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Transitions between metastable states in a solid double well
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The evolution of a spinlike variable in a double potential well that depends upon both angular coordi-
nates is investigated as the system is subjected to both deterministic damping and stochastic noise linked
by the fluctuation-dissipation relationship. A variational procedure appropriate for large barrier-to-
noise ratio is adopted, and it can be seen that the resulting Euler-Lagrange equation introduces an
angle-dependent field conjugate to the leading Fokker-Planck eigenfunction. In this way the spectral
problem of the Fokker-Planck operator is approximated by two coupled first-order partial-differential
equations, whose solutions allow the determination of the relaxing probability distribution and the
equilibration current in almost all phase-space regions. A detailed application to the Lipkin model of
many-body theory is presented.

I. iNTRODUCTION

Physical descriptions of the decay of a metastable state
or the thermally activated escape out of a single well,
traditionally formulated in terms of transition-state
theory [1], have undergone spectacular development
since the statement of Kramers's problem [2] and the
solutions encountered by Kramers himself for the under-
damped and the overdamped regimes of one-dimensional
Brownian motion. More recently, Matkowsky, Schuss,
and Tier [3] presented an appropriate generalization of
Kramers s transition rate, valid for any friction strength.
Decaying metastable states appear in a variety of physical
and physicochemical phenomena, such as molecular au-
toionization and dissociation, diffusion in solids, nuclear
fission, and Josephson tunneling. Furthermore, the spec-
trum in cases where the damped system may remain
bound in neighboring potential wells incorporates as well
problems of optical bistability, aspects of chemical kinet-
ics, response of logical cells, and dynamics through
porous systems. En addition to well-known textbooks
[4,5] and review papers [6,7] useful references and appli-
cations of Kramers's transition theory for bistable and
multistable potentials can be found in Refs. [8—11]. In
particular, the investigation of diffusion over a barrier in
one-dimensional bistable potentials has become an active
field, and a number of special applications that allow ex-
act or quasiexact solutions are available [12—14] (see also
Ref. [10]and references therein).

Somewhat less, although still significant attention has
been paid to the generalization of Kramers's theory to n-
dimensional multistable potential wells [15—23]. In two
earlier works, Brown [24,25] elaborated Kramers's ideas
for a system with a two-dimensional configuration space
related to a spin orientation, and developed a framework
appropriate to describe magnetic relaxation of single-
domain particles (see also Ref. [26]). However, illustra-
tion of this approach has been restricted to a situation
where the anisotropy energy and the initial spin distribu-
tion do not depend on the polar angle. This case reduces
then to thermally activated diffusion over a one-

dimensional barrier between two minima and can be in-
scribed within rate-equation theory [23,27]; a variational
procedure allows one to reencounter Kramers's formula
for the transition rate in the low-noise —high-barrier limit.
The validity of the variational approach has been recently
discussed by Dekker [11]and holds in the Smoluchowski,
i.e., high friction, regime. Based on a similar reasoning,
Landauer and Swanson [15] formulated escape theory in
an n-dimensional double well by looking for an escape
near the saddle in the energy surface [23], which should
be a sensible approach insofar as the noise is additive
[20]. In addition, a recent calculation of the mean transi-
tion time between metastable states in a one-dimensional
well by Ryter and Meyer [28—30] which closely parallels
Brown's estimate of the first eigenfunction of the
Fokker-Planck (FP) operator above the equilibrium state
in the low-noise regime, provides a characterization of
the stochastic separatrix in phase space.

On the other hand, it has been recently shown that
coherent-state mappings of quantum systems with
spectrum-generating algebras provide a generous supply
of multistable energy landscapes for several degrees of
freedom [31]. In particular, quasispin and pseudospin
systems corresponding to physical objects with SU(2) and
SU(1, 1) dynamical groups, and with quadratic Hamiltoni-
ans, are shown to exhibit structural instabilities and un-
dergo nonthermodynamic phase transitions to a double-
minimum-plus-double-maximum configuration [32—36]
in a two-dimensional phase space. The SU(2) models,
which are exceedingly popular in many-body theory, be-
come especially interesting from the topological
viewpoint, since their phase space is a compact
manifold —the sphere, present as well in the description
of spin relaxation [24,25]—and the potential landscape
presents as well two saddle points. We then intend to for-
mulate the dynamical problem of a quasispin variable J
immersed in a thermal reservoir which yields both deter-
ministic friction and stochastic noise, within the
Langevin Fokker-Planck framework, and estimate the
transition rate in the double well. The treatment ern-
ployed here follows earlier approaches [15,24,25] howev-
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II. BROWNIAN MOTION
OF THE QUASISPIN VARIABLE

