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Multibranched crosslike crack patterns formed in concentrically loaded square plates are studied in
terms of fractal geometry, where the associated fractal dimension dy is calculated for their character-
ization. We apply the simplest deterministic and stochastic approaches at a phenomenological level
in an attempt to find generic features as guidelines for future experimental and theoretical work.
The deterministic model for fracture propagation we apply, which is a variant of the discretized
Laplace approach for randomly ramified fractal cracks proposed by Takayasu [Phys. Rev. Lett. 54,
1099 (1985)] reproduces the basic ingredients of observed complex fracture patterns. The stochastic
model, although not strictly a model for crack propagation, is based on diffusion-limited aggregation
(DLA) for fractal growth and produces a slightly more realistic assessment of the crosslike growth of
the cracks in asymmetric multibranches. Nevertheless, this simple ad hoc DLA version for modeling
the present phenomena as well as the deterministic approach for fracture propagation give fractal
dimensionality for the fracture patterns in accord with our estimations made from recent experimen-
tal data. It is found that there is a crossover of two fractal dimensions, corresponding to the core
(higher dy) and multibranched crosslike (lower dy) regions that contains loops, which are interpreted
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as representing different symmetry regions within the square plates of finite size.

I. INTRODUCTION

Fracture phenomena in a wide variety of loaded brit-
tle media have been a topic of extensive experimental
research in materials science. This has resulted in an ex-
haustive amount of test data for the analysis of crack
propagation behavior under tension in terms of grain
boundaries, temperature, anisotropies, etc. Different
sample shapes lead to the formation of different crack
patterns, and so a large set of empirical rules exists in
this field. However, in addition to this rich phenomenol-
ogy, the possibility of using concentrically loaded square
plates, which are supported at each corner, as a test
to measure the fracture characteristics of ceramics un-
der biaxial stress has only been recently explored [1]. It
has been found that under these conditions asymmetric
multibranched crosslike cracks exhibit growth directed
towards the edges of the square plates, as shown in Fig.1.
The practical importance of such tests that used quasi-
two-dimensional (2D) square samples is that many ce-
ramic materials are usually fabricated in this shape.

From a physical point of view it has largely been rec-
ognized that the broad class of complex crack patterns
growing under a wide variety of nonequilibrium exper-
imental conditions, such as applied shear, can be de-
scribed in terms of fractal geometry, where the associated
fractal dimension is the convenient tool for their charac-
terization [2-4]. However, the level of analysis achieved
for nonequilibrium processes such as diffusion-limited ag-
gregation (DLA) [5-7], dielectric breakdown [8-10], and
dendritic-crystal growth [11], which give rise to fractals,
does not exist for crack formation and, in particular, for
the new patterns formed by fracture stress of ceramic
plates [1]. Consequently, no theoretical investigation or

44

computer-generated simulations have yet been done that
have attempted to understand the nature and physical
properties, such as fractal dimension, of the complex
processes generated in square-shaped materials showing
asymmetric multibranched crosslike crack growth.
Studies of rapidly moving fourfold coordinated pat-
terns without multibranching in the directions of the
square lattice axes have been reported using different
types of growth models. DLA clusters with crosslike
(or snowflakelike) shape have been obtained when (i)
“averaging” procedures were introduced [12, 13]; (ii) de-
veloping discrete Laplacian growth in which appropriate
growth probabilities for the lattice sites were considered

FIG. 1. Typical crack pattern generated on a square ce-
ramic plate by concentrically applied loading within a circle
of diameter 7.5 mm (from Ref. [1]).

3471 ©1991 The American Physical Society



3472

[14,15]; (iil) introducing a noise-reduction parameter [4];
or, more simply, (iv) assuming that the seed configura-
tion was not isotropic in the sense of the original version
of DLA [16].

Another theoretical possibility for describing the
growth of fourfold interfaces has been the application of
the boundary integral method to solve the Laplace equa-
tion without an underlying lattice [17,18]. However, it is
important to mention here that all these approaches for
studying such specific fractal morphologies, in conjunc-
tion with some alternative simulation models of crack for-
mation on surfaces [19-23], lack many important features
present in the experiments carried out on concentrically
loaded square plates, such as the appearance (for large
sizes and large times) of multibranched cracks directed
to the edges of the lattices [1].

