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Amplification by globally coupled arrays: Coherence and symmetry
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We study the general problem of small-signal arnplification by globally coupled oscillator arrays. The
analysis is relevant, for example, to series-array Josephson-junction parametric amplifiers and to certain
multimode laser systems. Maximum amplification is achieved near symmetry-preserving bifurcations;
the response near symmetry-breaking bifurcations is substantially worse. In the presence of noise, we
find a seemingly paradoxical phenomenon wherein individual array elements suffer large-scale random
fluctuations, yet the total array response remains steady.

I. INTRODUCTION

There is a close connection between the bifurcations of
a nonlinear system and its ability to act as a parametric
amplifier [1—7]. This correspondence has been exploited
to achieve a deeper, unified understanding of parametric
amplifiers in a variety of physical domains, from super-
conducting Josephson-junction parametric amplifiers
(SUPARAMPS) [7,8], to nuclear magnetic resonance
masers [9], nuclear parametric spin waves [10], semicon-
ductor lasers [11—13], and driven magnetostrictive rib-
bons [14]. The reason a unified description is possible is
that, close to a bifurcation point, the relevant phase-space
dynamics reduces to a low-dimensional "normal form"
which describes the dominant response to small perturba-
tions. Analysis of the normal form leads to scaling be-
havior which is independent of the detailed nature of the
physical system.

The connection between bifurcations and the scaling
behavior of amplified (random or periodic) perturbations
has been developed for both one-dimensional iterative
maps and ordinary differential equations [1—7]. Several
scaling predictions may be derived from a linearized
analysis, e.g. , relating the output response as a function
of perturbation frequency and bifurcation parameter.
Beyond this, examination of the fully nonlinear normal
form predicts additional phenomena [6], including the
stabilizing shift of the (supercritical) bifurcation point,
the onset of a multiplet of closely spaced lines in the
power spectrum, and the so-called noise rise, a
phenomenon which had plagued experiments on
Josephson-junction parametric amplifiers [15]. Experi-
mental observations of these phenomena have been re-
ported for a variety of systems: In addition to all of the
areas listed above [8—12,14,16,17], one can add experi-
ments on a bouncing ball [18], charge-density waves
[19,20], and p njunction c-ircuits [21,22]. In virtually all
cases reported, the observed behavior follows closely the
theoretical predictions. (A single experiment reporting
deviation from these predictions is described in Ref. [17].)

The purpose of this paper is to consider a particular
extension of the subject, namely the amplification proper-
ties of certain nonlinear arrays near their bifurcation

points. Our immediate motivation stems from practical
considerations that apply to Josephson-junction paramet-
ric amplifiers. In particular, a single Josephson junction
is a low-power, low-impedance device; consequently, it is
often desirable to use a large array of junctions in a single
device. It is natural to expect there will still be a close
link between bifurcations in the array dynamics and the
regime where the array is most sensitive to perturbations;
however, the theoretical considerations are bound to be
more complicated than for the single-element problem.
The main mathematical difficulty is that array systems
typically involve many active degrees of freedom, so that
the "essential" phase-space structure is not necessarily
low dimensional. However, it may be possible to over-
come this difficulty under certain circumstances. In this
paper, we focus on a particular class of array system,
namely globally coupled arrays [23—25]. We find that,
for this class, the additional complexity of many degrees
of freedom is rendered tractable by an appropriate coor-
dinate transformation. As a result, we are able to draw a
fairly complete picture of the small-signal amplification
properties of such arrays.

In the final analysis, we find that the amplification
properties of arrays is fairly straightforward. The most
important distinction to draw is between symmetry-
breaking and symmetry-preserving bifurcations. (All
possible instabilities can be classified as one of these two
types. ) Only in the latter case does the output power scale
as N, which is the best-case scenario for oscillator ar-
rays, corresponding to perfect constructive coherence be-
tween the individual oscillating array elements. This has
important implications for the design of parametric
amplifier arrays, as discussed in Sec. VI.