As shown in Refs. [31—36], given a quadratic Hamil-
tonian in quasispin space J,

&(J)=QO J+—,'a;~J;Jt, (2.1)

er, the appearance of the leading FP eigenfunction in the
large-barrier limit is given for every region of phase space
where the relaxation current remains stationary. The
role of the two saddle points is discussed, and the conse-
quences of having the variety of Morse i saddles available
in higher-dimensional systems [34,37] are also mentioned.

For this purpose, in Sec. II we set the framework for
the description of the stochastic evolution of the quasi-
spin variable on its phase space, and in Sec. III the varia-
tional approach [24,25] is adopted to establish a formula
for the transition rate. The characteristics and estimate
of the leading FP eigenfunction are discussed in Sec. IV
and the illustration for the celebrated Lipkin-Meshkov-
Glick model [38] is presented in Sec. V. The summary
and conclusions are the subject of Sec. VI.

P(J, t)=L [Q(J)P(J, t)]—yJXL. [Q(J)P(J,t)]

+D, L,"L P(J, t)

—:. D(L)P(J, t) . (2.8)

Since the stochastic motion described by Eqs. (2.4) and
(2.5) takes place on the sphere J J=J =const, the distri-
bution function P (J, t) in fact refers to the angular loca-
tion (8,y) of the random quasispin vector. In what fol-
lows, we take the radius J equal to unity; it is straightfor-
ward to obtain Eq. (2.8) in terms of the angular variables.
It reads

a
sing' Bg BB

=VXV, (2.10)

P(J, t) = [P,%]+ . [sin8(ygf++D~Pz)]
sin8 B8

+ [ygfg+(Dicot 8+D~~ )P ], (2.9)
sin 8 ~f'

where subscripts under & or P indicate partial
differentiation with respect to the given variable. The
curly Poisson-bracket symbol here means

where J is the expectation value of the SU(2) algebra basis
vector J with respect to an SU(2) coherent state, the
deterministic motion on the SU(2)/U(1) sphere is ruled by
a nonlinear Euler-like or Bloch equation

with V the angular gradient operator,

a
sin8 B(p

' B8
(2.1 1)

J=QXJ,
where

(2.2) It is clear that (2.8) is a continuity equation on the
sphere, in other words,

Q—=Q(J)=Vq& . (2.3) P(J, t)= —V j, (2.12)

It is well known [31—34] that the family of Hamiltoni-
ans (2.1) can be at most bistable in phase space. If the
quasispin system is now immersed in a fluctuating heat
bath, a phenomenological approach to the subsequent
stochastic evolution is given by the pseudovectorial
Langevin equation [24],

where the divergence operator only contributes the angu-
lar derivatives on the current density,

3=(J jy)=j +jd.+jdt ' (2.13)

the three terms on the right are the reversible, dissipative,
and diffusive contributions,

J=Q'X J, (2.4)

where the effective frequency Q' now contains a conser-
vative, a dissipative, and a random contribution. We as-
sume, as in Ref. [24],

j„„=vP= —&z, . %~ P,1
' sin8

1
jd;, = yV&P= —y . —&,&q P,

srn6

(2.14a)

(2.14b)

Q'=Q —yQ XJ+to(t) (2.5)

where y is a dissipation parameter and to(t) a Gaussian
Auctuating frequency with a white spectrum, i.e.,

jdif
Dicot 8+Did

P
sin8

(2.14c)

(ro(t) ) =0,
(co;(t)co (t')) =2D, (t t') . "—

(2.6a)

(2.6b)

Furthermore, we will assume D „Dyy Di& Dzz D
and D;~ =0 if i%j.

