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Chaos and nonisochronism in weakly coupled nonlinear oscillators
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Nonisochronism, the dependence of oscillation frequencies on amplitudes, substantially changes the
dynamics of two weakly coupled nonlinear oscillators. Using averaged equations, we find that a noniso-
chronous passive circuit coupled with an active oscillator displays chaotic and two-frequency oscillation
regimes, behaviors not found in the corresponding isochronous system. This system also shows hys-

teresis at the transitions from two- to one-frequency regimes, and from the one-frequency regime to the

suppression of oscillations. The transitions to chaos, via period doubling and type-I intermittency, occur
as the detuning of the two partial frequencies of the oscillators is varied, and we identify conditions for
the onset of chaos in this system.

I. INTRODUCTION

A system of two coupled quasilinear oscillators is one
of the most widely studied models of multimodal systems
[1,2]. It exhibits important features of these systems such
as competition between modes, hysteresis of different os-
cillatory regimes, and generation suppression [1-5].
However, when studying multimodal systems analytical-
ly, one usually restricts the mathematical model to the
isochronous case [4], neglecting the dependence of the
frequencies of oscillations upon their amplitudes. This
approximation is not satisfactory for many cases [1,6],
such as electrical oscillatory systems with reactive circuit
elements.

In this paper, we present the basic effects that are seen
in a system of two weakly nonlinear oscillators, coupled
directly, including nonisochronism. Our analysis treats
cases when both oscillators are active and when one of
them is passive. We show that the dependence of the os-
cillation frequencies upon the amplitudes not only leads
to the displacement of the whole state portrait of the sys-
tem along the frequency axis, but also causes regimes of
qualitatively different behavior to occur, such as chaotic
dynamics, which are impossible for the analogous iso-
chronous system.

II. MATHEMATICAL MODEL

We consider two linearly coupled oscillators described
by the following general equations:

xi /zi(1 vix i )xi +coi(1 5ix i )xi =Exz

X2 /22( Vzx2 )X2 +~2( ~zx2 )X2 +Xi

If the two oscillators are weakly nonlinear, weakly cou-
pled, and the difference in their partial frequencies is
small compared with either frequency, solutions will be of
the form

x, (t) =a (t) cos[cot+P, (t)],
xz(t) =b (t) cos[cot+ $2(t)],

and the averaging method introduced by Krylov and Bo-
goliubov [8,9] yields the following equations for the oscil-
lator amplitudes a and b and phase difference g:—$2
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Here, a, b=p, z/2; y, & =(v, ziz, b)/4; k=K/(2co), the
coefficient of resonant interaction between the two oscil-
lators; 6=co, —co2, the detuning of the two partial fre-
quencies; 7 is the "slow" time; coefficients o., and ab
characterize the linear and y, and yb the nonlinear dissi-
pative features of oscillators. The coefficients /3 and tc

represent nonisochronous features of the oscillators and
are dependent upon the parameters 6, 2 and p& p of Eq.
(1). When P=tc=0, the partial frequencies of the oscilla-
tors do not depend upon their amplitudes and the system
is isochronous.

Similar equations have been derived previously [1,4,7],
and have been studied for various cases of identical oscil-
lators. They may be obtained using other first-order
asymptotic methods such as the two-variable expansion
perturbation method [7]. The direct, nonscalar coupling
that we have included in Eq. (1) is typical of electrical cir-
cuits [5,6].

Values of the nonzero steady amplitudes (a = A, b =8)
of system (3) are determined by the resonance curve equa-
tion
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b, =PA a—B

B2
+ —1 Q(k A /B ) (a—

b yb—B ), (4a)

where

B = [ab+Qab —4ybA (y, A —a, )] .
1

~b
(4b)

The signs "+" indicate the two di6'erent branches of the
resonance curve, which correspond to dift'erent magni-
tudes of the stationary phase di6'erence

4=%i,2
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=arccos + 1 — (a —y B )

k 3

' 1/2

(4c)

Stable nonzero fixed points of system (3) correspond to
one-frequency regimes with the oscillations in each of the
coupled oscillators having the same frequency. Two-
frequency quasiperiodic oscillations correspond to limit
cycles in the phase space of system (3), with the magni-
tudes of a, b, and

hatt changing periodically with time.
System (1) also has a trivial solution, x, =x2=0, which

corresponds to a fixed point at the origin for system (3),
3 =B =0 with an undefined phase. Its stability can be
determined by eigenvalue analysis of the linearized full
four-dimensional system at the origin [1].

Typical resonance curves for isochronous and noniso-
chronous cases are shown in Fig. 1, with (a) and (b) exhib-
iting cases of active-passive coupled modes while (c) and
(d) represent two active modes interacting. One can see
that, for the case a, (0, ab )0, and P=a =0 [Fig. 1(a)],
system (3) has stable steady states in the whole range of
detuning A. Each stable branch of a resonance curve cor-
responds to a generation of a signal on one of the normal
frequencies of system (3). There is also a certain interval
near 6=0 where both steady states are stable and the
dependence of the frequency of oscillations upon frequen-
cy detuning 5 shows hysteresis. The latter phenomenon
is well known and widely used for purposes of frequency
stabilization, for instance, in electrical circuits.