It is the aim of this work to make a first attempt
towards understanding qualitatively the crack patterns
formed in concentrically loaded 2D lattices at a phe-
nomenological level. We shall restrict ourselves to the
comparison of the simplest deterministic and stochas-
tic approaches to model the observation of asymmet-
ric multibranched crosslike crack growth and from it, to
study the associated fractal properties of such particular
fracture patterns in defect-free media. We interpret the
observed crack patterns as having a less dense, isotropic
central region, and outside this region a crosslike forma-
tion of multibranches directed towards the edges of the
square plate (see Fig. 1). We shall keep this basic inter-
pretation in mind when discussing fractal dimension cal-
culations and shall show, based on our estimations using
reported crack data, that this idea is quite reasonable.

The deterministic model we propose is an extension of
early ideas put forward by Takayasu [19] for randomly
ramified fractal cracks in a 2D lattice. Here we also solve
the discretized Laplace equation in a 2D square net but,
as a difference, we generate spontaneous crack patterns
when the center of the square brittle lattice is pulled out,
while keeping all opposite corners fixed with null dis-
placement. Our stochastic approach, on the other hand,
although not strictly a model for crack propagation, is
based on DLA for fractal growth and heuristically in-
cludes some restrictions to account for the effects of the
2D lattice corners. We shall show that this simple ad hoc
DLA version as well as the deterministic approach for
fracture propagation give fractal dimensionality for the
fracture patterns in accord with our estimations made
from experimental data.

The rest of this paper is organized as follows. In the
following section we introduce our deterministic model of
fracture growth and our stochastic approach for studying
these phenomena. Based on these models we present our
simulation results in Sec. III and discuss them in view
of the experiments of Entwistle [1]. Section IV contains
some concluding remarks.

II. FORMALISM

In order to model the recent experimental pictures of
Entwistle [1] of fracture in concentrically loaded square
plates, and to investigate the possible fractal nature of
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such crack patterns, we introduce next the deterministic
model of fracture growth in defect-free media and the
alternative stochastic approach.

A. Deterministic model

In the original deterministic model of fracture analyzed
by Takayasu [19], a square-plane network consisting of
brittle sticks that are connected stiffly at each lattice
point is considered. The essential physics that follows
from this model is rather simple. If a thin brittle stick
that is fixed at one end is displaced at the other free end
by a certain amount, it shows rigidity and a restoring
force is observed. But once the displacement of the free
end exceeds a critical value d., then the stick becomes
broken, in which case the modulus of rigidity of the stick
is suddenly reduced to a very small number. Once the
fracture phenomenon takes place in the material, it is
conceivable that the critical value of the displacement at
which the modulus of rigidity diminishes would be mod-
ified as the crack pattern develops.

Incorporating these ideas, we have arrived at a new
procedure to simulate the crack propagation in a network
of brittle sticks under concentrically applied shear. This
new procedure also assumes that the displacements at
the lattice points are perpendicular to the plane, so we
express the equilibrium of the forces at the (7, j)th lattice
point as the discrete version of the Laplace equation that
would be obeyed in a continuous model,

4
> G, )i, §) — u(i, )] = 0, (1)

k=1

where u(i, j) denotes the displacement of the (z, j)th lat-
tice point, u(z, j) is the displacement of one of the four
nearest neighbors, i.e., k = 1,...,4, and Gg(¢,j) is the
corresponding modulus of rigidity of the stick connecting
the (7, j)th lattice point to its neighbor.

It follows then that we (i) specify {G}, either by as-
signing a priori values or using random numbers, and the
boundary conditions for {u}; (ii) solve Eq. (1) for {u};
and (iii) check every stick, except those that are already
broken. If the breakdown condition |ug(z,7) — u(Z, )| >
d. is satisfied we then let Gy (7,j) = €¢Gy(¢,7), where € is
a small positive number. Here d. may be regarded as a
parameter that changes as the crack formation evolves.
(iv) We stop if no new stick is broken in the present
iteration, or a completed (percolation) crack pattern is
reached, otherwise we go to step (ii).

In our new application of the Takayasu model to the
concentrically loaded square plate, the boundary condi-
tions are such that in an N x N net, the four corners are
fixed and held at u = 0, and the lattice point in the mid-
dle of the net has an initial displacement u, representing
the effect of the loading. A subsequent iterative solution
of the set of equations for all the other displacements of
the lattice points yields the crack pattern once suitable
d.’s are chosen to satisfy the breakdown condition. This
new model is as completely deterministic as the original
proposed by Takayasu, in that, once the boundary con-
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ditions are specified, the growth pattern for fracture may
develop in accordance with Eq. (1).