The contents of this paper are as follows. In Sec. II,
we introduce the dynamical equations for the class of sys-
tems to be studied, namely arrays of identical elements
subject to global coupling. Though our starting point is
very general, we subsequently restrict our attention to
some subset of situations: as a guide, we choose those sit-
uations which seem most important to the Josephson-
junction application. (Even with this reduced focus, the
analysis remains fairly general. ) In Sec. III, we carry out
as far as possible the general aspects of the calculation,
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including the linearization and diagonalization of the
dynamical equations. Sections IV and V pursue various
special cases: the response to homogeneous, periodic per-
turbations is developed in Sec. IV, while Sec. V deals with
inhomogeneous, random perturbations. In both sections,
both symmetry-preserving and symmetry-breaking bifur-
cations are considered; we find this particular distinction
is crucial, and leads to very different results. Throughout
this paper, the emphasis is on the scaling behavior of the
output power as a function of the array size X and the bi-
furcation parameter. The latter measures how close the
system is tuned to the bifurcation point. Many of the re-
sults are "unspectacular" in the sense that they are easily
understood on physical grounds. However, the analysis
also uncovers a couple of surprises: these are also dis-
cussed in Sec. VI, as are the prospects for observing them
in future experiments.
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FIG. 1. Circuit schematic of a current biased, resistively
shunted Josephson-junction series-array parametric amplifier.

II. FORMULATION OF THK PROBLEM

The starting point for our problem is the set ordinary
differential equations, given by

xk=Fk(xk, Z;p, ), k =1, . . . , X (2.1)

where xk is a real vector quantity representing the state
of the kth oscillator, the overdot denotes differentiation
with respect to time, Fk is a vector function of xk, and Z
is given by

Z= —g xk (2.2)

The notation here is intended to emphasize that the func-
tion Fk has explicit dependence only on the local variable
xk and on the specific combination of variables given by
Z. Of course, the Fk also depends on one or more control
parameter(s) p. Moreover, we assume that the functional
form of Fk is independent of k. Thus Eq. (2.1) describes a
set of identical degrees of freedom, whose evolution de-
pends on both "local dynamics" (i.e., terms involving xJ„
alone), and "coupling dynamics" (i.e. , terms that describe
the interaction between degrees of freedom, involving Z).
The interaction term chosen is of the type known as "glo-
bal coupling" [23—25]; physicists will also recognize the
form of Eq. (2.1) as describing "mean-field" coupling.
We emphasize that, while the mean-field form is often
used as a computationally expedient approximation,
equations of the form (2.1) may also arise as the physical-
ly correct description. This fact often comes as a surprise
to people when they first here of it; nevertheless, this type
of global interaction correctly describes certain linear
series-array Josephson-junction circuits [26,27], as well as
a type of multimode laser system first described by Baer
[28—30].

As an example, consider the series array of Josephson
junctions depicted in Fig. 1. Such configurations have
been studied in some detail, for a variety of different
loads: the physical significance of the load is that it acts
to dynamically couple the junctions. For the case shown,
the load is a single resistor, and the governing equations
of motion are [26]

AC-
2e 2erPk+ $g+Iosingq+ g $=Ib,

2eR

k = 1, . . . ,X (2.3)

dIk
C Gk —a gEIk —2' g I —Iz,

(jWk)

dGk =y — 1+p g I Gk,
j(Wk)

(2.4)

where w, and ~& are the cavity round-trip time and
fluorescence time, respectively; a is the cavity loss pa-
rameter; y is the gain parameter, P is the saturation pa-
rameter, and e is a parameter that depends on the nature
of the second-harmonic-generating crystal. As written,

where Pz is the phase difference of the macroscopic wave
function across the kth junction, Io is the critical current,
Ib is the bias current, R is the load resistance, r is the
junction resistance, C is the junction capacitance, A is
Planck's constant divided by 2m, and e is the electron
charge. Equation (2.3) follows directly from Kirchkoff's
lump circuit laws, with no further approximations [26].
Equation (2.3) is clearly of the form of Eq. (2.1), with
xk=(4k 4k).

As a second example, we mention the problem of a
multimode laser with intracavity doubling crystal; the
physical details of the process are described elsewhere
[28,29]. The basic idea is that in a long cavity, many
different longitudinal modes satisfy the condition for pos-
itive gain, and so may be active simultaneously. The
presence of an intracavity nonlinear crystal couples the
modes via a second-harmonic-generation process. The
dynamics can be described by a set of ordinary
differential equations for the intensity Ik and population
inversion Gk corresponding to the kth active mode. In
the case where all of the modes have the same linear po-
larization, one has [29]
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these assume that the gain y, loss n, and saturation pa-
rameter P are the same for all modes, which is analogous
to the assumption of identical Josephson junctions in Eq.
(2.3). One sees again the form of Eq. (2.1), now with
xk (I—k, Gk ).

