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The effect of quenched random internal disorder on tethered membranes is studied by modifying treat-
ments of pure systems to allow for small local fluctuations in the metric due to defects. To lowest order
in €e=4—D, where D is the internal membrane dimensionality, we find that the flat pure phase is stable
to disorder at finite temperatures, but unstable at low temperatures to a phase that lies outside the range
of the € expansion. For D <4 the instability is triggered by any finite amount of disorder, while for D >4
there is a threshold value of disorder below which the flat phase is stable at all temperatures. We specu-
late on the nature of the new phase. We argue that the low-temperature instability persists in the pres-
ence of random spontaneous curvature, and show that the flat phase is always unstable when unbound

disclinations are included in the disorder.

I. INTRODUCTION

“Tethered surfaces,” which are two-dimensional gen-
eralizations of linear polymer chains [1,2], have been the
focus of a number of theoretical investigations during the
past five years. Unlike conventional polymers, these ob-
jects are expected to exhibit a low-temperature flat phase
[3], with long-range order in the normals and very large
fluctuations perpendicular to the average membrane
plane. Thus far, a high-temperature crumpled phase has
only been seen in computer simulations of “phantom”
membranes, with interactions between nearest-neighbor
monomers only [4]. Recent computer simulations [5]
suggest that simple triangulated membranes with
further-neighbor self-avoidance are always flat, due to a
large entropically induced bending rigidity [6]. Powerful
theoretical techniques have been developed to treat the
flat phase, where explicit distant-neighbor self-avoidance
(provided one introduces a bending rigidity) is believed to
be unimportant. Fluctuations can be treated by consider-
ing D-dimensional polymerized manifolds embedded in d
dimensions, and then carrying out expansions in e=4—D
[7-9] or 1/d [9] to treat the physically relevant case
D=2 and d=3.

Although precise laboratory experiments are just be-
ginning, there are in fact many experimental realizations
of polymerized membranes. Poly-methyl-methacrylate
tethered surfaces were synthesized on the surface of sodi-
um montmorillonite clay and then floated off over 20
years ago by A. Blumstein, R. Blumstein, and Vander-
spurt [10]. The inner surface of red blood cells contains
the fishnetlike biopolymer spectrin which can be extract-
ed and studied in isolation from the lipid bilayer [11].
Red blood cells themselves, with the spectrin attached to
the lipid cell wall, can also be described by these theories,
as emphasized recently by Lipowsky and Girardet [12].
Leibler [13] has suggested that simple ‘“paracrystals” of
proteins like tropomyosin [14] provide another example
of a biological tethered surface. Inorganic examples of
tethered surfaces include graphite oxide sheets in an ap-
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propriate solvent [15] and the “rag” sheetlike structures
found in MoS, [16]. For other experimental realizations
see Ref. [2].

Most investigations of sheet polymers to data have as-
sumed a regular lattice of identical monomers bonded
permanently to their nearest neighbors. Various kinds of
inhomogeneous disorder, however, are an almost inevit-
able feature of the experimental systems discussed above.
Examples of disorder include holes or tears in the polym-
erized network, variations in the local coordination num-
ber, and impurities incorporated at random into the po-
lymerized net. A priori, one might not have expected a
small amount of disorder to affect the ‘““‘universal” long-
wavelength properties of polymerized membranes [17]. It
is known, for example, that random copolymerization
with only repulsive interactions does not affect the prop-
erties of crumpled linear polymer chains in a good sol-
vent [18]. As discussed below, similar arguments can be
applied to the crumpled phase of membrances, assuming
this exists. The elastic description of the flat phase of
membranes requires only a well-defined bending rigidity
and elastic constants. Using the methods of Refs. [8] and
[9], it is easy to show that small quenched random spatial
variations in the microscopic elastic constants and bend-
ing rigidity of the flat phase will not affect the results for
pure systems. These conclusions are consistent with re-
cent molecular-dynamics simulations by Grest and Murat
on site-diluted tethered membranes, in which a flat phase
persists right up to the percolation threshold [19].

The above kinds of disorder, however, also produce
random inhomogeneities in the internal metric. A dilute
concentration of large copolymerized monomers, for ex-
ample, will warp the surface and alter the way distances
are measured internally within the membrane. It was re-
cently shown that quenched random variations in the lo-
cal metric can destabilize the flat phase at sufficiently low
temperatures [20]. In this paper we explore these ideas in
detail. We consider general quenched random perturba-
tions about a locally flat metric, as might arise in a model
with both inhomogeneous particles sizes and bond
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lengths (see Fig. 1). D-dimensional tethered manifolds
embedded in d dimensions [7-9] are studied to lowest or-
der in an expansion in e=4—D. Below D =4, disorder
softens the bending rigidity and destabilizes the flat phase
at zero temperature. The flat phase can persist over a
range of temperatures in the presence of weak disorder,
but our results suggest a transition to disorder-dominated
behavior at sufficiently low temperatures. For D >4, a
transition to a “‘glassy”” phase dominated by disorder only
occurs above a certain threshold disorder strength. Al-
though the properties of the disorder-dominated regimes
cannot be treated within the € expansion, the possibility
of a crumpled surface with Edwards-Anderson spin-glass
order in the surface tangents can be explored in the limit
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FIG. 1. Examples of impurity disorder. (a) Isolated large im-
purity in a matrix of smaller monomers. (b) Two impurities in
close proximity forming an exceptionally long bond, embedded
in a matrix of small monomers. (c) Relaxed configuration of
many large impurities in a tethered membrane (courtesy of Y.
Kantor).
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d— oo [21].

Similar conclusions probably apply to surfaces with
random holes and tears. Holes can be carefully excised at
random from a triangular lattice with perfect sixfold
coordination in such a way that the ground state is flat at
zero temperature. At finite temperatures, however, the
edges of these holes will contract (due to entropic effects)
more than the unexcised regions, leading again to strains
associated with perturbations in the local metric. These
arguments suggest a possible instability of the flat phase
in this limit of low but finite temperatures and large elas-
tic constants in simulations like those of Grest and Murat
[19].

The results described above apply to surfaces that re-
tain a simple sixfold triangular bonding topology. Com-
pact membranes can also be polymerized with identical
monomers, but with defects in the sixfold bonding topol-
ogy. The elementary defects in this case are points of
fivefold and sevenfold coordination, i.e., disclinations.
Suppose for simplicity that the polymerization is carried
out in an essentially flat environment, e.g., in a
Langmuir-Blodgett film at an air-water interface. We can
then study the conformations of such a membrane when
placed in an approximately neutral solvent, such as al-
cohol [22]. The defects that result from polymerizing a
finite-temperature solid will be primarily bound pairs of
dislocations, each of which can be regarded as a 5-7 dis-
clination dipole [23]. We shall argue in Sec. III that the
behavior in this case resembles the random-impurity
problem discussed above. Membranes formed by polym-
erizing a liquid, on the other hand, will have unbound
disclinations embedded in the bonding topology. We
show that this leads to long-range correlations in the ran-
dom metric and always destabilizes the flat phase of pure
systems, even at finite temperatures. We find, however,
that unbound dislocations, which would appear in an in-
termediate hexatic phase [23], are by themselves
insufficient to destabilize the flat phase at finite tempera-
tures.

An important recent experiment by Mutz, Bensimon,
and Brienne [24] has led us to consider one additional
kind of randomness. These authors study polymerized
vesicles, i.e., closed surfaces made of lipid bilayers. In the
absence of polymerization, these materials exhibit a re-
markable shape transformation from a spherical topology
to a cylindrical one with decreasing temperature. The
transformation appears to be associated with the expul-
sion of Gaussian curvature as hexatic or crystalline order
develops within the membrane [25]. If the vesicles at
high temperature are first subjected to polymerizing ul-
traviolet radiation, a remarkable ‘“wrinkling transition”
to a rigid glassy phase takes place at about the tempera-
ture where the shape transformation occurs in unpolym-
erized samples. The partial polymerization at high tem-
peratures presumably results in sparse but percolating
networks of covalent bonds that prevent the shape trans-
formation. As this material cools, crystalline order sets
in within these lipid ‘“‘corrals,” and quenched random
strains, similar to those discussed above, will develop.
There are, however, two additional complications: (1) If
the initial polymerization is in a liquid, as opposed to a
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hexatic phase, unbound disclinations will be an important
component of the disorder. The observed wrinkling
presumably reflects the disclination-induced instability of
the flat phase discussed above [26]. (2) Because of spatial
variations in the amount of polymerization on different
sides of the bilayer, quenched random fluctuations in the
spontaneous curvature will also appear.