B. Stochastic model

The stochastic model we define on a 2D lattice is based
on DLA [5]. Connected patterns are formed assuming
that there are two different regions, say, one isotropic
[24] containing a core region and the other anisotropic
containing the multibranching, for the cluster aggregate
to grow following two simple rules.

(i) Inside the first region, spherical particles diffuse
through DLA. That is, they diffuse one at a time and
are deposited adjacent to (occupied) lattice sites. These
complex processes, which are known to present fractal
behavior for large clusters, are repeated until we reach a
core (or deposition) radius Ry that is situated between a
central seed particle and the edges of the lattice. Ry is
the radius outside of which asymmetric multibranching
is assumed to start forming.

(i1) We define then the second region as being limited
on the one hand by Ry and on the other by the lat-
tice edges. In order to account for anisotropy, this sec-
ond region, in turn, is divided into four equally spaced
but imaginary channels (or paths) of width smaller than
twice Ry. The spherical particles diffusing from the lat-
tice ends and approaching the center core, which contains
the DLA cluster, are then randomly added to the cluster
by imposing some extra conditions on this process if the
deposition results only inside the channels. If this is the
case, the growth process is then determined as follows:
one incoming spherical particle is transformed so as to
occupy (up to) three nearest unoccupied lattice sites to
become rod shaped with an axial orientation perpendic-
ular to each edge of the lattice. But if the deposition
results outside such imaginary channels, i.e., it occurs in
the smaller square region that shares the corners of the
original (and larger) 2D lattice, the process of deposi-
tion continues to be of the DLA type by simply adding
spherical particles to the cluster, as also is done inside
the isotropic region covered by R,.

Although this stochastic model, which we are propos-
ing for modeling the present phenomena, may be seen as
heuristic, we shall show in the following section that it en-
ables us to reproduce asymmetric multibranched crosslike
structures that simultaneously grow and avoid approach-
ing the lattice corners.

III. RESULTS AND DISCUSSION

As previously mentioned, our aim is to model the
growth of asymmetric multibranched crosslike cracks and
investigate their fractal dimensionalities. A typical crack
pattern exhibiting such features is reproduced in Fig. 1
which has been obtained using a 7.5 mm-diam loading
circle on a 103-mm square alumina plate (1 mm thick,
2.5% porosity, and 2-10 um grain size) supported at each
corner [1]. In these experiments the fracture origin is
found to be close to the (concentrically applied) loading
circle, so it is not unreasonable to consider, within our
deterministic model, that cracks will be generated when
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the center of the square brittle lattice is pulled out while
keeping all opposite corners fixed, whereas within our
stochastic approach the pattern will grow starting from
the seed particle placed at the intersection of the plate
diagonals.

We interpret the experimental crack growth patterns of
Fig. 1 as follows. There exists a core region which looks
isotropic and extends out to a radius Ry. Then what we
call anisotropy sets in, and the overall observed pattern
shows a crosslike behavior with multibranches directed
towards the edge of the square plate. As can be seen
in this figure, the branches outside the region R4 some-
times intersect to form loops, which further justifies the
assumption about anisotropy made in our deterministic
and stochastic models.

It is also important to indicate that there are a few
differences between our modified version of the Takayasu
model for crack growth [9] and the actual experimen-
tal conditions. In the experiments reported by Entwistle
[1] the square plates were loaded within a circle of fi-
nite radius, whereas we have here assumed that loading
takes place on a single lattice point. Furthermore the
plates supported at four corners exhibit complex move-
ments due to elastic strains, change of slope at the point
of support, and plate deflection.

In our deterministic simulations we have neglected all
such effects and considered the square net to be fixed at
the corners where the displacements were set to u = 0,
as part of the boundary conditions. Since our aim in
the present work is to chiefly obtain a qualitative un-
derstanding of the observed crack patterns, we have not
attempted to simulate the case of a load applied to a fi-
nite region in the square lattice. In order to search for
crosslike behavior in the formation of crack patterns we
first assume that all the moduli of rigidity Gy (¢, j) have
the same value B, except for those sticks that are on the
edges of the square lattice, in which case their value is set
to A. This is the main difference between our determin-
istic model and that of the original Takayasu model [19].
Percolation patterns are thus obtained deterministically
in our case with the minimal set of input parameters.
The resulting crack pattern, as displayed in Fig. 2(a), is
completely symmetric due to the simplicity in the choice
of the input (A4=20 and B = 2), yet exhibits the salient
features of the experiment. We note that the crosslike be-
havior with multibranching and an isotropic core region,
as previously discussed, is already present in this model.
To this end it is important to mention that at least two
different moduli of rigidity are required to observe the
crosslike pattern formation with the condition A >> B.
If all Gk (¢, 7)’s are chosen to be equal, i.e., A = B, we find
that the growth pattern for the cracks shows a marked
difference, namely, the sticks tend to break, starting from
the center towards the corners along the diagonals of the
square lattice. As in the original Takayasu model [19],
cracks grow from the place where tension is applied to
the points of null displacement, i.e., u(¢,j) = 0.