Mathematically, the significance of the two properties
inherent in Eq. (2.1)—identical degrees of freedom and
global coupling —is the existence of an invariance with
respect to any permutation of the N indices. This is cru-
cial for determining the types of bifurcation that occur
generically [31]. It also allows us to transform the prob-
lem tackled in this paper into a tractable form, as we de-
scribe in Sec. III.

The basic idea we pursue is this. We assume that Eq.
(2.1) has a stable periodic solution and that as the control
parameter p is increased past its critical value p', the sys-
tem undergoes a bifurcation, so that this solution loses
stability. We want to see how small perturbations affect
the system for p just less than p*; in general, we expect
that the response will be substantial and that the response
will grow larger the closer p gets to p'. In what follows,
we will call the perturbation the "signal, " the presence of
which is included by modifying Eq. (2.1).

At this point, there are many ways to proceed. To be-
gin with, the unperturbed dynamical system could be au-
tonomous or explicitly time dependent. Then the signal
might enter additively to the right-hand side of Eq. (2.1),
or multiplicatively. The signal might be homogeneous—
that is to say, independent of k —or it might be inhomo-
geneous. The signal could be periodic or random. The
unperturbed stable periodic orbit may share the full sym-
metry of the underlying dynamics, it may have a some-
what lower symmetry, or no symmetry at all. The bifur-
cation in question might be symmetry breaking or sym-
metry preserving, and in addition, any one of several
types: a period-doubling bifurcation, a Hopf bifurcation,
etc. Finally, we have to decide what quantity or quanti-
ties we wish to monitor as output.

In view of the great number of possibilities —and this
even after having specified the structure inherent in Eq.
(2.1)—we now narrow our focus. In doing so, we are
guided by those aspects which we feel are most significant
for practical applications of parametric amplifier arrays.
(The questions we focus on may also be relevant to other
situations as well, but may or may not be the most impor-
tant ones in these other contexts. ) Thus we assume that
(i) the underlying stable state is fully symmetric, corre-
sponding to the in-phase dynamical state of oscillator ar-
rays, so that x, (t) =x2(t) = . . =x/v(t); and (ii) this orbit
is the result of a time-periodic forcing, so that the unper-
turbed system is nonautonomous.

In what follows, we consider only two specific types of
signal: homogeneous signals which are periodic (which
corresponds to a time-dependent current source Iz(t) in

Fig. 1), and random signals which are statistically un-
correlated for diFerent elements (corresponding physical-
ly to Johnson noise generated by each junction resistor in
Fig. 1). Finally, there are two quantities we will monitor
as the system response: the output of a single degree of
freedom xk and that of the "bulk" or "average" quantity
Z (corresponding in Fig. 1 to the voltage across a single

Josephson junction and the average voltage across the en-
tire array, respectively). The analysis we present can be
extended to a variety of situations other than the ones we
focus on here, and in some cases the technical details may
change; however, we will not consider them further.

III. GENERAL ANALYSIS AND DIAGONALIZATION

Our plan is to augment Eq. (2.1) by a small perturba-
tion, and study the system response when its control pa-
rameter is tuned near a bifurcation point. We thus
change Eq. (2.1) to

x/, =Fk(xk, Z)+gk(t), k =1, . . . , N (3.1)

The presence of a small signal causes the output to devi-
ate from this orbit. We thus let

x/, (t) =x0(t)+ YJ/, (t), (3.3)

substitute this into Eq. (3.1), and linearize the differential
equations about the periodic solution. This yields evolu-
tion equations for the deviations gk,

(3.4)

where 8 Fk is shorthand for dF/, IBx evaluated on the
unperturbed orbit xk=xD(t). Now, since Fk depends
only on x/, and Z, we have for jAk

BFk gz
aza~ x z''

which is independent of j. Thus Eq. (3.4) becomes

or, equivalently,

where the variables xk are n dimensional, and we have
dropped explicit reference to the control parameter p.
The small-signal terms gk have been written as additive
perturbations. The corresponding problem with multipli-
cative signal may be treated in an analogous manner: as
has been shown in the single-oscillator problem, one ex-
pects that the most important results are essentially un-
changed in the perturbative limit considered here [4].

The goal of this section is to carry out a general
analysis of Eq. (3.1) as far as is practical, before moving
on to special cases in Secs. IV and V. The main result of
this section is that the linearized dynamics can be
effectively "diagonalized" by an appropriate linear trans-
formation, due to the symmetry of the problem. In addi-
tion to simplifying the ensuing calculations, the
transformed problem serves to clarify a fundamental dis-
tinction between situations involving symmetry-
preserving and symmetry-breaking bifurcations.