To treat the complication (2) above, we show here that
small fluctuations in the spontaneous curvature about
zero [27] do not affect our conclusions about the instabili-
ty of the flat phase at low temperatures in the presence of
random strains and disclinations for the case D=2 and
d=3. The transition observed by Mutz, Bensiman, and
Brienne is thus an excellent candidate for the instability
predicted in this paper. It would also be interesting to
study the effects of a random spontaneous curvature
within the € expansion [28].

We conclude by emphasizing some limitations of our
analysis. Although we show that the flat phase is unsta-
ble under certain conditions, we can only speculate about
the asymptotic long-distance behavior in this case. Our
results strongly suggest some sort of glassy behavior for
d=3 and D=2 (see Sec. V), and a crumpled membrane
spin glass may well result in the limit d — o [21]. Even
these calculations, however, suffer from the neglect of
distant self-avoidance. Distant-neighbor self-avoidance,
although unimportant in the flat phase, may well affect
the physics of any ‘“spin-glass” phases. One possibility is
a ‘“roughened” glass phase that is macroscopically flat,
but with a different roughness exponent than for pure
systems.

In Sec. II we define our model and argue that random
impurities do not affect the crumpled phase of phantom
and self-avoiding membranes. A straightforward applica-
tion of the Harris criterion [29], however, shows that
such randomness is important at the crumpling transition
itself for phantom membranes. When unbound disclina-
tions are present, we find a logarithmically divergent
swelling in the crumped phase of phantom membranes.
In Sec. III we discuss the flat phase via perturbation
theory for D =2 and d =3, focusing on the renormalized
bending rigidity. We find that (i) random impurity disor-
der destabilizes the flat phase at zero temperature while
leaving it intact at finite temperatures; (ii) a quenched dis-
tribution of unbound disclinations embedded in a mem-
brane destabilizes the flat-phase characteristic of pure
systems at all temperatures; and finally (iii) random spon-
taneous curvature does not affect results (i) and (ii). The
e-expansion results for general Gaussian quenched ran-
dom fluctuations about a flat metric caused by random
impurities are described in Sec. IV, confirming the con-
clusions (i) above. Section V contains some conclusions
and arguments for spin-glass order in membranes at low
temperatures. The details of the € expansion, as well as
the rederivation of our results using the replica trick, are
contained in three appendices.

II. MODEL FREE ENERGY WITH DISORDER
A. Pure systems

We define the polymerized membrane with a lattice
model of a flexible D-dimensional sheet of interconnected
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particles fluctuating in the embedding d-dimensional
space. We use periodic boundary conditions to mimic an
open topology. The connectivity of the tethered mem-
brane allows us to label the constituent particles with a
D-dimensional vector x. We specify the embedding of
these particles inside the d-dimensional space with a con-
tinuous d-dimensional vector 1(x). Because here we are
only interested in the large-distance physics, with the
usual coarse graining, we pass to a continuum field
theoretic model. This transformation allows us to de-
scribe the membrane by a D-dimensional manifold with a
coordinate system {x,} attached to it, embedded inside a
d-dimensional Euclidean space. This naturally induces a
metric for the hypersurface as a pull back from the
embedding space

8up=0,T-34T . 2.1)

For membranes without impurities with a flat ground
state at 7=0, we can always select coordinates x, such
that the configuration

Fozg[xlixzy e ’xD’()’O) L] 70] (22)

minimizes the free energy. The corresponding ground-
state metric is

g?zB :aa?o-83?0=§28a3 . (23)
We require that the continuum field theoretic model
respects all the original symmetries of the underlying lat-
tice model, and construct an effective free energy that is
invariant under translations and rotations in the d-
dimensional space and is O(D) invariant. Translational
invariance requires that the Landau-Ginzburg effective
Hamiltonian must be an expansion in powers of the
tangent vectors t,=3,r(x) [7],

FealT1= [ dPx [ 1k(32FP + L1(3,0)?

+u(3,5-950) +0(3,r9,0)7] . (2.4)
In the above expansion we exclude distant-neighbor in-
teractions, restricting our attention to phantom mem-
branes or the flat phase of self-avoiding ones. Upon iden-
tifying the tangents [t,=d,r(x)] as the order parameters
of this field theory, an analogy with the usual ¢* theories
of critical phenomena becomes apparent [7].

Within mean-field theory the high-temperature crum-
pled phase of the membrane is characterized by a positive
value of coupling constant ¢. At low temperatures, how-
ever, the microscopic surface tangents, or equivalently
the normals, tend to align, thereby minimizing the bend-
ing energy and forming a flat phase described by a nega-
tive t. It can be shown that the minimum of Eq. (2.4) is
then given by Eq. (2.2) with [7]
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I (2.5)
u +Dv

The nonlinear quartic terms are now essential to stabilize
the membrane.
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B. Inclusion of disorder

We now extend the model for the pure membrane to
include the effects of the quenched random impurity dis-
order. We first assume ? <0, and then rewrite the
effective free energy for the pure membrane in the sugges-
tive form [7,9]

Feal01= [ dPx[ k(B0 + 11t )+ 1M1 g )], (2.6)
where u and A are Lamé coefficients, related to the previ-
ous coupling constants by u=4u* and A=8v¢* The
quantity u .z is the strain tensor, defined by

1
=— (85— 8%p) (2.7a)
Uap 2 8ap~ 8ap a
L (ar8,6—0,r%0,7) . 2.76)

2¢8?
The strain tensor measures the local deformation of the
membrane relative to the metric in the ground state. For
the pure system this reference metric ggﬁ is always taken
to be flat, as in Eq. (2.3). However, in the presence of dis-
order, the reference metric g?zb’ will be modified to reflect
local deformations of the membrane to accommodate de-
fects and impurities. These deformations will be small if
the size of the impurity molecules is not too different
from the size of the host molecules. This leads us to
model the effects of the random impurities by taking ggﬁ

to be
gl =0, 35T =085+ 2c5(x)], (2.8)

where c,5(x) is a new quenched random field with a
probability distribution

1 D 2
20D fd x(Chq)

Plcyp(x)]xexp | —

— =L [atxie,,r 2.9)

20,

for spatially uncorrelated impurities. In Eq. (2.9) we have
separated the quenched field c,g into the traceless part
Cop=Caqp—(1/D)dy4c,, and the trace c,,. The parame-
ters 0, and o, can be viewed as frozen-in “temperatures”
characterizing the isotropic and anisotropic parts of
quenched defect distribution. When 0,—0, we recover
the case of isotropic impurity disorder c¢,g(x)=c(x)8,5
discussed in Refs. [20,30]. As is usual in problems with
quenched disorder, we assume that it is the free energy
rather than the partition function that should be aver-
aged over this probability distribution.

In Secs. III and IV we shall study the response of this
system to both disorder and thermal fluctuations by
expanding about the flat state, setting T1(x)
=(x,+u,)€,+ fz€s where the u,(x) are “in-plane”
phonon coordinates, and the fz(x) multiply vectors
{€s B=D+1,...,d} which span a subspace perpendic-
ular to the average manifold plane. In the special case
K— o0, extrinsic curvature is squeezed out, and we can
set the f5=0. When D =2, the free energy Eq. (2.6) then
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reduces to a model of flat crystalline films with a
quenched random distribution of impurities [31]. In this
case, the local dilations and contractions produced by the
disorder lead to a reentrant dislocation unbinding transi-
tion into a disorder-dominated regime at sufficiently low
temperatures. Of course, dislocations (and disclinations)
in the polymerized net studied here, if they occur at all,
are frozen in and cannot unbind. We defer a detailed dis-
cussion of this type of disorder to Sec. III C, and assume
for now that the membrane retains the sixfold bonding
topology of a triangular lattice.

C. Effect of disorder at high temperatures
and at the crumpling transition

When T>T,, ie., for t >0, the free energy Eq. (2.6)
takes the form

Feal¥1= [ dPx[1k(020)2+ 12(3,1)?

+u(3,5-950)> +(3,T3,1)

+ycaa(x)(aﬁf')2
+v'cap(x)0,1-94r7] , (2.10)
with
1)
Y= — , (2.11a)
u+Dv
=2 2.11b)
u+Dv

and where we have neglected terms that drop out of
quenched averages. A useful measure of the size of the
membrane in this high-temperature phase is the correla-
tion function [1]

(|Ifx)—7110)|?)
1
(27)?

where the brackets represent a thermal average, the bar
represents an average over the quenched random disor-
der, and r(q) is the Fourier transform of r(x).