On the other hand, when the moduli of rigidity are
allowed to be random at the first iteration, we obtain a
slightly more realistic crack pattern, as shown in Fig. 2(b)
and as compared to Fig. 1. In this figure, we have taken
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FIG. 2. Final fracture pattern in the present deterministic
model with (a) constant moduli of rigidity A and B, and
(b) random moduli of rigidity A and B. In both cases the
condition A>>B is satisfied.

the moduli of rigidity, for the bonds within the lattice (ex-
cluding the edges), to be B = 1+&;, and for the bonds on
the surrounding edges of the lattice, A = 20(1+¢&5), satis-
fying the condition A > B. Here & (i = 1,2) are random
numbers uniformly distributed in (0,1). The simulation
for the pattern illustrated in Fig. 2(b) was performed on
a 15 x 15 lattice with € = 0.01, initial perpendicular dis-
placement of the lattice site in the middle ©u = 3, and
the critical value for displacement d;; = 0.75 necessary
to break the four neighboring sticks to the middle lattice
point [25]. In the next iteration d,s is taken to be smaller,
i.e., 0.003, to obtain the final fracture pattern. Both d.;
and d.; were determined by inspection. It is interesting
to notice that we would require different values of the
critical displacement d. in each iteration in order to get
temporal crack propagation. This is to be compared with
the original Takayasu model [19] in which a single d. is
used throughout a given simulation. However, if € > 1,
we recover the Takayasu dynamics with a single d., which
does not correspond to fracture but to dielectric break-
down [9]. That the value of d. changes depending on the
configuration generated in the previous iteration may be
interpreted as some material-dependent phenomenon.
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Comparison of Figs. 2(a) and 2(b) reveals that the
asymmetry of the directed growth of the multibranched
crosslike fracture is due to the randomness introduced
in the otherwise completely deterministic model. To
this end, we point out that when the discretized Lamé
equation of the theory of elasticity is solved on a lat-
tice with appropriate boundary conditions, the result-
ing crack growth pattern shows crosslike behavior that is
fully symmetric [21-23].

We now focus on the results of the stochastic approach.
Motivated by the findings in our deterministic model con-
cerning the isotropy in the central region [24], and the
crosslike crack propagation, we develop the stochastic
model to generate a similar class of growth patterns with
emphasis on asymmetry. Some examples of the struc-
tures generated by computer studies of our DLA-based
stochastic model are shown in Figs. 3(a) and 3(b).

These figures show clusters containing 2740 and 3360
spherical particles, respectively, grown in a 200 x 200
square lattice. Model particles are added, from one to
three at a time to a particular DLA cluster that is con-
tained inside a core region via random-walk trajectories

FIG. 3. Crack growth in a 200 x 200 lattice using the
present stochastic DLA-based model with a core region con-
taining (a) 10 sites and (b) 10° sites.
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that originate from the region compressed between the
growing DLA cluster and the lattice edges. Such oriented
particles cross imaginary channels throughout this exter-
nal region in the lattice. The core regions in Figs. 3(a)
and 3(b) contain, respectively, 102 and 103 occupied lat-
tice sites and the imaginary channel widths are about
12.8% and 53.5% of the linear size of the 2D lattice.

Using the present algorithm for the stochastic simu-
lation, it now becomes possible to generate asymmet-
ric multibranched crosslike patterns in reasonable accord
with observations reproduced in Fig. 1. We find that
the several branches appearing in the growth processes
almost simultaneously reach the lattice edges. For the
larger core radius considered, as seen in Fig. 3(b), we
produce a larger amount of asymmetric needlelike arms,
which split up to form a ramified but oriented pattern,
than in the case of starting with a less dense cluster than
that shown in Fig. 3(a). Contributions to the random
growth process from the spherical particles in the region
outside the central core and the imaginary channels be-
come extremely small. This fact, which occurs within the
region containing the lattice corners, may to some extent
be a way of taking into account the presence of the corner
supports [1]. The multibranched crosslike patterns stop
growing after (at least) one arm touches the boundary
edges.