The FP equation for the distribution P(J, t) can then
be expressed in terms of the (anti-Hermitian) angular-
momentum operator in quasispin space, P (J)=exp — &(J)

D
(2.15)

The equilibrium distribution P gives then rise to a
divergenceless current j . It is not trivial to write down
the analytical form of P (J) for anisotropic diffusion;
however, if the isotropy condition Di =D

~~

——D is fulfilled,

one can find a divergenceless reversible current j =j„„.0
and a distribution,

L=JXV'~,

and acquires for the form [24,25]

(2.7)
which corresponds to a fluctuation-dissipation relation-
ship
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D=yT (2.16)

for temperature T given in energy units. Hereafter, we
will restrict ourselves to the isotropic diffusion problem;
the FP equation consequently reads

minimum of the functional A in Eq. (3.3). If we adopt
the reduced eigenfunctions 4„(co)=e F„(co), the ac-
tion of the FP operator can be set as

(3.6)

P(y, 6, t)= vz—VP+yPV %+2)V P,
with the total velocity

(2.17) with the reduced current

j@,=v@—DP+, (3.7)

vz =v —yV&, (2.18)

III. VARIATIONAL APPROACH
TO THE DECAY TOWARDS EQUILIBRIUM

DF„= A,„F„, — (3.1)

Several approaches have been devised to solve the FP
equation [4,39]. Among the various numerical tech-
niques [39,40], it is tempting to expand the distribution
into spherical harmonics and look for the solutions of the
system of coupled equations for the expansion coefficients
that originates in Eq. (2.17). However, such a method
has proven to be useful, in the sense that rapid conver-
gence is achieved, when the noise source is able to rapidly
randomize an initial anisotropy in the spin population
[24,41]. In this work, rather than investigating the highly
diffusive regime, we will be concerned with the limit of
large barrier-to-noise ratio, for which it has been already
shown that the most convenient approach is the eigen-
function expansion [24].

Let us now consider the spectral problem of the FP
operator 8 defined by (2.8) and (2.9) with the current j
given in Eqs. (2.12)—(2.14). The eigenfunctions F„(p,q),
namely, the solutions of the partial-differential equation

which is an actionlike expression,

A(4) = f d coX [@(y,8)],
with the Lagrangian

X(c(y,&))=—e ~ V@.j~
[D ( V (y )

—L [ pl ~ ~ j ]

(3.9)

(3.10)

In addition, the general orthonormality relation (3.2)
poses two restrictions on the potential 4&, namely, (a)
orthogonality with respect to the equilibrium distribu-
tion,

Y, = f

defoe

~ @(p,8)=0, (3.11a)

which makes it evident that the effect of factorizing the
equilibrium distribution away in the eigenfunction is the
suppression of the dissipative current. Furthermore, the
set jP„] can be shown to coincide with the eigenspec-
trum of the adjoint FP operator 8

Equation (3.3) is then

A(4) = fde @V (e ~
jq, )

= f defoe ~ VC& jz, , (3.8)

satisfy the orthonormality relationship [24,25],

fde exp(&/T)F„F =5„ (3.2)

and (b), normalization,

Y, = f defoe ~ N (y, B)=1 . (3.11b)

where dcu=sinOdOdy is the elementary angular volume.
Accordingly, one may write

X„=fd~e~"F„V j„
=A(F„) . (3.3)

P(p, B,t)=Aoe + g A„e "F„(y,8) . (3.4)

It is evident that in the long-time scale, where the evolu-
tion is dominated by the probability How among peaks of
the nonequilibrium distribution, the decay rate towards
equilibrium is governed by the smallest nonvanishing ei-
genvalue A,

&
(hereafter, I,

&
=A, ). We will then consider

P(q&, 8, t)=e ~~AO+ A, F, (p, 8)e (3.5)

As stressed by Dekker [11],in any dissipation regime,
Eq. (3.3) describes the exact eigenvalue in terms of the ex-
act eigenfunction; it has been shown [11]that in the over-
damped (Smoluchowski) regime, an appropriate upper
bound for A, is given by Brown's ansatz, namely, by the

The evolving distribution P (tp, 8, t) may then be expand-
ed as

In order to extract an approximate expression for the
decay rate A, in (3.5) within the range of validity of the
variational prescription, we restrict ourselves to the
strong-coupling limit where some interaction parameters
a; in Eq. (2.1) are much larger than a typical unper-
turbed frequency component 0, . This condition gives
rise to high maxima and deep minima in the energy sur-
face, &(J)=&(y,8) for given modulus J; this is illustrat-
ed in Figs. 1 and 2 for the Lipkin model Hamiltonian [38]
(which will be further discussed in Sec. V), for
interaction-strength values g = 1.5 and 10, respectively,
for completeness, we show as well the level curves of
these surfaces in Figs. 3 and 4, where the libration and
rotation zones, together with the separatrices, are clearly
displayed. The equilibrium distributions (2.15) are re-
spectively shown in Figs. 5 and 6, where we can appreci-
ate the concentration of probability density on the libra-
tion areas around the minima. Consequently, a steepest-
descent approach that generalizes the well-known one
proven to be appropriate for the one-dimensional case
[24] can be employed as follows [15].