For pure systems at high temperatures, the terms pro-
portional to «k, u, and ¥ in Eq. (2.10) produce only small
corrections to the basic result,

=2

[ a%q(f@PY(1—et®),  (2.12)

()~ , 2.13)
tq
and it follows that [1]
lim { |f(x)—0)|2 z#ln(x/a), (2.14)

where a is a microscopic cutoff. A measure of the mem-
brane size Ry in the high-temperature crumpled phase is
this correlation function evaluated at x =L, where L is a
typical membrane internal dimension [1]:

Rg=[{|fx)—r0))|,_, ]'?

1

~ Wln‘/z(L /a) .

(2.15)
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To see how disorder changes this result, we again
neglect x, u, and U and expand in the couplings propor-
tional to ¢ and y’. The result for {|f(q)|?) before and
after averaging over disorder is depicted graphically in
Fig. 2. This leads to a renormalization of ¢ in Eq. (2.13),

L 2y+y)? 1 2
tg=t ; (zﬂ_)zfd ko (k)

_2 12 1
t (2m)?

where o(k) and o,(k) are wave-vector-dependent gen-
eralizations of the disorder strengths that appear in Eq.
(2.9). Since we expect that o(k) and o,(k) tend to con-
stants at long wavelengths for uncorrelated impurity dis-
order, we see that there is only a finite downward renor-
malization of ¢, leading to a larger coefficient in Eq.
(2.15). Thus weak impurity disorder merely swells the
membrane slightly and should not affect the universal
long-wavelength properties of phantom membranes in the
crumpled phase.

We shall argue in Sec. III C that a quenched array of
unbound disclinations in a membrane polymerized from
an equilibrium two-dimensional liquid can be modeled by
correlated disorder which satisfies o,(k)=0 and

1
Ul(k) Ik|2 .
We see from Eq. (2.16) that there is then a logarithmical-
ly divergent renormalization of ¢ in this case. We hope to
study how disclinations increase the size of phantom
membranes under these circumstances in a future publi-
cation.

Returning to impurity disorder without disclinations,
we can show that these defects will in fact change the be-
havior of phantom membranes precisely at the crumpling
transition. The term proportional to ¥ in Eq. (2.10), in
particular, couples the disorder to the membrane “energy
density” (3,r)>.. Taking over standard arguments due to
Harris [29], we find that the pure system is only stable to
disorder if the exponent of the specific heat is negative.
Since the specific heat appears to diverge when d =3 and
D =2 [4], disorder should lead to a new critical behavior

[ d*koyk), (2.16)

(2.17)

FIG. 2. Two-point correlation function in the high-
temperature phase (a) before the quenched average, (b) after the
quenched average.
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at the crumpling transition in phantom membranes.

It is not yet clear if a crumpling transition exists for
self-avoiding membranes [5]. The size R; of a self-
avoiding membrane in a high-temperature crumpled
phase, if it exists, is expected to scale according to

Rs~L", (2.18)
with [1] v=%. Random copolymerization will produce
quenched fluctuations in the strength of the repulsive in-
teractions between distant monomers, in addition to the
terms discussed above. Obukhov [18] has shown using
Flory arguments that these fluctuations have little effect
on conventional linear polymers in a good solvent, i.e.,
above the © point. It is straightforward to adapt this ap-
proach and show that there are only small changes to Eq.
(2.18) in the limit L — o0 for self-avoiding crumpled
membranes as well.

III. PERTURBATION THEORY
FOR D=2, d=3

Useful information about the physics of membranes
can be obtained by simply expanding about the flat state.
Using numerical and analytical information about the be-
havior of pure systems, we can study the stability of the
flat phase to various kinds of disorder using this ap-
proach. We concentrate in this section on the case of ex-
perimental interest, D =2 and d =3.

A. Impurity disorder
Upon setting
rf(x)=¢&{[x,tuy(x)]e,+f(x);} ,

with a=1,2 and €;=¢, X&¢,, the free energy (2.6), to lead-
ing order in gradients of the u ,(x) and f(x), reduces to

FeltherfCap)= [ d*x [ 1k(Lf P +pu(ulp )

+IMu ) —2pc5udp

(3.1

—Acﬁﬁuga] , (3.2)

ul5(x)="1(d,u s+ +3,/3pf) . (3.3)

We have neglected O(wa(x)) terms which drop out of
quenched averages. The importance of disorder can be
seen from a simple perturbative calculation of the renor-
malized bending rigidity kgz. We first integrate out the
in-plane phonon degrees of freedom, obtaining an
effective free energy for the height function f(x) as in the
treatment of pure membranes [3],

—BF LS, —BF lu_.f,
e PPenll ) f@uae Flealtc)>Cap] , (3.4)

where B=1/kyzT and
Frg=1x [ (V2f)dx
+1Ko [ [+PI(3,f ) Bpf ) — PLgcp(x)%d?x
3.5
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where K0—4,u(,u+7»)/(2,u+)») and PT
projection operator, P aB =8,5—0 aﬁ/v

We now calculate the renormalized disorder and
wave-vector-dependent bending rigidity «2(q) and the
elastic parameter K (q) defined by

g is the transverse

- kyT
(f@QP),=—2—, (3.62)
|f q I Kg(q)|q|4 a
(fla)fa—aq)f(a@)f(q;—q)),

=k TKR(Q)PL5(qQ)P]5(A)q1,91592/925 > (3.6b)

where the bar represents an average over the quenched
random impurity field and where c signifies that only the
connected part of the correlation function is included.
We have also divided out the momentum-conserving &
function in our definition of the averages. To leading or-
der in kg T and the disorder strengths o and o,, we ob-
tain for the renormalized bending rigidity

1 Ko[9.Pop(p)sT
R(@)=k+kpT d?
“r(q)=rtky (2‘n')2f i klq+pl*
1 , K§19.Pop(P1. T
—(0y+ d’p
(@1Fa2) (27)? f klq+pl*

(3.7)

where there is an upper cutoff A implicit in the integrals
corresponding to the underlying lattice model cell size.
Although the above perturbation series is infrared diver-
gent with the correction terms diverging like 1/¢2, we
can still extract the qualitative effects of thermal fluctua-
tions and disorder on the ordered phase of the membrane.
The first correction term is identical to the one for the
pure tethered surface [3]. It shows that thermal fluctua-
tions stiffen the membrane by increasing the bending rigi-
dity. This term is responsible for the flat phase, since the
diverging bending stiffness (obtained from a simple self-
consistent theory [3]) tends to suppress the undulation
modes, which normally destroy the ordered phase in
D =2. The second disorder-generated term in Eq. (3.7),
on the other hand, leads to a divergent reduction of the
bending rigidity. Since the first term carries the factor of
T while the disorder term does not, the effect of disorder
will dominate at low temperatures. This low-temperature
disorder-activated instability is the main subject of this
paper. In Sec. V we shall argue that this softening of the
bending rigidity leads to many nearly degenerate minima
in the free energy and the spin-glass ordering at 7'=0.

Weak disorder should not affect the asymptotic behav-
ior of membranes in the flat phase at sufficiently high
temperatures, despite its importance at T=0. To see
this, assume the disorder is so weak that we can replace
the elastic constants on the right-hand side of Eq. (3.7) by
wave-vector-dependent quantities kz(p) and Kiz(p) re-
normalized only by thermal fluctuations. These are ex-
pected to be singular as p tends to zero [3,8], with
kr(p)~p "x and KR(p)~pn“. In the notation of Ref.
(8], we have 5, =m,=m,. We can then rewrite Eq. (3.7)
in the form

LEO RADZIHOVSKY AND DAVID R. NELSON

S

kR(q)=xg(q)
Kz (p) aP (p)gs1?
(o oy [ a x(p)a p@f]
(2m) kr(q+p)lq+pl

(3.8)

Upon using the scaling relation [8] 27,+ 7, =2 (a conse-
quence of rotational invariance), we see that weak disor-
der will produce only a small singular correction to
kR(q), Kg(q)=KR(q)[l—const(al—i-az)qn“], provided
7, >0. This exponent is positive in the perturbative cal-
culations of Aronovitz and Lubensky [8]; existing numer-
ical work is also consistent with a (possibly small) positive
value. Thus weak disorder is irrelevant in the flat phase
at sufficiently high temperatures, provided the in-plane
elastic constants tend to zero at long wavelengths
(m, >0). These soft elastic constants make it easier for
the membrane to screen out the strains induced by im-
purities.