We examine next the fractal properties of the simu-
lated crack patterns displayed in Figs. 2(a)-3(b) as well
as those from the experimental data shown in Fig. 1. To
determine the decay of density correlation functions in
our deterministic model, the number of broken bonds in
a box of side h centered around the origin of the 2D lat-
tice are plotted versus h in a log-log plot (not shown).
Lines with slopes larger than unity and smaller than the
space dimension are obtained, which indicate the fractal
nature of these patterns. We find that the deterministic
simulation patterns, carried out in a 15 x 15 lattice, yield
fractal dimensionality d;y ~ 1.86 for the case of constant
moduli of rigidity and it further approaches the space
dimension for random moduli of rigidity. In this calcula-
tion we are also able to identify a smaller theoretical dy
corresponding to the anisotropic region (still far from the
lattice edges). Larger scale simulations of our determinis-
tic model are needed to distinguish clearly between these
different fractal dimensions. We point out that owing
to the underlying symmetry in the boundary conditions,
even in the case of random moduli of rigidity, the number
of broken bonds in the edges (or z and y) directions are
approximately equal [cf., Figs. 2(a) and 2(b)].

Within the present DLA-based stochastic model, we
count the number of particles, N(r), inside a circle of
increasing radius » (in lattice units) around the seed par-
ticle and plot it as a function of 7 in a log-log plot, as
depicted in Fig. 4. For this purpose those particles that
have been transformed to occupy up to three nearest
(unoccupied) lattice sites to become rod shaped, hav-
ing an orientation perpendicular to the lattice edges, are
counted as single spheres if they are included in the circle.
For comparison, we also show in this figure the average
results of a very good fit, by a straight line, for a 2D DLA
cluster containing 2740 particles with a well-defined frac-
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tal dimension: dy = 1.71 [5] grown in a 200 x 200 lattice.

Figure 4 clearly illustrates the crossover between the
two regions—containing the core and multibranching,
respectively—that we have assumed to describe the crack
growth in concentrically loaded square plates. Inside
the isotropic region, i.e., r < Rg, we obtain a slope of
ds,’so) =~ 1.71, as expected for our data, because we have
imposed a DLA type of behavior for the pattern to start
the growth propagation. It is surprising, however, to see
that within the anisotropic region, i.e., r > Ry, thereis a
“smooth” drop of the linear behavior that is present for
r < R4 and that gives rise to a second fractal dimension

value smaller than d?so). The second slopes of these pat-
terns are d}a"iso) & 1.41 for the smaller (R4 = 12.81) core

cluster and d;amso) ~ 1.25 for the larger (Rs = 53.46)
core cluster studied. In our calculations of df we have not
included the size effects due to the linear size of the lattice
(r — 102%); a trivial behavior that can be seen in Fig. 4. It
is also interesting to note that for each pattern obtained
with a specific core radius R, there is a unique asymmet-
ric multibranched crosslike pattern that contains loops.
Hence, within this simple approach, to each generated
pattern there corresponds a different value of dl@nise)

In order to give also an estimate of the fractal proper-
ties of the experimental crack patterns displayed in Fig. 1
and compare them with our findings in Fig. 4, we use the
above-mentioned procedure to compute directly dy from
the log-log plot of Fig. 5. We find that there are two
slopes, indeed: one corresponding to the small-r region
(marked by an arrow in Fig. 5), and the second one cor-
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FIG. 4. Number of spherical particles, N(r), in a circle
of radius r covering the patterns in (x) Fig. 3(a) and (A)
Fig. 3(b). The arrows mark the corresponding core radius Rq4
for the isotropic region (see text). For comparison, we also
plot (o) the results for a DLA cluster of 2740 particles, where
the slope of the line is dy = 1.71. In all cases the system size
is 200 x 200.
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FIG. 5. Present estimations of the fractal dimension (dy)

values of the experimental crack growth patterns of Ref. [1],
shown in Fig. 1. Different symbols represent different statis-
tics. Arrow indicates an approximated boundary for the
isotropic and anisotropic regions (see text).