We first notice that the extremum of the functional
(3.9) together with (3.10) may correspond to a function
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ing arguments [15,24]. Inspection of the conservative
phase Aow and the shape of the equilibrium distribution
suggests that for low deviations from equilibrium, the re-
laxational current takes place mostly near the saddle
points. One then tentatively sets

A. = f dcoX(VQ)
a

(3.20)

with o. some region surrounding the saddle s .
Now let g and 2) be the eigencoordinates at s, i.e.,

(3.19)
,'A——g(g g—) + ,'&—„„(g q—) (3.21)

with the summation including every saddle, and with With v =V&=0 at either saddle, Eq. (3.20) is actually

—& /T=e I den exp
a 2T D(V4) (3.22)

We now assume that P varies only in the descent direc-
tion g with a g-independent current density C [15,24]

IV. ESTIMATE OF THE REDUCED CURRENT
IN THE FAR-SADDLE REGIONS

(3.23)

C=ayD
277T exp

and integrate P over g across the saddle, which means
switching between the minimum regions p . We then get

1/2

Let us now turn back to the determination of the fields
P(q&, 8) in those angular domains that exclude the double
well and the saddle or, equivalently, to the estimate of the
reduced current j& [Eq. (3.7)]. Considering the Lagrang-
ian (3.10) and the variations 64; =8, (M&), for i =y or 8,
and @=/, the functional derivative 5A/54 =0 gives rise
to a divergenceless current in the above regions,

(3.24)
V.(e j~)=0 . (4.1)

and after replacement of BPIBg in (3.22) we obtain
I /2

A, —=e D(bg) (3.25) e ~/~j~=VX+, (4,2)

This field equation indicates that the current e j+
can be derived out of a scalar potential %'(y, 8), such that

The expression for b P =$2 —P, may be recovered from
Eqs. (3.16). We here quote just the result for symmetric
minima, with b P =2/0 as given by (3.18); in this case,

1/2
D ~g' ( %' ~() '")/T-.T "~-

'9'9

(3.26)

which is equivalent to the expression obtained by Lan-
dauer and Swanson using rate equations [15]. Conse-
quently, the lifetime of the nonequilibrium mesoscopic
state is the harmonic mean of the individual lifetimes, or,
for twofold symmetric minima,

(~$ ~In ) / Za 0
(3.27)

indicating that the saddle lying closest to the double
minimum controls overall relaxation and establishes the
equilibration time scale.

The relationship between this decay and the escape
rate for a two-dimensional double well can be established
on the same arguments as for a one-dimensional system
[24—27], as indicated in Appendix A. Furthermore, in
Appendix B we derive formulas equivalent to (3.25) and
(3.26) for the degenerate saddle case, together with the
corresponding approximate expressions for the eigen-
function P in the near-saddle region.

with the angular part of the rotor operator and with
Equation (4.2) replaces then the assumption of a

stationary current adopted in the one-dimensional case
[2,24]; it permits one to write the Lagrangian (3.10) as the
Lie product,

Z= Iq, c ], (4.3a)

or

X=—VP VX%=V% VXQ=V%XVP . (4.3b)