We can also study perturbatively the renormalized
elastic parameter Kz =4ug (g +Ag)/(2ug +Ag):

KR(q)=K0
K3 .pppyps
— ( )P 2 T Warpryl o .
2 9 (2 )2f klpl*|q—pl*
(3.9)

We observe that to one-loop order Ky is reduced by
thermal fluctuations, but is unaffected directly by the dis-
order.

B. Quenched random dislocations and disclinations

Virtually all calculations of polymerized membranes to
date have excluded defects in the bonding topology, such
as dislocations and disclinations [32]. We show here that
a quenched array of such defects, embedded in a polym-
erized net that prefers equal bond lengths, can be
modeled by a free energy like Eq. (3.5), provided we
modify the distribution function of the randomness in Eq.
2.9).

Our starting point is the analysis of crystalline and
fluid order on a random topography in Ref. [33]. This
paper studies the effect of annealed dislocations and dis-
clinations in membranes subjected to a quenched random
out-of-plane displacement field f(x). The starting point
is just the effective free energy Eq. (3.2) with c,4(x)=0,
with a frozen f field and a fixed distribution of disclina-
tions and dislocations. If there are disclinations with
“charges” {s,} at positions {x,} and dislocations with
Berger’s vectors {b,} at positions {x,}, the total “dis-
clination density” is [33]

Seor(X)= X 5,8(x—%,)+€,5 3, b, ,055(x—x,) (3.10)
a b

Reference [33] then integrates out the in-plane phonon
fields u,. It is easy to carry out identical manipulations

(i.e., those that lead to Eq. (3.17) of Ref. [33]) with a
quenched distribution of dislocations and disclinations
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and an annealed out-of-plane displacement field. The re-
sult is an effective free energy

=1k [ (V2f)d%x

+1Ko [ [4PL5(0af N3pf ) —c(x))%d?x . 3.11)
This has the same form as Eq. (3.5), with c,z=c(x)8,4.
We find that c(x) is related to the total disclination densi-
ty via

V2 (X) =5, (x) . (3.12)

We can now evaluate the renormalization of the bending
rigidity exactly as in the previous subsection, provided we
can extract the appropriate distribution for c¢(x) using
Eq. (3.12). The precise probability distribution depends
on the circumstances of the polymerization. We focus
for simplicity on polymerizations carried out at a finite
temperature on an essentially flat membrane (e.g., aI

1 1

K*
- - d?%g | ——
2y T* (27) Jd

q2

?c[ba(q)]ocexp - Sag—

where K*=4u*(u*+A*)/(2u*+A*) is related to the
elastic constants u* and A* of the underlying solid and E,
is a dislocation core energy. All quantities with the su-
perscript * refer to their values at the time and tempera-
ture of polymerization. Disclinations are presumably less
important at long wavelengths in the hexatic phase be-
cause they remain bound in charge-neutral pairs. Upon
neglecting the disclination term in Eq. (3.10), we combine
Egs. (3.10) and (3.12) to find c(q)=ieaﬁqab3(q)/q2, or

qan

8op— —t (3.14)
B qz

|c(q)|2=;17 ba(@)bs(a) ,

which, in view of Eq. (3.13), leads to a probability distri-
bution for c(x) that has the long-wavelength form

K
2k

Pylc(x)] < exp p— fdzxcz(x) (3.15)

Polymerized hexatics can thus be described by Eq. (2.9)
with 0,=0 and
kgT*

K*

(iii) If the membrane is a polymerized liquid permeated
by a gas of unbound disclinations, there are important
new consequences. Screening by free dislocations leads to
a relatively weak interactions between disclinations in the
hexatic phase, an interaction which ultimately allows
them to unbind above the hexatic-to-liquid transition
temperature [23]. The probability distribution for the
Fourier-transformed disclination density s(q) is then

(3.16)

o=

—~1 1 , | K4 .

P —_— d +E

[s(q)] <exp 2k T (27)2‘[ q pe c
X|s(ql*|, (3.17)

qan
q2
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Langmuir-Blodgett film at an air-water interface, or a
liposome with a large bending rigidity), which is then al-
lowed to fluctuate freely in a three-dimensional solvent.
There are three cases to consider.

(i) If the polymerization is carried out on a finite-
temperature crystal, disclinations exist only in tightly
bound dipole pairs forming dislocations which are them-
selves bound together to form neutral disclination qua-
drapoles and sextets [23,34]. Tightly bound dislocation
pairs are in fact equivalent to localized vacancy and inter-
stitial defects in the solid [35]. The associated strains are
very similar to those produced by impurities, so we ex-
pect a distribution function similar to Eq. (2.9).

(ii) If the polymerization is carried out at temperature
T* in a hexatic phase, unbound dislocations will be
present. The probability distribution for the Fourier-
transformed Burger’s-vector field at long wavelengths is
known to be [23]

+E!8,3 (3.13)

ba(q)bﬁ(—q)] )

[

where E, is a disclination core energy and K § is a hexat-
ic stiffness constant related to a dislocation core energy
[23]. Upon neglecting the Burger’s-vector term in Eq.
(3.10) [the effects of free dislocations are already incor-
porated into Eq. (3.17)], we find that Eq. (3.17) leads to a
long-wavelength probability distribution for polymerized
liquids of the form

K3

(3.18)
2k, T*

Pyle(x)]<exp | — [ d*x|Ve(x)?

This has the form of Eq. (2.9) provided we set 0,=0 and

allow for nontrivial wave-vector dependence in the

Fourier-transformed variance

kpT*

o1—oqQ)=—— . (3.19)
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Evidently, solids and hexatics polymerized at finite

temperatures will behave much like defect-free mem-

branes with impurity disorder. Polymerized liquids, on

the other hand, are described by correlated randomness.

This has important consequences. Upon repeating the
analysis that led to Eq. (3.8), for example, we find that

kgT* 1
K% (2n)?
KZ(p)Q.PLs(p)asl
kr(q+p)lpl*lq+pl*

k2(q)=kKg(q)—

x [d% (3.20)
Because of the extra factor of 1/|p|?% the integral is now
much more singular, and we find that randomness is only
negligible at the flat-phase fixed point, provided 7, > 2.
This inequality is incompatible, however, with a diverg-
ing bending rigidity, in view of the relation 21, +7, =2.
We conclude that the flat phase of polymerized liquids is
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destabilized by unbound disclination disorder at all tem-
peratures. A 6—e expansion would be necessary to con-
trol the quenched-random-strain fluctuations in this case.

C. Random spontaneous curvature

As discussed in the Introduction, recent experiments
by Mutz et al. suggest that randomness in the locally
preferred spontaneous curvature (as well as random
strains) may be important in partially polymerized lipid
bilayers [24]. We consider here the effect of a zero-mean
quenched random spontaneous curvature variable 4 (x).
We assume that 4 (x) is uncorrelated in space and charac-
terized by a Gaussian distribution with variance A. We
now consider a modification of Eq. (3.5), namely

Ffug)= [ a2 (Lk[V2)—h
+3Ko[$Pap(3af )Npf)
—Ples(x)P) . (32D

The extra term is similar to a random field acting on a
spin system [36] except that it couples to the Laplacian of
the fluctuating field f(x). As in the random-field prob-
lem, the main effect of A(x) (at least in the renormaliza-
tion of the rigidity) is a modification of the f propagator,

kBT kBT 1

-
xlql*  «lql*

1
xlql* klq*

We again compute k2 within this generalized model
and find

Ax?|ql* (3.22)

Ko[2aPopP)pT
Keﬂ'|q+p|4

K3[9,PL(p)gs)
Keﬁ’lq+p|4
(3.23)

where k.s=k/(1+Ax/kgT). We observe that the effect
of extrinsic curvature disorder is simply to reduce «, par-
ticularly at low temperatures. Identical conclusions ap-
ply when the expansion (3.20) appropriate to unbound
disclinations is modified to allow for random spontaneous
curvature.

We conclude that the low-temperature instabilities as-
sociated with random strains continue in the presence of
randomness in the spontaneous curvature. The effect of
random spontaneous curvature has recently been studied
with the € expansion by Morse and Lubensky [28].