We assume that the signal-free system ( gk
=0 has an

in-phase stable periodic solution, so that

(3.2)
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(3.5)

where the summation is no longer restricted. Now, since
all of the partial derivatives are evaluated on the in-phase
orbit, they are the same for each index k. This allows us
to simplify the problem enormously via the transforma-
tion

kk 9k ~)k+i
N

H= —g ilJ

k=1, . . . , N —1 (3.6a)

(3.6b)

Applying this linear transformation to Eqs. (3.5) yields
the set of N uncoupled equations

(BkFk )+ (BzFk ) H+ g g (3.7a)

k=1, . . . , N —1 . (3.7b)

N —1

x~=xo+H ——g (krak)
k=1

(3.8a)

Each of these N equations represents an n-dimensional
system of linear inhomogeneous equations with periodic
coefficients. Thus each may be solved (at least formally)
via the methods of Floquet theory [32,33]. In effect, the
original array problem has been broken into pieces, each
of which can be analyzed along the lines of Refs. [2—4].
On the other hand, this is primarily a computational vic-
tory, since we still need to transform back to the original
variables of our problem, in order to assess the results. In
particular, we want to monitor the output of a single ar-
ray element, say x&, and the bulk response of the array,
given by Z = ( I /X) g~. , xk. From Eqs. (3.6a) and
(3.6b), we can deduce the required inverse transforma-
tion,

Consequently, it is natural to distinguish between two
possibilities, corresponding to whether the critical
exponent(s) is one of the AJ or one of the A, in which
case we will call the bifurcation symmetry breaking or
symmetry preserving, respectively. As we shall see, the
response of the array is fundamentally different in these
two circumstances.

[The case of some A, being critical may be identified as
symmetry breaking because they are associated with the
growth of the relatiue coordinates, as seen in Eq. (3.7a).
We note that, if there is an additional symmetry in the
problem beyond the permutation symmetry considered
here, then the crossing of some A into the right half-
plane may also correspond to a symmetry-breaking bifur-
cation, though not of the permutation symmetry itself.
With this understanding, we will continue to use the term
symmetry preserving in this instance. ]

The subject of local bifurcation theory [34,35] distin-
guishes between different classes of bifurcations of
periodic orbits, corresponding to the way in which some
subset of the Floquet exponents cross into the right half-
plane. The differences between these classes has impor-
tant practical ramifications, for example, in determining
which perturbation frequencies are most amplified [7].
Nevertheless, certain general scaling properties are
shared in common for the various codimension-one bifur-
cations; in fact, the calculational steps for analyzing the
different cases —saddle-node, transcritical, period-
doubling, pitchfork, and Hopf bifurcations —are very
similar. For this reason, in what follows we focus on the
saddle-node bifurcation: here, a single exponent crosses
into the right half-plane along the real axis. Just prior to
the bifurcation point, then, we have one exponent—
either A. or A —equal —e, where e is a small positive
quantity. All of the other exponents have real parts of
order unity.

We now move on to a quantitative analysis for four
special cases. The following section is devoted to period-
ic input signals; Sec. V covers the problem of random
perturbations.

IV. HOMOGENEOUS PERIODIC SIGNAL

and

Z=xo+H . (3.8b)

In this section, we assume that the input perturbation
is periodic and is the same for each array element,

Already we can understand something important about
our problem by considering the structure of Eqs. (3.7).
Each equation has n Floquet exponents, which determine
both the stability properties of the in-phase solution and
also the scaling properties of the response to the input
perturbations [1—4]. As noted earlier, the periodic
coefficients in Eq. (3.7b) are independent of k, so that
each of these N —1 equations has precisely the same set
of n Floquet exponents [A, , , . . . , A.„]. Meanwhile, Eq.
(3.7a) has a different set of exponents [Ai, . . . , A„]. Sta-
bility of the underlying in-phase orbit requires that none
of these exponents have positive real parts. As the con-
trol parameter is varied, the exponents move around in
the complex plane: a bifurcation is signaled when one or
more exponents cross into the right half-plane.

gk =a COSCOt . (4.1)

N —1
H = (BkFk )+ (BzFk ) H +a cosset, (42a)

1(B„F„)——(8 F„)
N

k=1, . . . , N —1 . (4.2b)

This is directly relevant to the study of parametric
amplification, e.g. , where the differential equations are
the circuit laws for a Josephson-junction series array. In
Fig. 1, this corresponds to the presence of an additional
(small) current source in parallel to the driving source.