The antisytnmetric role of p and qI suggests a plausibil-
ity argument for further characterization of either field.
We will then assume that %(y, 8) is itself a solution of the
variational problem for a Aow with conservative genera-
tor —&(y, 8); in this context, we may regard 4 and ql as
conjugate fields with the respective currents
e j+=V'X% and e j+=V'XN. To determine ei-
ther field N or + we may then resort to a numerical pro-
cedure to solve Eq. (4.1), subject to boundary conditions
on the edges of both minimum areas; several methods are
available [40]. However, as the numerical processing of
the approximate field equation is undertaken, one is led
to the conclusion that the difticulties involved are not
largely lower than those of solving the exact eigenvalue
problem (3.1). Furthermore, no advantage can be taken
from the fact that the FP operator D is a quadratic func-
tion of the angular-momentum operator L; if the motion
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were purely diffusive, Bs+.=D; L;L would commute
with I. and could be diagonalized within any irreducible
representation of the rotation group [42]. This is not the
present case, since one can verify by direct computation
that neither the reversible nor the dissipative currents are
rotationally invariant. It becomes evident that such a
lack of symmetry is due to the presence of the
coordinate-dependent frequency 0(J)=VJ& in both
currents.

In what follows, we will derive a simpler frame within
which the second-order partial derivative equation (4.1)
reduces to quadratures along orbits of the conservative
Aow. In order to do this, let us express the definition of
the pair of conjugate currents and their related fields as

j@=vP DVP—=e V Xg, (4.4a)

j~ = v% —DV +—=e V X P . (4.4b)

D 2

(4.5b)

in every region where the velocity vector is nonvanishing,
i.e., Eqs. (4.5) are meaningless at the critical points,
which are anyway not present in the rotation area.

Now elementary treatments of first-order partial-
differential equations (PDE's) lead to the characteristic
system for (4.5a),

These vector equations constitute a linear four-
dimensional system with unknowns P, %', and their
respective derivatives. One may then eliminate three out
of the six unknowns and obtain individual first-order
partial-differential equations for each field. As we elimi-
nate P, P, and gz we get

(4.5a)
D +1

with v =
~U~

= V&~, and under elimination of P, P, and

on an orbit with energy E, with an amplitude $0(E) to be
specified upon setting the explicit expression of P(y, 8) on
a given curve 8= I (y). The solution of (4.6) is then the
function P(&(y, 8 ),8); if one chooses (4.6c), one gets, in-
stead,

P(E,8 ) =g (E)exp f d y (sin8)&e
D +1 +0

(sin8)&~

sinO

sin8

A

1

D +1
sin6-

e
—&/T

sin6

e

%/T 0'

sin8

—D
sin8

(4.8)

In view of these relationships, the extremal Lagrangian
can be written in a rather symmetric fashion as

(4.7b)

which is a function P(y, &(y, 8)). It should be noticed
that since & and && simultaneously vanish only at the
critical points, Eqs. (4.7a) and (4.7b) are the appropriate
expressions, respectively, for the field in the rotation
areas where &&=0 and where & =0. In a similar
fashion one may integrate 4 from (4.5b).

The remaining step is to compute the field gradients
appearing in the currents (4.4). One then notices that the
four involved partial derivatives can indeed be written,
solving the system (4.4), as a rectangular matrix equation,

dP g

1 dP D sinBU

P d8 D2+1

(4.6a)

(4.6b)

2

/(y q/) — DU
(e JY/T$2+ a/T$—2).

D +1
(4.9)

Furthermore, we may construct the reduced current lines
which correspond to the integral curves of

if& %0, or

1 dP D sinBU (4.6G)
P d8 D~+I

if &~%0. The first equation here corresponds to the con-
servative orbits &=E; the second one (4.6b) or (4.6c) is
then the total derivative of the field with respect to an an-
gle along each given orbit. Straightforward integration of
(4.6b) then yields

P(E,8)=f (E)exp
D

D +1

d8 Ja
dg j~

(& /sinB)P —DPz
—&zP —D(P /sin6)

(4.10)

i.e.,

(& /sin8)/+De

&qP+De —(& /sin 8)g
(4.11)

V. APPLICATION TO DOUBLY SYMMETRIC MINIMA

A similar equation can be derived for the j+ current
which corresponds to a change of sign in the velocity.