1
k2(q)=k+kyT d?
RQ)=KTKp (277-)2f p

1
—(o,+0,) Ty=D fdzp

IV. RENORMALIZATION GROUP
AND THE EPSILON EXPANSION

To study the generalized model of D-dimensional man-
ifolds embedded in d dimensions, we first set
T(x)=(x,+u,)e,+ fpe€s in Eq. (2.6), where the {u,(x)}
represent D in-plane phonon coordinates, and the
{fp(x)} represent d.=d —D out-of-plane modes. Our
goal is to study the scaling exponents 7,, 7,, and 7, by
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looking at the long-distance scaling properties of the
Fourier transformed f and u, two-point correlation func-
tions [8], which are related to the renormalized coupling
constants kg, tg,and Ag,

—_— k T —
(@2 =—2—~g ™, (4.12)
kr(q)q
(JlultqQu}(—q)) . =Pl;———~¢q L, (4.1b)
d ? ur(q)q?
kT

(JuL(qQuk(—q)?),=PL -
lual@us(—q) P [2ux(9)+ g (q)1g?

~g T 4.1¢)

In Egs. (4.1) we have defined correlation functions of the
transverse and longitudinal parts of the in-plane phonon
degrees of freedom u ! EPEBu g and u{;zPﬁBu B> Tespec-
tively. The subscript ¢ means that only connected parts
are included. We wish to study the scaling exponents
M M1 and 71, to first order in € expansion as was done by
other authors for pure membranes [8,9].

We first observe that in the mean-field-theory approxi-
mation the scaling exponents vanish, and «z, g, and Ag
are wave-vector independent, consistent with the conven-
tional elastic theory [37]. When the calculations of Sec.
III are redone for D-dimensional manifolds, however,
both the thermal and disorder-induced corrections to the
bending rigidity diverge for all D <4. Thus D =4 is the
upper-critical dimension of our theory.

We use the renormalization group to determine how
the couplings in Eq. (2.6) scale for D <4. The
renormalization-group transformation described in Ap-
pendix A leads to the recursion relations

k'(b)=k, (4.2a)
w(b)=pb "(1—n,Inb) (4.2b)
u+A)(b)=2p+1)b " (1—q Inb) , (4.2¢)
6 (b)=6b M |1 2d ApkpT p +1
' ! K> D2+2D
x W2+ D2) ]mb ,  (4.24d)
2ut+A
- d, ApkyT
o b)=6,b e [1— | ZCERIED A iy
K D*+2D
(4.2¢)

where  &,=0,4p[2u(2u+DA)/Qu+M)1 /K%, &,
=0,(2u)?/k*, d,=d —D, and A, =S, /(27)P, S, being
the surface area of a D-dimensional sphere. We have im-
posed a sharp cutoff and integrated out a fraction 1—b ~!
of t}le degrees of freedom, and have chosen rescalings of
the f and u, fields that keep «'(b) fixed. The coefficients
Mo M1, and 7, are given by
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D*—1 4u(pu—+A)
M= 2 A ADkBT_f_L_ 1
D?+2D K*(2u+2A)
D—1| 2u 21
-6
2l D | 2ut+A +2,u,+)\, ‘
(4.3a)
2d. ApkyT
=g (4.3b)
D*+2D «k
6u>+2uMD +2)+A%(D%*+2D)/2
m=d. ApkgT = 2 2 ‘
(2u+Mk*D?*+2D)
(4.3¢)

It is apparent from Egs. (4.2a)—(4.2¢) that the actual ex-
pansnon is in powers of the effective coupling constants
R=ApkyT(u/k?) and A= ApkpT(A/k?). The differ-
ential recursmn relatlons for the running couphng con-

stants fi(1), A(l), &,(1), and &,(I), with b=e’, to lowest
order in e=4— D are then
dp _ . 4, 5A2(A+ ) s
dl =€ 12’u 20+4 M
sp 3p>__ 2% (4.42)
a+R?  2p+A
dh _ ~ 4. 5aM0a+R) . o~
ar x__ 24 2y__ OHMUTA) | s
5] — €Ay (R HepA+6L%) iR +3%8,
/\2 N
+3% . (4.4b)
(21+A) 20+A
dé 5d, ¢\p(p+2k)  56.a@R+R)
1 6, — ¢ 014 Bkl 1NHA 36%
dl 6 20+A 20+A
~2 o~
+3010, 3“A2+ ZA,\ , (4.4c)
a+i?  2p+R
dé, d, 56,p(a+R)
— =6, — —6-00 ~— +36,0
TR T Y S A
42 (3B 2k (4.4d)
a+R)?  2p+i

These B functions determine the flow of the coupling con-

3533

They are rederived using the replica method in Appendix

B. At T=0, /shese recursion relations simplify. The cou-
plings i and A remain fixed at zero, and

dé,

i =€6,+36,(6,+6,m), (4.5a)

dé,

—d—l—=662+%62(61+6'2m) N (4.5b)
where

m=lim |2 22 4.6)

-0 | (2a+A)?  2p+A
Note that the same combination of disorder variables
8 .4=06,+m&, enters both Egs. (4.5a) and (4.5b). The re-
cursion relations lead to four isolated fixed points for
€>0 and a line of fixed points at T=0 for € <0 (see Table
D.

The first four fixed points are identical to the ones ob-
tained in the previous study of pure membranes [8].
They are confined to the &,=&,=0 subspace, character-
izing a membrane with no disorder. Below four dimen-
sions the four fixed points characterizing the pure mem-
brane are the only physical ones. P, is an infrared unsta-
ble Gaussian fixed point at the origin. P, and P, are par-
tially unstable fixed points and lie on the boundary of the
domain of stability of the membrane. The infrared stable
fixed point P, characterizes the flat phase of a pure mem-
brane. The scaling exponents 7,, 7, and 7, evaluated at
P,, lead to a diverging ky(q) that stabilizes the flat phase
and vanishing wave-vector-dependent elastic constants
tr(g) and Ag(g). The eigenvalues for o, and o, at the
fixed point P, are both y,=—e/(1+24/
d,)=—m,=—1), in agreement with the general pertur-
bative argument for the stability of the flat phase present-
ed in Sec. III A. At vanishing temperatures, however, the
flow heads away toward the strong disorder region,
which lies outside of the range of the € expansion. This
signifies that at low temperatures the flat phase of a pure
membrane is unstable to a phase characterized by strong
disorder that lies outside of the range of validity of the €
expansion (see Fig. 3).

The renormalization-group analysis leads to the scaling
properties of the renormalized coupling constants

kr(a,p R =exp | f) ’m(l')dl']

stants under the renormalization-group transformation. X kg (e'q, A1), A1), 8 1)) , (4.7a)
TABLE 1. Fixed-point values of the coupling constants fI, X, and &.4=6,+mé,.
€e>0 €e<0
P, P, P, P, P, Py
o 0 0 b ke 0 0
2 0 2e/d, 20—ffic 24_:; 0 0
&% 0 0 0 0 0 —4€/5
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eff D<4

P, P, »

FIG. 3. Flow diagram for D <4 showing instability at 7=0.

Pl I
i@ R0 =exp [~ [ Ini1ar |

Xpglelg,p(1),2(1),6.41)) , (4.7b)
(2ug +Ag (g 04,8 o)
=exp [~ [ m(ar’ |
X (2ug +Ag Ne'lqg, p(1), A1), (1) . (4.7¢)

Upon choosing the rescaling parameter /=/* such that
the rescaled momentum q’(l*)=e’*q=l we obtain the
scaling forms defined in Eqs. (4.1). The scaling functions
from Eqgs. (4.3) evaluated at P, give the scaling exponents
1,~€/(2+d_ /12) and n,=n;=€/(1+24/d,) character-
izing the nontrivial flat phase of a pure membrane, in
agreement with Ref. [8].

For D >4 there is an unstable line of fixed points at
T=0,i.e., for ;’l=x———0, given by

H=0ttméi=1%lel . (4.8)
The zero-temperature renormalization-group flows asso-
ciated with Egs. (4.5) are shown in Fig. 4. We observe
that if the initial amount of disorder is below the thresh-
old line defined in Eq. (4.8) then the pure phase of the
membrane, characterized by the Gaussian fixed point P,
is stable. However, for disorder larger than the critical

@

D>4

A

P, 24 o,
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value defined by & % the flat phase of the membrane be-
comes unstable and the flows again head toward the
strong disorder phase, outside the range of validity of the
€ expansion.

We find that the critical exponents are constant along
the line of fixed points (see below), so that the direction
along the line represents a redundant operator. This
redundancy arises because only the special, elastic-
constant-dependent combination of parameters (4.8) ap-
pears in the 77=0 recursion relations to one-loop order.
When D =2 this combination is just (o;+0,)K 3, which
is the combination determining the renormalization of
the bending rigidity in Eq. (3.7).

