V(~)sing,

P=J 2vrm, —

which yield

p+ Vg(sin1( sin—g, ) = ~p

with

2rrrl
P =arcsinS 2

(24)

(25)

(27)

O'= Vg(cosg, +g, si gn, cosg —/sing—, )

with the friction force

Fgiss =

Now, defining kinetic energy

T= ,'(J 2vrm—)—

we see that the "total energy"

(28)

(29)

(30)

(31)

We have assumed that ~2m.mg/Vg ~

( 1 since only in this is a slow function of time. This fact enables us to esti-
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FIG. 10. Comparison between mapping (6), (7) and the solution of Eq. (26), with Kp =1.0, 5= —0.0054=const, Op=+ —0. 1, and
Ip =2m.
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mate the resonance width, if we neglect the slow time
dependences. For the trapped trajectories, the phase is
confined between a local maximum of potential qI, say g„
and another phase g2 for which

'I'(g)) =q'(g2) .

Using Eq. (28), we see that

yi=~sgn

Substituting it into Eq. (28) we obtain

4&(P, ) = V/[2 cosg, + (2g, msgn—g, )sing, ],

(32)

(33)

(34)

while fz is found from the following transcendental equa-
tion:

cosP, +cosg2+ (P2+ g, —rrsgnitj, )sing, =0 . (35)

From Eqs. (30), (31), and (34) we obtain the resonance
width, or the island size, by which we call the maximum
amplitude of oscillations of J:
b J= [2Vg[2cosg, +(2g, ~sgng, )sing, ]]' (36)

III. DYNAMIC AUTORESONANCE
AND "DRAGGING" TO GLOBAL CHAOS

For a fixed period of the kicks we have $, =0, and Eq.
(36) gives the well-known result [1—3] 5J = (4K) '~ . It
can be seen from Eqs. (36) and (27) that the resonance
width decreases with an increase of m, and becomes zero
as f, approaches +m/2 or ~/2—

We have solved Eq. (26) numerically for Ko = 1.0 and
6=0.0054=const for some typical initial conditions and
compared the results with those of mapping (6), (7). Fig-
ure 10 shows a typical example of this comparison for an
initial condition corresponding to a main island. The
close similarity between the evolution of phase as de-
scribed by mapping (6), (7), and the single resonance
equation (26) is clearly seen.

we arrive once again at mapping (6), (7) with P instead of
8 [all the notation remains the same except that now
g„=yT„, and J„ is given by Eq. (38)]. This means that
the DAR acceleration is possible in this case as well.
However, there are some differences. The first of them is
an artifact of the specific model (37): the constancy of
(J„)=J~ =2m l now means that

In Immy (40)

i.e., I„ is limited: I„(I,„=coo/y if g„ is growing with
n.

Second, the case of an increasing T„corresponds to
5„&0, therefore mapping (6), (7) is characterized by a
negative dissipation. The absolute values of the two ei-
genvalues of the tangent mapping, corresponding to the
period-1 fixed points of the auxiliary mapping, are now
larger than 1 [see Eq. (11)]. This means that trajectories
initially close to the period-1 fixed point will move out-
ward. In our numerical simulations we see this tendency
holding for all the trajectories inside the islands that we
checked.

Third, since IC„+,= V„g„+&, the growth of g„ leads to
the growth of IC„+i (unless V„decreases too fast). As
E„+,reaches IC„;,(l) from Eq. (12), the main island loses
its stability. In the case of the standard mapping, the loss
of stability of a period-1 fixed point at K =4 is accom-
panied by the birth of two stable period-2 fixed points by
bifurcation [1—3]. Therefore, in the case of mapping (6),
(7) with (adiabatically) slowly varying parameters, we can
expect a process of doubling bifurcation to occur at some
discrete time moment n, when stability criterion (12)
breaks [if condition (9) for the existence of the period-1
fixed point still holds]. Similarly, we can expect a series
of multiplying bifurcations and the transition to global
chaos to develop in time, as parameter K„+, is slowly in-
creasing. These effects are indeed seen in our numerical
simulations. Figures 11—13 show how the motion in the

In this section we briefly consider the DAR in the case
of a slowly increasing kick period. There are two physi-
cal situations which make such a case interesting. Energ-
ization of a nonlinear oscillator with a negatiUe nonlinear-
ity presents the first one, and deceleration of and extrac-
tion of energy from an oscillator with a positive non-
linearity (in the simplest case, rigid rotator) presents the
second.

In the first case, the unperturbed Hamiltonian Ho(I)
[see Eq. (3)] is such that de/dI (0. To be more specific,
let us consider the following example:

r

7.0—

3.0
IIO(I) =cooI — I, y )0 (37) 1.75 2.25 2.75

therefore co(l) =coo yI. Assume that w—e start from some
Io (I,„=coo/y. Keeping in mind that ~' = ( —y ) (0,
and transforming to the new variables according to

4.5
6.250 12.500 (10 n)

Jn =~OS Warn ~

$„=8„+~,
(38)

(39)

FIG. 11. Extended phase space (O, I, n) as described by map-
ping (6), (7). Kp=1.75 E +~ K =8X10 =const, Sp=2. 72,
and Ip=6. 3.
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IV. NONSTATIONARY DIFFUSION
IN THE ACTION SPACE

In this section we consider the case of a well-developed
time-dependent global chaos in mapping (6), (7) and study
the nonstationary diffusion in the action space.