responding to the large-r region, with fractal dimensions
d ~ 1.93 and d(fz) =~ 1.21, respectively. Accordingly,
tﬁe second dy value for the smaller isotropic core sys-
tem considered extends for a decade in the r axis. A
smaller second d; value is an indication of the multi-
branched crosslike spatial evolution of the patterns after
some loop structures have been generated in Fig. 1. This
interesting finding encourages us to give a further justifi-
cation of our assumption that inside the square plates
there may be two regions of different symmetry—say,
one isotropic (say, of the DLA type [24]) and the other
anisotropic (or fully oriented)—each of which presents a

different fractal dimension (d{*> > d(famso)). In this re-
spect, it is worthwhile to add that a crossover between
two growth regimes in crack formation has also been de-
termined by the high-stress limit of the Lamé equation,
provided the probability of cracking increases with stress
[21]. However, such studies have not been extended to
include multibranching directed to the edges of the lat-
tice, as was done here. Finally, it is also important to
mention that the present second crossover values for dy,
obtained within our stochastic model, differ from theo-
retical predictions for single-branched crosslike patterns
dy = % [12, 26] and approach, for instance, the values
estimated from Laplacian growth () model with n = 2
[4] that are smaller than dy in DLA.

IV. CONCLUDING REMARKS

As pointed out by Mandelbrot [2], “One reason to es-
timate fractal dimensions dy and f(a)s (i.e., its general-
ization to self-similar multifractals [27]), is to do Physics.
Another reason is to compare ‘messy’ data with theory.”
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We believe this to be appropriate for the large set of em-
pirical rules and test data, which exists for crack prop-
agation behavior obtained under tension, because of its
practical importance. Of particular interest are the ap-
proximate fractal dimension estimations we have made
for the recent experiments by Entwistle [1] that were car-
ried out on concentrically loaded square plates, which we
have shown in Fig. 5.

In this work we have taken the first steps towards
understanding the recently observed asymmetric multi-
branched crosslike crack growth in a 2D lattice in terms
of fractal geometry, where the associated d; is the conve-
nient tool for their characterization. Fractal dimension-
ality in such fracture patterns presents a crossover of two
dy, which we have interpreted as representing different
symmetry regions within the square plates of finite size.
Of course, this new and interesting problem can be stud-
ied with a number of numerical methods that are more
sophisticated than the ones applied in our paper and that
should probably give the best results (as compared to ex-
periments) [19-23].

Nevertheless, by using the simplest deterministic
model we may apply for crack propagation—which is
a generalization of the discretized Laplace approach for
randomly ramified fractal cracks with appropiate bound-
ary conditions, as proposed by Takayasu [19]—we ar-
gue that the physics behind this phenomenon is in the
crossover of two fractal dimensions, one corresponding
to a core (higher df) region and the other to multi-
branched crosslike (lower d;) regions. On the other hand,
although a stochastic DLA-based model is not essentially
a model for crack propagation, we have shown that in its
present version, it can produce patterns resembling the
experimental crack picture in asymmetric multibranches
when some restrictions are heuristically included to ac-
count for the effects of the lattice corners. But, even
more important, this simple ad hoc DLA version leads to
modeling the same physical phenomena when discussing
dy for multibranched crosslike crack patterns. As also
mentioned in the text, a crossover between two growth
regimes in crack formation has also been determined by
the high-stress limit of the Lamé equation [21]. However,
the latter, “more” complicated numerical studies have
not been extended yet to include multibranching directed
to the edges of the 2D lattice, as seen in experiments.

By invoking the simple deterministic model for frac-
ture propagation, we found that using identical moduli
of rigidity, i.e., A = B, crack propagation is along the
diagonals of the square lattice. For the same boundary
conditions, i.e., null displacement at the lattice corners,
having A > B drastically changes the symmetry to give
crosslike growth patterns, making them look closer to
experiments; besides, the DLA-based algorithm for sim-
ulation allows us to generate asymmetric multibranched
crosslike patterns that contain loops, which are in slightly
more reasonable agreement with observations. The sev-
eral branches appearing in the crack growth almost si-
multaneously reach the lattice edges.

We have assumed that bonds break under external
shear and not under compression or drying. It is known
that the mechanisms leading to fracture are material de-
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pendent and this has not been considered within the
present work. Within our stochastic approach, material
dependence may somehow be related to the adopted core
size, and in the case of the deterministic model, appropri-
ate selection of the moduli of rigidity for the sticks may
be tried. Although any firm conclusion on this cannot
be established here, we believe that our approaches to
the study of multibranched crosslike crack patterns can
be useful to find generic features as guidelines for future
experimental and theoretical research concerning the ex-
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istence of a crossover between two growth regimes during
crack propagation in concentrically loaded square plates.
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