We use the scaling relations Eq. (4.7) to compute the
singular dependence of kg, ug, and 2ug +Ag on the dis-
order &.4— 8 5 at T=0. The 7 exponents are obtained
by evaluating the scaling functions defined in Egs. (4.3)
on the fixed line, giving %J(Ps)=—|e|/2 and
1.(Ps)=mn,(P5)=0. The eigenvalue in the direction of in-
creasing disorder is computed in Appendix C with the re-
sult y, =|el. In Egs. (4.7) we rescale well outside the crit-
ical region by choosing /=1I* such that & (I!*)—8& %
=e! (6,4—06 *)=1. This then leads to a vanishing re-
normalized bending rigidity

Kr ~(6eﬁ‘_6 :ﬁ‘)l/2+ O(e) . (4.9)

We also find that the renormalized Lamé coefficients are
nonuniversal finite constants at 7=0. We shall argue in
Sec. V that the transition for &.4> & % is to a highly de-
generate spin-glass-like ground state.

The flows at finite temperature for D > 4 are indicated
schematically in Fig. 5 where we projected down onto an
attractive invariant subspace = —3A. The instability
toward strong disorder still requires a certain threshold
strength defined by a two-dimensional ‘“‘transition sur-
face” (see Appendix C). This surface in the f1,6,,6,
space, terminating at & %, divides the parameter space
into the pure and disorder-dominated regions. At low
temperatures the disorder threshold value & @) in-
creases linearly with fI, leading to a planar “transition
surface.” However, because P is repulsive in tempera-
ture as well as disorder direction, this fixed point does not

D>4

a)

eff

~ %

eff

P, <
m

FIG. 4. Flow diagram for D >4 in T=0 subspace. The criti-
cal exponents are constant along the line of fixed points stretch-
ing from P; to Pj fixed points.

FIG. 5. Flow diagram for D > 4 illustrating the finite thresh-
old (order €) of disorder needed to activate the instability at all
temperatures.
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control the transition at finite temperatures. It is likely
that there is a finite-temperature nonperturbative critical
fixed point further out the “transition surface” that con-
trols the transition. Other methods must be used to
study the transition at finite temperature [21].

V. SUMMARY AND SPECULATIONS
ON SPIN-GLASS ORDER

In the absence of disorder, phantom polymerized mem-
branes undergo a phase transition between a crumpled
and a flat phase as the temperature is lowered. The flat
phase is remarkable because its lower critical dimension
is less than 2, even though it is a continuous symmetry
that is being broken. What makes this possible is the
nonlinear coupling between the in-plane and out-of-plane
fluctuations, which leads to a diverging bending rigidity
under renormalization.

In this paper we have shown that this flat phase is ac-
tually rather fragile, at least when quenched disorder is
present. The effects of impurities and other imperfections
were modeled by random deformations in the metric of
the lowest-energy configuration of the membrane. At low
temperatures, disorder generically leads to the break-
down of the flat phase. If unbound disclinations are in-
cluded in the disorder, this breakdown occurs at all tem-
peratures.

We have several reasons to believe that these instabili-
ties lead to spin-glass phases:

(i) Above D=4, and for arbitrary d,=d —D, we can
increase the disorder & .4 to its critical value & ¢z The
zero-temperature bending rigidity vanishes rapidly as
G 5— 0 iy from below, while Lamé coefficients approach
constant values [see Eq. (4.9)]. These results hint that the
phase above this threshold is dominated by many highly
crumpled, degenerate configurations, because of the van-
ishing bending rigidity. The barriers (typically requiring
stretching nearest-neighbor bonds) separating these
configurations, however, may be quite high (as in a spin
glass), as suggested by the finiteness of the Lamé
coefficients near the transition.

(ii) There are indications that a spin-glass phase (with
Edwards-Anderson order in the surface tangents) exists
in the exactly soluble limit d — « [21]. The phase dia-
grams suggested by this approach are just what we have
conjectured based on the € expansions.

(iii) For the special case of d =3 and D =2 we can ar-
gue as follows [20]. To interpret the softening of the
bending rigidity displayed in Eq. (3.7), we consider the
problem of minimizing the effective free energy in Eq.
(3.5). If the renormalized bending rigidity is indeed
small, it makes sense to proceed by determining first the
smallest possible value of the elastic stretching energy.
This is given by the solution of %P;’;B(aaf )(9pf)
=P£ﬁcaﬂ(x), or equivalently (upon taking the
Laplacian)

S(x)=(31f NS )—(3,0,f V= —V?PLc s(x) ,

where S(x) is the Gaussian curvature. There are, in gen-
eral, many configurations that minimize the stretching
energy, adapting themselves to the frozen-in distribution

(5.1)
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of impurity disorder. The true ground states are given by
those solutions that also minimize the bending energy.
The softening of the bending rigidity displayed in Eq.
(3.7) suggests that these different long-wavelength
configurations, which minimize the elastic energy, will be
nearly degenerate.

The degeneracy of these competing minima is, in fact,
Ising-like. Consider, for example, a single large impurity
atom that causes an otherwise flat membrane to pucker
up or down, reflecting the invariance of solutions to Eq.
(5.1) to the transformation f-— —f. Puckering will
screen the elastic interaction between a collection of
well-separated impurities. The weakly interacting two-
level systems embodied in this picture are reminiscent of
an Ising spin glass. One might expect that the bending
energy induces an ‘““antiferromagnetic” interaction (i.e., it
prefers puckers on opposite sides of the membrane) be-
tween these two-level systems, especially when distant
self-avoidance is present. The interaction between elastic
dipoles (e.g., well-separated long bonds), on the other
hand, could be either ferromagnetic or antiferromagnetic,
depending on their relative orientation. We expect a
diverging Edwards-Anderson correlation length associat-
ed with these puckers as T—0, as has been found in ex-
tensive numerical simulations in the two-dimensional Is-
ing spin glass [38].

Ising spin-glass order in the puckers could lead to a
“roughened” but flat glassy phase, quite different from
the crumpled spin glass proposed for phantom mem-
branes as d — o [21]. Sorting out exactly what happens
as a function of d and D and when self-avoidance is in-
cluded are important subjects for future investigations.
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APPENDIX A: CALCULATION OF B
FUNCTIONS AND CRITICAL EXPONENTS

In this appendix we provide the details of the one-loop
calculation of the renormalized coupling constants, fixed
points, and the critical exponents. The low-temperature
flat phase of the membrane is described by the effective
Hamiltonian Eq. (3.2), generalized to D-dimensional
manifolds embedded in d dimensions,

Bgeﬂ‘[ﬁuaaca[i]: dex [%K(aff)%u(ugﬂ )2
+3M U0 ) —2pc pu op
—Aegptign] - (A1)

In this appendix we have for convenience absorbed the
factor B=1/kgT in k, u, and A. Upon using Eq. (3.3) we
obtain
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BF el ot g€ g1 = [ dPx [ Ll —Lu VH{uPT 4+ u+MPLu,
Hy(aaf.a,,f) + IA(DF-0,F)2 + (B )3 (346)
+ 1(34 o N0 (BE) — 214(8 gt g ) o5 — 1B (Bpf)c o
— M3y o )c pp— (3,03, f)cgg) (A2)
f
where P]; and Pl are transverse and longitudinal pro- ([ f;(k,)f;(ky) ][ fx(k3)f;(ke)])o
jection operators A
3,95 3%(k1'k2)(k3‘k4)8ik8j1+§(kl'k2)(k3'k4)8ij8kl ,
PLy=8p——5, (A3a)
v (A5a)
9,05
Pup="gr - (A3b)  (u,(k,)f;(ky)f(ks) Yo
The averages over the annealed field f(x) and u,(x) are =—i{ [k3n(ki-ky)+ ko, (k  k3) ]
taken with the usual Boltzmann weight factor with the 2
quenched field c,5(x) fixed. Then the quenched average +Akio(kyk3)}8; ,  (ASD)
of only the connected diagrams is performed, with a
weight P[c4(x)] from Eq. (2.9). (uy(k))o=—i(2ukge z+Akcpp) (A5c)
From the Fourier transform of the Hamiltonian in Eq. . .
(A2) we can read off the Feynman rules in momentum (fi(kf (k) ) o= [k 1K 25 ap+ 3K Ky )e o 185 -
space. The propagators for f(k), u «(k), and ¢ ,4(k) are (A5d)

<flf >0 |k14 s (A4a)
Py Py
(ugug)o= 132 al S (A4b)
nlkl2 - u+A)k]
Caﬁc,},sz(al-az/D)Baﬁsys
+%02(8a'yaﬂé+8a56ﬁ'}/) > (A4C)

symbolized by a solid, wavy, and dotted lines, respective-
ly. The vertices are listed in Fig. 6 and defined analytical-
ly by the tree-level correlation functions

FIG. 6. Vertices of the Hamiltonian in Eq. (A2).