In the limit of K »1, the behavior of the action vari-
able of the standard mapping is quite accurately de-
scribed by the following "quasilinear" diffusion equation
[11, 12]:

4.5

.5 3.85

3.750

!

4.2 K„
(IO

a = a'
p(I, n) =2)(K) p,an

(41)

which gives the following solution for the mean square of
AI:

FIG. 12. Same as Fig. 11, but now Eo =3.5,
E„+,—K„=8 X 10 =const, 00=2.75, and Io =6.25.

( ( b,I„) ) =n X)(K) . (42)

plane (I,O) changes with the discrete time n. In each of
Figs. 11—13, we show a single trajectory, generated by
mapping (6), (7).

In Fig. 11 we use mapping (6), (7) with K„
=1.75+8X10 n, 5„=8X10 /(1. 75+8X10 n) for
the total number of steps N =12500. At E„=2.05 we
see a bifurcation of the trajectory, related to the appear-
ance of secondary islands near the separatrix of the main
island.

In Fig. 12 we chose K„—E„,=3.5+8X10 n, 5„
=8X10 /(3. 5+8X10 n) and N=7500. At K„=3.7
we see bifurcation of the single trajectory into period-14
secondary islands which also lie near the separatrix of the
main island with X =3.7. At n =8000 this trajectory be-
comes chaotic (not shown in Fig. 12).

Figure 13 corresponds to K„=3.8+ 8 X 10 n, 5„
=8X10 /(3. 8+8X10 n), and N =12500. Equation
(12) predicts bifurcation of the main island into two
period-2 islands at K„=4.00002. This bifurcation is

clearly observed in Fig. 13 as occurring at the time mo-
ment n =2500, in a good agreement with Eq. (12).

The diffusion coefficient X)(K) is given by equation

g)(K)=K [0.5 —J2(K) —J, (K)+J2(K)+J3(K)], (43)

I„+,=I„+sinO„,

9.+i=|).+k.+iI.+i

(44)

(45)

which is similar to the standard mapping (1), (2) with
divided-by-K Eq. (1), g„+, playing the role of K. The
difference consists in the n dependence of g„+,. If this
dependence is very slow and g„+,))1, we can still de-
scribe the system in terms of diffusion in the action space
but the diffusion coefficient becomes n dependent (i.e.,
discrete time dependent). Therefore the evolution of the
distribution function of I as a function of the discrete
time n, p(I, n ), must satisfy the following equation:

a ap=2)(n) p,an

where J is the Bessel function of the pth order (see Ref.
[2] and references therein). The diffusion coefficient (43)
is an oscillating function of K, the oscillation period be-
ing close to 2m at K))1. Dividing Eq. (1) by K and
denoting I„,„=I/K, we see that the diffusion of I„,„ is
characterized by the diffusion coefficient 2)(K)/K,
which is just the term inside the square brackets of Eq.
(43).

Similarly, we can treat the modified standard mapping
(4), (5). Taking co(I)=coo+co'I with positive coo and co',

changing variables from I to I'=I+(co /ohio'), and setting
for simplicity V„=const=1, we arrive at the following
mapping:

3.5

4.3 4.8
0 6.250 &2.500 (lo n)

where the diffusion coefficient 2)(n) is given by Eq. (43),
where K is replaced by g„+,. The linear diffusion equa-
tion (45) with a time-dependent diff'usion coefficient can
be easily solved analytically. In particular, if we start
with the simplest initial condition p(I, O) =5(I), where 5
is the Dirac delta function, the solution of Eq. (45) pre-
dicts that

FIG. 13. Same as Fig. 11, but with Ko =3.8,
K„+&

—E„=8 X 10 =const, 00=3.24 and Io =6.25.
((EI„)')=J 2)(t)dt .

0
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cy, we can "lock" the ball's bounce frequency and ac-
celerate the ball.

VI. SUMMARY

We investigated numerically and analytically the dy-
namics of a rigid rotator under the action of kicks, when
both the strength of the kicks and the interval between
them (the kick period) vary with time. We developed a
"modified standard map" for this model and, within its
framework, provided a simpler and more detailed
description of three rather general effects. The first of
them, which has been well known for some time in
different physical systems, is dynamic autoresonance, or
dynamic phase locking. We found a set of conditions (ex-
istence and stability of the quasifixed points) for which
the effect occurs. In particular, we found the condition
under which the DAR acceleration proceeds unlimitedly.

Second, we investigated the time-dependent transition
to global chaos that arises due to the increase of the sto-
chasticity parameter K with time. We found that this
transition occurs through bifurcation of the main island

at K =K„;, (the bifurcation parameter being simply time)
and the development of a complicated separatrix struc-
ture.

Third, we employed a time-dependent diffusion equa-
tion, generalizing the quasilinear equation found earlier
for the standard mapping, to describe the time-evolving
global chaos. This equation has been found to agree very
well with our numerical simulations.

Finally, we presented a simple physical example of an
elastic ball bouncing. on an oscillating Aoor with a vari-
able oscillation frequency, and showed that the problem
can be described by the modified standard mapping (4),
(5).

In conclusion, the kicked rotator with slowly varying
kicks provides a convenient model of studying generic
phenomena of the DAR and DAR-induced global chaos
in driven nonlinear systems with slowly varying parame-
ters.
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