Combining Eqs. (3.7) and (4.1) yields
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That is, the equation governing the variables gk is un-
forced. Recalling that the underlying orbit is stable, it
follouis that the gk necessarily decay to zero Consequent-
ly, the entire response is governed by the behavior of Eq.
(4.2a). We consider two subcases, depending on whether
the bifurcation preserves or breaks the symmetry.

A. Case 1: Symmetry-preserving bifurcation

P(t)= g a e, a =a"
J

Q (t) = g p, e
' ', /3, =/3,*

J

g(t) — (eirlli+e ictli)

2

where the restriction on the coefficients ensures that the
functions P and Q are real, the integral in Eq. (4.3) be-
comes

p
—E(t —s) 0

(
icos+ —leos)d

2 0 '
J

Upon performing the integral, this becomes
i (Jcoo+ co)t

a a, e
+(co~ —co),

2 e+i (juno+co)
(4.4)

where we have ignored terms that are exponentially small
for times t))1/e. One sees that the response will be
very large provided that the signal frequency co is nearly
equal to any integer multiple of the pump frequency ~0.
Thus it is natural to introduce the detuning 6, such that

Here there is a single real critical exponent A0= —e.
Thus, as described in the Appendix, the general integral
expression for H (t) is dominated by a single term

H(t) =P(t)I Q (s)e " 'a cos(cps)ds, (4.3)
0

where P(t) and Q(s) are periodic functions with frequen-
cy equal to the in-phase oscillation frequency coo= 2'/T.
Introducing the Fourier series

g xk =NZ =Nxo(t)+NH(t) .
k

We have, in this case, a very simple result: the total
response is just X times the response of a single oscillator.

We see that an input signal at the single frequency co

gives rise to a large response at many frequencies, namely
jcu0+6 for any integer j. In a power spectrum, this shows
up as pairs of sharp lines around each of the signal-free
spectral lines. Apart from the coefficients a. which set
the overall amplitude of each pair of lines, the response at
each frequency has the same scaling behavior as a func-
tion of e and 6. The total response likewise has this same
scaling behavior.

More specifically, we can take as a measure of the
response the mean-square amplitude. For a single oscilla-
tor, we have

(x„'&=(x', )+2(x,H&+(H'& . (4.7)

Since x0 and H have no frequency components in com-
mon, the cross term is zero. Meanwhile, from Eq. (4.6), it
is a straightforward matter to compute the time average
of H, with the result

(x~ & =(x,')+, , g la, l' .
a'lp I'

2(e +5 ), (4.8)

B. Case 2: Symmetry-breaking bifurcation

Of course, for the total response of the array, we have
simply

(
N'a 'lP

yx. ' =N'(x.'&+, , y la, l' (4.9)
k

The results (4.8) and (4.9) have a simple interpretation:
each element in the array amplifies the input signal in the
same way; moreover, the responses add coherently, so
that the total output scales as X . This is just what one
expects if the array acts "like one big element. " As we
shall now see, this is not the situation near a symmetry-
breaking bifurcation.

co —m c00+6, (4.5)

where m is an integer and 6 is a small quantity. We see
that each sum appearing in (4.3) is dominated by a single
term: the term j = —m in the first expression, and the
term j =+m in the second. Thus, to good approxima-
tion, Eq. (4.3) reduces to

i5t

2 e+i6 (4.6)

where "c.c." denotes the complex conjugate of the first
expression.

Together with the result that gk =0, we can transform
back to the original coordinates of the problem. For a
single oscillator [see Eq. (3.8a))

xi'(t) =xo(t)+H (t)

and for the total response of the array [see Eq. (3.8b)]

In this case, it is the degenerate exponent X0 that goes
to zero at the bifurcation point, while A0 is of order uni-
ty. We have the following result: no significant
amplification takes place as the bifurcation point is ap
broached.