2 sin8
sin8 & &E

(4.7a)

In order to illustrate the construction here proposed
we adopt a specific phase portrait, namely, the one corre-
sponding to the semiclassical Lipkin Hamiltonian [38],
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&(y, 8)=cos8 ——sin Bcos2p,

with a positive interaction strength y&1. As is well
known, this energy surface on (y, 8) space exhibits two
symmetric minima on the southern parallel
cos6 = —1/g, respectively located on the meridians y=0
and y=~, together with two maxima at cos8=1/y in
the northern hemisphere with y =m/2 and g =3rr/2 (cf.
Figs. 1 —6). In this model, the energy values at the extre-
ma are

1.0--

0.0--

~min ~max
1

1,2 1,2 (5.2) -1.0-

—v =&&=—sin8(1+y cos8 cos2p), (5.3a)

Let us now indicate the application of the formalism
developed in the preceding section to fully determine the
field P(q&, 6). We first examine expressions (4.7) and the
velocity components,

0 H/2

FIG. 8. The selected matching function p(y, 80) described in
Eq. (5.4) on an arbitrary parallel 80=const. The parameter a
has the value 2m. .

Uy = . =g sln8' sln2+
sin8

(5.3b)
—a(y —y2)

1 e
4o

We immediately notice that while && vanishes only at
the critical points and on the curve cos0= —I /(y cos2@),
whose arcs are contained in the librational regions as in-
dicated in Fig. 7, & is zero on the meridians q&=0, m. /2,
and 3m/2. It becomes clear that the appropriate field
description corresponds to Eq. (4.7b) which is nonsingu-
lar in the rotation area. To calculate g(E), we select a
curve and an expression for P(y, 6) on it which satisfies
most requirements for the leading eigenfunction, namely,
those given in Eqs. (3.12) and (813). A possible choice
among many others, which has the advantage of simplici-
ty, is depicted in Fig. 8 and corresponds to a function
P(y, 8o) on a parallel Do=const near the saddle, as fol-
lows:

P(y, 8)= 0 if (p, (y(q)2
a(y —

y&)
1 —e

1 e
If 0 tp

(5.4)

cos80 E
y —=y(E) =

—,
' cos

sinao
(5.5)

Accordingly, one can match Eq. (5.4) to (4.7b) and ex-
tract the amplitude g (E) as

g (E)=P(y(E), 8o}exp —I dy'h (g&', E)
0

(5.6)

Furthermore, on the given parallel we have, according
to (5.1),

cos 2f)

0

ose O

2/
II (5.7)

where h (p', E) is the integrand in (4.7b).
Finally we establish the form of the transition rate A, as

indicated in Sec. III and Appendix 8, since this is the
case where one coefficient, actually &, vanishes at the
saddle. The proper integration over the angular domain
thus gives, according to Eq. (B6),

1/2
—(x— ) /x2~6-&

T

with

ho=2(y —1) . (5.&)

FIG. 7. The y intervals where cos6= —1/(ycos2@) is a
meaningful curve. If cos2@)0, 8 corresponds to the southern
hemisphere and the curve lies inside the librational area at the
minima. If cos2y(0, the corresponding arc lies within the
rnaximurn region.

1/2D 3/2 —r /2 (5.9)

which exhibits the same temperature dependence as that
obtained in the one-dimensional spin relaxation problem
I24,25j.

For very large barrier-to-noise ratio r =y!T))1, the
transition rate is then
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VI. SUMMARY AND CONCLUSIONS

The present paper has been devoted to developing an
extension of Kramers's theory of transitions between
states in a double well to those situations where the po-
tential energy landscape is bivariate and exhibits double
maxima and double saddle points. This is indeed the case
of the quasispin models of atomic and nuclear physics
[31—36], in addition to the problem of spin relaxation for
single domain particles in a thermally fluctuating envi-
ronment [24]. The procedure here adopted follows close-
ly previous advances in the field [15,24], however, beyond
the already established derivation of Kramers's transition
probability by means of rate equations and/or variations
near the saddle point, we set solvable equations for the
first nonequilibrium FP eigenfunction in the rotational
region of the phase portrait. The celebrated Lipkin mod-
el [39] provides an adequate framework for specializing
the general ideas and working out the particular details
of the present approach.