Following the original ideas of Wilson and Kogut [39]
we implement the momentum-shell renormalization-
group transformation. We integrate out all the fields
with b 'A< |k| <A, b>1 and rescale the remaining de-
grees of freedom:

k=Kk'/b , (A6a)
k) =b"F" (k") , (A6b)

uI)=b"ul (k) (A6c)
wL()=b1uL (k') (A6d)
capk)=b*clg(k') . (AGe)

This transformation maps the original theory character-
ized by the set of parameters {«,u,A,0,,0,} onto a
theory described by a new set of coupling constants
{k(b),u(b),A(b),0,(b),0,(b)}. The relation between the
coupling constants is determined by the appropriate
correlation functions computed perturbatively. The
Ward identities associated with the O(d) symmetry en-
sure that the coupling constants renormalize in the same
way, regardless of which vertex is used to define them.

O(d) invariance also leads to a relation between the re-
scaling off(k) uI(k),and uL =(k),

§1=§||=2§f_D

which leads to the relation between the scaling exponents
M M1, and 7, introduced in Egs. (4.1) of the main text
(see below) [8]. We have checked that these Ward identi-
ties are satisfied to one-loop order. The one-loop correc-
tion to the phonon propagator {u,(k)ug(—k)), is
displayed in Fig. 7 and leads to recursion relations

-1, (A7)




S

+’\/\/W\/\©\/\/\/\/\/\/
k k

FIG. 7. One-loop correction to the in-plane phonon propaga-
tor.

26,—D—2 2d, m 1 ¢gP!
"(b)=ub "t 11—+ 4 dg |,
R D242D k2 P gt
(A8a)
26—D—2

(2u+A1)(b)=(2u+A)b
6p’+2ur(D+2)+AAD*+2D)/2

X |1—d,
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FIG. 8. One-loop correction to the phonon-disorder correla-
tion function.

Equations (A9a) and (A9b) in turn lead to the renormal-
ization of &', and &, by reexpressing the quenched proba-
bility distribution ?[c,g] in terms of c,, and ¢ .5 and
identifying the new variances as o] and o5. Because in
the expression for renormalization of k (see below) o ap-
pears in a combination &,= Ap[2u(2u+DA)/
(2u+MA)]* 0,/Kk% we recast the recursion relations in
terms of this variable. It is also convenient to define

(2u+A)K*(D?*+2D) 6,= Ap(2u)*o,/k*. The recursion relations for &, and
D G, are
ADf I (A8D) K 2 26,—~D—2
1/b 6ib)y=6,|—|b""
where A, is related to the surface area S, of a D-
dimensional sl')her.e and d.=d —D. Similarly, the qne- 2d, p+1 p(2u+DA)
loop renormalization of the phonon-disorder correlation X |\1= & D242D  2u+A
function (ug(k)c,g(—k)), is depicted in Fig. 8 and leads
to recursion relations for the disorder fields ¢,5 and c,,, 1 gP!
‘b 4p [ S| (A10a)
[(2u+DA)cy, ) (B)=[(2u+DA)cy, 1™ b 1q
de 2u+DA
_Ze , K 26, —D—2
X=3p 7 2 G 3(b)=0, |- | b
4, [ 1”4 (A9a) ¥ |j—— e p , I ',
D ’ _
b |ql* D24+2D k2 P |ql* q
-D
(248 o5 )'(B) = (2042 45 )b " (A10b)
< l1— __Z_tfg__ Loy f _q_ dg Th'e renorr.nalized Kg can be more simply calcula'ted by
D2+2D 2 P lql* first integrating out the u, degrees of freedom (as in Sec.
IID), leading to an eﬁ‘ectlve Hamiltonian involving only
(A9b) cp(k) and f(k),
|
ra —_K 412 2ur
BFlficapl =" fklkl k)| +%fklfk2fk 2uPT Pﬁﬁ(q)+2 PP rs(@)
Xk igkogh sy ks [flk,) ) 1[FUK)-Flky)]

++1. .,

2u+A

Here q=—k,—
=1/2m? [dPk.

2Pl PE( (q)+ 24> pT sPIs(Q)

k, in the third term, and k;+k,+k;+k,=

(q)f(k,)-flk,) . (A1)

klakZchS

0 in the second. Also for shorthand we define

Thls Hamiltonian leads to the Feynman rules for the calculation of f correlation functions quenched averaged over
cqp- The propagator is given by Eq. (A4a), and the effective vertices are displayed in Fig. 9 and defined analytically by

(fi(kl)fj(kz)fk(ks)fl(k4))c=%6 Ok

() (ky)), =18, )

E T

2uPL PL(q)+ 2ph pr PT(q) |c

kiakapks, Kas (A12a)

Capkiykas - (A12b)
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FIG. 9. Vertices of the effective theory described by the
effective Hamiltonian in Eq. (A11), obtained by integrating out
the in-plane phonon modes.
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FIG. 10. These diagrams are the one-loop corrections to the
renormalization of k. The opposite signs of the two contribu-
tions are in competition. The second disorder term wins at low
temperatures, leading to the instability of the flat phase.

These Feynman rules lead to the renormalization of k, defined in terms of { f;(k)f ;(—k) ).. The diagrams contributing
to the corrections of the tree-level result are shown in Fig. 10 and lead to the recursion relation for «

—pD— 2__
K'(b)=Kb2§f b D2 ! 451'(‘”+M Ap
D2+2D | K*(2u+A)
2
D—1| 2u 2 1 gP!
—6,— + M-
% &2‘ D |2u+r | " 2u+A ] s Jqt Y (Al13)

We make implicit choice of {; by requiring k to be a
renormalization-group invariant «’(b)=«. This choice
leads to

D?—1 | 4u(u+A)
26,—D—4=—
br D*+2D | k*2u+r) P
2
D—1| 2u
_6_
! 62[ D | 2u+A
21
2u+A ’

(A14)

We observe that in Eq. (A13) the true coupling con-
stants of the expansion are = Apu/k?, A= ApA/K?%
and the reduced disorder strengths G,

= Ap[2u2u+DA)/u+A) 120 /K2, 6,= Ap(2u)o, /K%

Equations (A8a), (A8b), (A10a), and (A10b), together
with Eq. (A7) then lead to the recursion relations for
these effective coupling constants in D =4—e€ dimen-
sions,

4, —3D—4

n'(b)=pb , (A15a)

1 dc’\l b
P

Rb)y=Rp*r 07"

dc A ~
I—E(ﬁ2+6ﬁk+6kz)lnb

(A15b)
81b)=8," P |1—3q, (2;;22“1;117 . (Al50)
)
, 4, —3D—4 d,
& 4(b)=6,b"" 1—=pnb | . (A15d)

These recursion relations, upon differentiation with
respect to Inb and using Eq. (A14), lead to the S functions
quoted in the Egs. (4.4a)-(4.4d) and determine the
renormalization-group flow with fixed points as the zeros
of the 3 functions.

We now relate the {, §,, and §; functions to the scal-
ing exponents defined in Egs. (4.1) of the main text. We

have already determined §;, Eq. (Al4). Similar
definitions of {, and ¢ lead to
2d
26,-D—2=4,———L£ (A16a)
z P p2+2p «?
2 22
26,—D —2= Apd, 6u”+2ui(D +2g+7; (D*+2D)/2 )
Qu+A)k“(D*+2D)
(A16b)

Using Egs. (A6) we derive the renormalization-group
transformations for the correlation functions that define
Kgs> Mg, and 2ug +Ag:

Fa. =6 "2 reny, , (A17a)

uTu (=), =b" "Cul(bk)uf(—bk)), ,
(A17b)

26—D 7

(uEkuf(—k).=b ul(bk)ug(—bk)), ,

(A17¢)

where the extra factor of b 2 comes from the rescaling
of the momentum-conserving & function implicit in the
definition of the average. We choose b=5b* such that
b*|k|=1 and obtain
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AR

—2§1+D<uT
a

(f)?,.= (A18a)

—k)),=|k|

(uT(Ku

(Duj(—=1)),
(A18b)

—2¢,+D
k| 1P

(ul(kug(—k)).=lk uf(Mug(—1)),

(A18c)

a

Using Egs. (4.1), which define kg, pg, and 2ug +Ay in
terms of the above correlation functions, we obtain

n=—26,+D +4, (A19a)
n,=2¢(,—D—2, (A19b)
n=2,—D—2. (A19c)

Together with Eq. (A7) these equations lead to the rela-

tion between the scaling exponents
u(—e+mn,+21,)=02u+A)—e+n+279,)=0. (A20)

Finally, using the expression for {;, §|, and §; in Egs.
(A19), we obtain

BF4lf,,c

5 LG+ ], f S

aB]: 21

+1 [ i,
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Xk yokoghsykas[f, (ky) )£, (k)
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_5 | 4p(a+h) 3p2 2R
K~ o _31_32 ~5 T ~
8 | 2p+R% a+i)?  2p+i
(A21a)
— dc A
m=1,8 (A21b)
_, R2+2p3+212
m=d. : (A21c)

420+R)

These functions, when evaluated at the relevant fixed
points, lead to the scaling exponents in Sec. IV of the
main text.