This observation follows from two facts. First, since
the perturbation is homogeneous, the variables gk neces-
sarily decay to zero [see Eq. (4.2b)]. Second, the quantity
H(t) remains small because the associated Floquet ex-
ponent A0 remains bounded away from zero. In particu-
lar, H(t) cannot be reduced from its general form [see
Appendix, Eq. (A5)]

H(t)=+&H(t) I @H'(s)g(s)ds, (4.10)
0

where 4?H is the fundamental matrix associated with Eq.
(4.2a). Moreover, this quantity shows no divergent be-
havior as the bifurcation point is approached. It is a sim-
ple matter to show that H(t) has frequency components
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in precisely the same place as in case 1 (Sec. IV A), but its
amplitude remains small regardless of the value of A,0.

We conclude that to achieve significant amplification
of a homogeneous signal, it is not sufhcient to tune the
system close to an arbitrary bifurcation point; rather, it is
essential that the bifurcation be of the symmetry-
preserving type.

V. INHOMOGENEOUS RANDOM SIGNAL

We now consider the situation where each element is
subject to a different input perturbation. In the
Josephson-junction problem, this arises naturally when
considering the effects of thermal noise currents generat-
ed by the resistance of each Josephson junction. Conse-
quently, we take the inputs appearing in Eqs. (3.7) to be
independent 6-correlated random functions with intensity
K:

(5.4)

We turn next to the quantity gk, governed by Eq.
(3.7b). We have the general result [see Eq. (A6)]

gk(t)=41, (t)| 4k '(s)[gk(s) —gk+)(s)]ds .
0

(5.5)

Now, although this quantity is not zero (as in the homo-
geneous case), it undergoes no significant increase as the
bifurcation point is approached, since its size is indepen-
dent of the critical exponent Ao. Consequently,
remains negligibly small. In terms of the original coordi-
nates, we thus have

X~ —X0+0 (5.6)

turbed orbit x0. Averaging over this orbit yields a time-
independent quantity

I )
so that

(5.2) (5.7}

where 5,1, is the Kronecker delta, 5(t —s) is the Dirac
delta function, and the angular brackets denote an ensem-
ble average. Our goal is to calculate the mean-square
fiuctuation (x& & for a single element and also
((gkxk ) & for the entire array. As in Sec. IV, the results
depend crucially on whether the bifurcation preserves or
breaks the symmetry.

A. Case 1: Symmetry-preserving bifurcation

H(t)=P(t) j Q(s)e " '—g gk(s)ds .
—e( t —s)

0
(5.3)

The mean-square Auctuation is

The exponent A0= —e is small, while all the other
nlV —1 exponents are of order unity. In contrast to Sec.
IV there are now contributions from both (J, and H. We
begin with H(t), whose general form is given by Eq. (A6)
in the Appendix. Near the bifurcation point this expres-
sion is dominated by a single term: combining Eqs. (3.7a)
and (A7) yields

[There is no cross term (xoH & since the fiuctuations in
H have zero mean, as can be seen directly from Eqs. (5.1)
and (5.3).]

Although one cannot see it directly from this calcula-
tion of the mean-square fluctuation, the two contribu-
tions in Eq. (5.7) are easily separable in experiments by
looking at the power spectrum, since the piece Ix0 ] cor-
responds to the sharp lines induced by the unperturbed
orbit, while the second piece shows up as a broadband
contribution, and is purely noise induced (going to zero
as ~ goes to zero). We see that the latter has an interest-
ing scaling structure, with a magnitude depending in-
versely on the product eN. Consequently, the large
"noisy precursors" encountered in single-oscillator sys-
tems [2] are substantially reduced per oscillator, when the
oscillators are embedded" in large arrays.

Meanwhile, the fluctuation observed in the bulk vari-
able gkxk are just X times the result for a single oscilla-
tor, as can be seen by comparing Eqs. (3.8b} and (5.6):

( xx~ ') =N~[(z'))

=&'Ixo]+ 2, [P'] IQ'] (5.8)

X e"e" t' t"

X (g, (r')g„(r")&dr'dr"

P2( r ) e
—2&(t —t')Q 2( r i )dr i

0

For small e, the exponential decays slowly compared with
the period of Q (t), so this expression reduces to

so that the noise-induced contribution grows linearly
with array size N. This makes sense on physical grounds:
since the input noise sources are uncorrelated, the total
effect is given by an incoherent sum of the individual
sources

B. Case 2: Symmetry-breaking bifurcation

where the curly brackets denote a time average over one
period. The mean-square Auctuation is itself time period-
ic, owing to the periodic nature of the underlying unper-

We now take the small quantity to be k0= —e, with A0
of order 1. In this case, the quantity H remains small,
and we neglect it compared to the large contribution due
to gk, which we now calculate.