Immediate applications of the arguments and formal-
ism here exposed concern potential shapes with asym-
metric double minima [32—34], on both compact and
noncompact manifolds [35,36] for which some particular
realizations step on the field of collective many-body dy-
namics [31]. An extension of the whole theory should be
developed as one intends to estimate transition rates for
higher-dimensional systems like those of the SU(n) type
[31]. In such a case one faces a potential landscape on an
m-dimensional manifold, m )2, where critical points of
the conservative fiow are Morse i saddles [34,37]. In oth-
er words, between maxima and minima one may en-
counter a wide variety of partial barriers with more than
one descent direction, and it is not obvious where the pre-
ferred escape should run. One may then formulate the
general hypothesis that the lowest ~E, E;„~ barri—er
among every i saddle and every minimum ought to be
selected by the escaping probability density; it is then of
interest to examine the possible appearance of competing
paths and the temperature dependence of each partial
contribution to the transition rate, since any additional
Gaussian integration along a descending direction in-
corporates a factor T' . Forthcoming results along
these lines will be presented elsewhere.
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1/2 (A2b)

According to Eqs. (3.16),

P, (t)= —P, (t),
i.e., P, +P2 =const. Furthermore,

(A3)

P ] +P2 =2' T c4 o
(b, ,h2)'/

(A4a)

5Pi P2 27TT g o(g g )1/2

277T —(~('"+~'")/T+2
' 1/2

(A4b)

with b, given by (3.17) and

g —
( g )1/2e 2

( g )1/2 (A5)

It is now straightforward, after elimination of Ao and
A 1 from (A4), to obtain the balance equation

P) = —P2 = —v)Pi +v2P2 (A6)

v=A, e (A7)

Here I3 is the complementary label with respect to a. It
then becomes clear that the escape rate, in other words,
the nonzero eigenvalue of the system (A6) is

v] +vz —A, (A8)

and that in the case of symmetric minima, one obtains

be the total probability of finding the Brownian quasispin
in the librational area corresponding to minimum u. We
assume expression (3.5) for P (p, 8, t); thus using (3.14) we
obtain
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APPENDIX B

(A9)

APPENDIX A

In the asymptotic regime under consideration, smooth-
ing of the probability density is governed by the Aow
among its time-dependent peaks, located near the mini-
ma. Quantitatively speaking, the population balance can
be described in the standard manner as follows: Let

It may happen that the quadratic form d & is degen-
erate at the saddle point, i.e., either &&& or &„„vanish
together with gf'&„. Let us consider each of these possibil-
ities.

If &&&=0, we have

P (t)= f dcoP(y, d, t)
i"a

(Al) in the neighborhood of s . The approximate partial ei-
genvalue then reads [cf. Eq. (3.22)]



3568 E. S. HERNANDEZ

—& /T —Jy ( — )2/2T

a
—& /T ( — ) /2T

Ia
(B2)

H
C =Db.g 2' T

—& /T
e

from where the field gradient can be approximate as
1/2

(B9)

where b, g is the distance between minima across the
descent axis. On the other hand, in order to calculate the
field gradient, we proceed as in Sec. III. The current den-
sity C is computed from (3.23), considering
c)P/t)g= Ce r /D, with & given by (Bl), and integrat-
ing across the saddle to obtain b,P. This gives

t)f ~~
g'

t)g 2' T

(g —
g ) /2T

(B10)

Replacement in (B8) and Gaussian integration then
gives

' 1/2

—Pf'+& (g —g ) 12]T

b,g
(B3)

~.=—DL, 2' T
(gy)2e 0 (B1 1)

and consequently,

(B4)

and, for symmetric minima,
1/2

DL ~@~o
e

HATT 2

—(% —~~'")/T
(B12)

Equation (B2) then yields

( bP )' 2' T

b, g

which, for symmetric minima, is
1/2 —(%"—~g'" ) /T

(B5)

(B6)

Finally, we illustrate here the local appearance of the
eigenfunction P(g) in the near-saddle region, as arising
from the integration of its gradient. Let us first consider
the nondegenerate case, with nonvanishing &&& and &„„.
From (3.23) and (3.24), we obtain the same as in Eq.
(B10),consequently,

1/2
—&@(g—

g ) l2T

If&„„=0,then

&=&' ——,'&~~(g —g )

The partial eigenvalue is now estimated as
—& /T (g—g ) /2Ta=

CT a
—& /T (g —g' ) /2T=e LD dge + (VP)~

(B7)

(BS)

b,P
2 2T

1/2

(g —
g ) (B13)

If (B4) holds, the field gradient is constant and given by
Eq. (B4). Accordingly, one has

p(f)= (g —
g ), (B14)

where L, is the length of coordinate g. The above pro-
cedure to calculate C now yields

which is the appropriate expression for the Lipkin
scenario studied in Sec. V.
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