APPENDIX B: REPLICA METHOD

In this appendix we will rederive the recursion rela-
tions using the replica method [40] as an independent
check on the calculations in Appendix A. To calculate
the renormalization of k within the replica formalism it is
again convenient to work with the effective free energy in
which the phonon degrees of freedom have been integrat-
ed out exactly. As usual [40], we introduce n copies of
fields f labeled by an index a with a total free energy
given by the replicated version of the free energy Eq.
(A11),

2ut+i

(ky)-f, (ky)]

sPT5(@) |k yokope,s(@F, (k))-f,(ky) (B1)

Assuming that it is possible to interchange the thermodynamic limit and the limit » —O0, the equivalence of the original
theory with a quenched field ¢,z and the replicated theory (in the limit n —0) with only annealed fields is established

through the identity

n_
InZ = lim Z 1 .
n—0 n

(B2)

To compute the xx we can integrate out ¢,z exactly, since it only enters quadratically and linearly. The final free ener-

gy then contains n annealed coupled f fields:

P+ 3 4 S0

BFE,1= 3 5 [, IkI*If
a=1

2uPl Pki(q

(@+=2_prp

2ut Do ro(@)

X k1 gkaghs, ks [£,(ky)-F, (k) 1[£, (k3)-f, (ky)]

< T pT A —4u’/D 1
_g%fklszfks 6\PIPTs(q)+8, |PLPE(Q)+ ) PLPIs(q)
XK1k agk sy s [ B (ko) (k) 1[, (ky) By ()] (B3)

The one-loop correction to the two-point correlation function (fAK)fFH ;

—k)),, which determines (), is expressed

diagramatically in Fig. 11. Upon taking the n —0 limit, the last diagram in Fig. 11 vanishes because it is proportional

to n, and we recover the result of Eq. (A13):

D>—1 | 4ulu+2)
D2+2D | k¥ 2u+))

2%, —D—4

K'(b)=xb 1+ Ap—6,—

D—1

2p (B4)

D

2A 1
2u+A 176 |q|4

2ut+A
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The renormalization of uy and Ay is determined by the four-point correlation function of Fa, diagonal in the replica
indices,

2pur g

Fk)f 20 ) k) Yo = .

Z#RPZ;/P;?&(QH' aBP 5(Q) |k1akopks, Kas - (B5)

We express the renormalization of this correlation function diagramatically in Fig. 12. In the limit of small external
momenta this diagramatic equation reduces to

2pig AR
T pT _PR™R 5T pT 2 +__.U_P T
2R PayP 5@t 2MR+ARPa3PV8(q) 1P oy P (q) 2u+A sPys(@)
o d2p’ PP A(D2—1) | 2MD+1)
k¥(D2+2D) | 7 Qu+r?  2uth
D——]
+2PT P ADf I da (B6)
q

An independent renormalization of the PI PBB and PaBP s terms leads to the recursion relations for 2u and
2uA/(2u+A):

v 26,—D-2 d.2p
2u)'(b)=2ub , B7
(2p)(6)=2p  (D2+2D ) Dfl/b |4 (B72)
_2ud ( b= 24 2%,-D=2 dept [4u>+4ur(D +2)+AXD*+2D +2)]4 fl qDVqu
2+ 2+ © (D242D)KA(2u+ ) P |qlt

(B7b)

Equation (B7a) agrees with Eq. (A8a). Upon using Egs. (B7a) and (B7b) to construct a recursion relation for 2u+A we
recover Eq. (A8b):

26 —D-2

(2u+A)(b)=(2u+1)b 1—d (B8)

[

6u>+2uMD +2)+AXD>+2D) /2 Ik g7 g
(2u+A)KAD2+2D) 6 |ql*
I

2
b

The recursion relations for &, and &, are determined
by the renormalization of the four-point function G a(b)=
of f,, off dlagonal in the replica index,
(fAKk)fE (kz)f (ks fj k,)).. The diagramatic equation 4d,
is displayed in Fig. 13. In the limit of vanishing external - D2+2D 2 fl/b la |4
momenta and n —0, only the last two diagrams survive,
and we recover the recursion relations of Egs. (A10):

K 2%,—-D—2
I3

(B9b)

gib)=6, | | p* "7 e .
o k}].
|24 _D+1 pu+DA) s W

k? D?*+2D 2u+A ia j.a

Dfl/b

!ql“

SR
IIGINGINE =T S S,

k

FIG. 11. One-loop corrections to the two-point correlation
function of f{ which lead to the renormalization of x within the FIG. 12. Diagrams defining the renormalization of u and A
replica scheme. The last term is proportional to # and hence calculated with the effective Hamiltonian from Eq. (A11) within
vanishes in the limit n —0. the replica formalism.



&

FIG. 13. Diagrams defining the renormalization of &, and
0, calculated with the effective Hamiltonian from Eq. (A11),
within the replica formalism.

APPENDIX C: ANALYSIS OF THE FLOW
NEAR FIXED POINT P

In this appendix we calculate the renormalization-
group flow near the fixed point P5 for D >4. For simpli-
city we will restrict our analysis to an invariant subspace
of the full parameter space defined by &,=0. The gen-
eralization to the full space is straightforward.

To calculate the flow near P5 we need to linearize the
set of recursion relations in Egs. (4.4a)—(4.4c) within the
&,=0 subspace. We can further reduce this three-
dimensional problem to the analysis of a two-dimensional
parameter subspace defined by ﬁ+32=0. The reason for
this is that this is an attractive and an invariant subspace.
To show this we use Eqs. (4.4a) and (4.4b) to construct a
recursion relation for i + 3k:

Pl d ~ AL A Py
dp+3h) | _de oo ag SAEHD) Lo
di 6 WA
3p2 2K A
35 22 la+3d).
2 op+n?  2aa || H
(1)

This reveals that fi+3A=0 is an invariant subspace. To
examine the stability of this subspace we expand Eq. (C1)
around fi+3A=0 near Py in terms of a small deviation
d=p-+3A:
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ds d,+12
—=—f— C2
a - R d (€2)
Hence i+ 3X=01is an exponentially attractive subspace,
provided fi > 0.

Inside the two-dimensional subspace the recursion rela-
tions Egs. (4.4) reduce to

di d,+24 R
}lf:—]elﬁ——Tz—,uz-i-%,u&, , (C3a)
dé, d,+12 '2
—dl—=~|elal———-6—alﬁ+%al . (C3b)

We linearize the above equations around Ps defined by
fi*=0and & } =%|e| and obtain

dap _

p 0, (C4a)
d |, 2d+12) et | 2d,+12) b
ar |7t 5 B|=lel|a 15 R (C4D)

The eigenvectors and eigenvalues are easily calculated:

61:(0,1)’ y1:|6| ) (CSa)

A~

2(d, +12)
€= —

, 15 (C5b)

’ y2=0 .

As discussed in the main text, the flow is exponentially
unstable in the o direction around Ps. To study the sta-
bility of P in the direction of &, we rewrite Eq. (C3) with
the unstable eigenmode @, projected out, i.e., along the
subspace &,—[2(d,+12)/15]@=0. We find that the
flow is also weakly unstable in the temperature direction

dp_ 4 -, c6
a2t (o
This equation is easily integrated with the result
illy)
= Hoo (€7

1—(I—Iyplyd. /12 °

which leads to the flow illustrated schematically in Fig. 5.
The subspace &,—[2(d,+12)/15]i=0 near Ps defines
the “transition surface” discussed in Sec. IV.
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