The dominant contribution to Eq. (5.5} is [see Eq. (A7)]
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gk(t)=p(t) f q(s)e " '[gk(s) —gk+, (s)]ds .
0

In view of Eq. (5.1) we see immediately that

(5.9)

(5.10)

The second moments are given by

&g (t)gk(t) &=p (t)e "f'f 'e"+"q(t')q(t")

+2 for j =k
Q. = —1 for j =0+1jk

0 otherwise .
(5.12)

Then, Eq. (5.11) becomes

& g,.(t)gk(t) ) =~A,kp'(t) f e "' ' 'q'(r')dt' .

For su%ciently small e, this becomes simply

[&0,(t)4(t) &I =&J 2, lp'I tq'] (5.13)

where we have taken the time average, as before.
We can now find the mean-square fluctuation &xz ) for

a single element. From Eq. (3.8a), and treating H as
negligible, we have

N —1

(xi, )=l2 xo ——x (kg„) )k=1

where in writing the preceding expression we have used
Eq. (5.10). Using Eq. (5.13), this becomes

1 N —1N —1

2E'

The double sum is easily shown to be equal to X(X—1),
so that

(5.14)

Thus, for any true array (that is, for X ) 1), there are
large fluctuations which become prominent as the bifur-
cation point is approached (e~0) These ap.pear as
broadband contributions to the power spectrum: indeed,
they are the familiar noisy precursors observed in single-

X:- k(t', t.")dr'dt",

(5.11)

where

Jk(t t ) & [CJ(r ) kJ+1(t ) ][yak(t ) kk+1(t

Now, from Eq. (S.2), which states that the gk are un-
correlated sources, we see that = k(t', t")=0 unless

lj —kl ~1. In fact, since the sources all have equal
strength ir, one has =.k(t', t")=2 5i(t' —t") ifj=k, while
:-Jk(t', t")= irO(t' ——t") if j =@+1. Consequently, we
introduce the quantity Q k given by

oscillator systems [2,7]. Moreover, the dependence of Eq.
(5.11) on the array size X is very weak, being significant
only for small N.

On the other hand, the bulk fluctuations are given by

( xx ')=N'x'+x'(H')
k

Now, although the broadband piece grows as N, the
quantity H remains negligibly small. Consequently, no
significant broadband contribution is observed as the bi-
furcation is approached.

Recapping, we have this surprising result: although
each of the elements suffers increasingly large-scale Auc-
tuations as the bifurcation point is approached, these
fluctuations "destructively interfere" completely, so that
the total array displays no large-scale fluctuations.

VI. DISCUSSION

Our study of the amplification properties of globally
coupled arrays leads us to a fairly complete understand-
ing of the problem. In many respects, the results are
straightforward generalizations of the corresponding
single-oscillator theory [7], though the array problem
presents a greater number of possible subcases. The
essential lesson is that the high-gain regime of the array
coincides with onset of dynamical bifurcations. One new
aspect of the array problem is the distinction between bi-
furcations that preserve the coherence of the elements
(which we called symmetry-preserving bifurcations) and
bifurcations that destroy this coherence (symmetry-
breaking bifurcations). We find, quite generally, that
maximum amplification is achieved near bifurcations of
the symmetry-preserving type. (Ironically, this is the
"uninteresting" case when considering the mathematics
of bifurcation theory, since in effect the symmetry plays
no role in the analysis [31].)

This basic picture is not the whole story: we found a
couple of surprises, which occur in the vicinity of
symmetry-breaking bifurcations. The first is that there is
virtually no amplification of a homogeneous periodic sig-
nal, even very close to the symmetry-breaking bifurcation
point. Still more striking is the result for inhomogeneous
random signals: one expects each element to exhibit in-
creasingly wild fluctuations as the symmetry-breaking bi-
furcation point is approached, but the bulk response
across the entire array remains steady.

Another interesting result is that the large noisy pre-
cursors encountered in single oscillator systems [2] are
substantially reduced per oscillator, when the oscillators
are embedded in large arrays. This is perhaps not too
surprising from a physical perspective, since the oscilla-
tors are coupled to each other, so that one might expect
there to be some "averaging" effect due to the presence of
the other oscillators.

In general, these effects should be very easy to see in
experiments. (As a rule, people have found near-resonant
amplification effects for single-oscillator systems to be
readily observable. ) Ideally, one would like to have a sys-
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tern in which one can monitor both the total array output
and also the output of at least one of the individual array
elements. In view of this, and also because the global
coupling is readily achieved in such systems, we expect
that nonlinear electric circuits would provide a fertile
testing ground for these ideas. The multimode laser is
another attractive possibility, though as a practical
matter it may be dificult there to investigate the effects of
inhomogeneous perturbations if the inherent Auctuations
from spontaneous emission (which are typically small) are
below detection limits.

Of obvious practical importance is the degree to which
our results are relevant for arrays consisting of nonidenti-
cal elements. On a purely technical level, this symmetry
was crucial, insofar as it allowed the transformation
which rendered the calculations tractable. However, we
can make some broad statements about the effect of
"externally" removing the symmetry, based on general
properties of bifurcating dynamical systems [35]. Typi-
cally, introducing some small variation between elements
dramatically alters the dynamics in the vicinity of
symmetry-breaking bifurcations, while having relatively
little effect otherwise. Consequently, the results obtained
for symmetry-preserving bifurcations —which are the
most important regimes for high-gain parametric
amplification —should persist, while the completely des-
tructive interference predicted for case 2 of Sec. V B may
well be unobservable. Of course, these statements are
only qualitative, any quantitative progress on this impor-
tant issue requires detailed calculations of the type car-
ried out here, though without benefit of the diagonalizing
transformation.

On the theoretical side, we note that the present
analysis presented is based on a linearization of the
governing dynamical equations, and although this is ex-
pected to accurately capture many prominent effects, un-
doubtedly there are additional interesting effects to be
gleaned from a fully nonlinear analysis. Our guess is that
a normal form analysis along the lines of Ref. [6] is suit-
able for the case of symmetry-preserving bifurcations
(where the active phase-space dimension remains small),
but that the case of symmetry-breaking bifurcations —in
which many phase-space dimensions become important
simultaneously —may not be readily solved by such an
approach.

Finally, we turn to the practical implications of this
work for the design of real parametric amplifier arrays.
In the original work on single-element systems, the lesson
[I—7] was that for a given nonlinear oscillator, one
should map out the curves in parameter space corre-
sponding to various types of bifurcations. For the array
case, we see that it is most important to determine in ad-
dition whether the bifurcations are symmetry preserving
or symmetry breaking: only the former are expected to
give desirable performance, in which the power gain
scales as X . For example, the kind of numerical work
which mapped out the parameter space for various
Josephson-junction arrays [26,27] could be usefully sup-
plemented by labeling whether the instabilities cataloged
preserve or break the permutation symmetry of the dy-
narnics.
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APPENDIX

where rt and f are n-dimensional real vectors, and A(t) is
an n X n real matrix with period T. Then there are solu-
tions 4 of the associated homogeneous problem of the
form

Pk (A2)

where g"(t+T)=y"(t), and pk is a constant. In general,
both y and pk may be complex. For the situations stud-
ied in this paper, all of the pk lie in the left half-plane.
From a set of n linearly independent vectors 4", one can
form a fundamental matrix @,

so that 4 is the kth column of N. The general solution
of Eq. (Al) is then

v](t) =@(t)N '( )0g(0) +N(t) f @ '(s)f (s)ds .
0

With the initial condition rt(t) =0, this reduces to

g(t)=@(t)f @ '(s)f(s)ds .

(A4)

When one of the pk is small, expression (A5) can be
simplified. First, express Eq. (A5) in component nota-
tion:

rt~(t)= g @Jk(t)f @q('(s)f((s)ds,
k, l

(A6)

so that each function g. is the sum of 2n terms. If all of
the pk have (negative) real parts of order unity or greater,
one can show that g. remains small provided that the
forcing function is small. However, if one or more of the
pk approach the imaginary axis, the response g can
diverge. In the situation studied in this paper, all but one
of the pk have negative real parts of order unity, while
one of the pz = e, with e a sm—all positive (real) number.
In this case, Eq. (A6) is dominated by a single term:

qg(t)=@go(t) f C'oo ( )fo(s)ds .

This can also be written, in view of Eq. (A2), as

r) (t)=e "P(t)f e+"Q(s)fo(s)ds, (A7)

where P and Q are functions of period T. In fact, the
term retained is of order e, and so becomes increasing-
ly dominant as e~O.

We collect here the results from Floquet theory which
are relevant to our problem. A fuller exposition of these
and further results may be found elsewhere [32,33].

Consider the system of linear, inhomogeneous, first-
order ordinary differential equations

(Al)
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