For two coupled modes with a, )0 and ab )0, in the
isochronous case [Fig. 1(c)], there exist two basic states:
a synchronized state within a certain interval around
6=0 and an asynchronous state outside this interval,
similar to the "no shear" case [1]. Here, within a certain
range of detuning, we also have competition between the
two normal frequencies of the coupled system.

One can see that nonisochronism produces not only
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FICx. 1. Resonance curves of system (3) with y, =0.3, yb =0.3, and k =6.5. (a) Isochronous pair of coupled active and passive os-

cillators (a, = —1, ab = 1.5); (b) same coupled active and passive oscillators as (a) but for the nonisochronous case (P= 10, a =0.3);
(c) isochronous pair of coupled active oscillators (a, =0.5, a& =1.5); (d) same coupled active oscillators as (c), but for the noniso-
chronous case (p= 10, a =0.3). The solid (dashed) lines show stable (unstable) fixed points.
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FIG. 2. Bifurcation portrait of system (3) for parameter
values n&=1.5, y, =0.3, y& =0.3, k =6.5 for the (a) isochro-
nous and {b) nonisochronous {P=10,s.=0.3) cases. The oscil-
lation suppression areas (solid), single-frequency regions F& and
F& (hatched), and two-frequency regions T& and T2 are illustrat-
ed. The chaotic region is dotted.

geometrical displacement of the resonance curves along
the b, axis by (PA ~B ), but it changes the stability of
the fixed points. The regions of instability grow as ~ or P
increases. For two active modes, this means that one of
the branches of the resonance curve starts losing stability,
and, beyond a certain magnitude of nonisochronism, can
become totally unstable [Fig. 1(d)].

The bifurcation portrait of the system in the parameter
plane (b, ,a, ), for both the isochronous and nonisochro-
nous cases, is given in Fig. 2. If @=~=0 [Fig. 2(a)], one
has three regions in the parameter plane where the sys-
tem has qualitatively difFerent behavior: the solid region,
where dissipation in the passive circuit (a, (0)
suppresses oscillations in the active one (no oscillations at
all), a single-frequency region (hatched area) where oscil-
lations of both modes (in both circuits) are synchronized
on one of the normal frequencies, either F, or F2, and a
region of two-frequency oscillations (open area) where
each circuit is oscillating at its own frequency.

It has long been believed that these are the only re-
gimes possible for the system of two coupled oscillators,
since, when one of the oscillators is passive in an isochro-
nous system, oscillations in both oscillators are either
suppressed or they are synchronized. However, our stud-

ies show that, for a nonisochronous system, such con-
clusions cannot be drawn. Nonisochronism impacts the
stability of steady states of the system to such a degree
that regions arise where none of the branches of the reso-
nance curve is stable [Fig. 1(b)]. Since there is no synch-
ronization in this region, there may exist two- or
multiple-frequency oscillations. This region is shown in
Fig. 2(b) as the open area and marked T, . Our studies
show that this region is restricted by limits

—ab ~cz, (0
and is situated between regions in which two stable states
compete [double hatched areas in Fig. 2(b)]. The region
of asynchronous oscillations usually extends below the
line

h=(a, +ah )(P—s) l(y, +yb ) (6)

shown as a dash-dotted line in Fig. 2(b). This line, Eq.
(6), corresponds to the centered axis b, =0 in the isochro-
nous case because, at that line, the values of the steady
amplitudes of both modes are equal ( A =B).

In the area of asynchronization, two-frequency oscilla-
tions T, are prevalent corresponding to a limit cycle in
the phase space of the system. However, for a certain re-
gion of the parameter values, as detuning 6 is increased,
the limit cycle undergoes a cascade of period-doubling bi-
furcations to chaos [Fig. 3(a)]. As 6 is increased further,
the phase portrait of the system goes through a sequence
of reverse bifurcations and a window of order appears,
characterized by a four-cycle of unusual form [Fig. 3(b)].
With additional increases in 6, we observe an intricate
sequence of transformations from chaotic attractors to
three and four cycles and vice versa. Most of these trans-
formations happen via period doubling, but sometimes
this period doubling is accompanied by intermittency.

Intermittency is illustrated in Fig. 4, which shows the
fourth iterate return map (bk, bk+, ) where bk =—b(kT)
are values of the amplitude b through the period T of the
preceding four cycle. Long series of quasiregular motion
are clearly visible. The distribution function of the
length of regular phases exhibits two peaks suggesting
that the intermittency is of type I [10].

Finally, after the last reverse bifurcation, a period-one
cycle remains. Its dimension gradually diminishes as 6 is
increased, until it collapses to a stable fixed point indicat-
ing that the oscillations of the two modes have become
synchronized. Thus, the chaotic region is situated be-
tween regions of two- and one-frequency oscillations.

Further comparisons of bifurcation portraits of the sys-
tem in isochronous and nonisochronous cases show that
nonisochronism substantially diminishes the region in
which the two normal frequencies F, 2 compete. As 13 or
a increases, both branches of the resonance curve [Eq.
(4)] lose stability in such a way that the region of two-
frequency oscillations divides the bistability area F

& 2 into
two unconnected triangles [double hatched regions in
Fig. 2(b)]. One of them lies primarily in a part of the pa-
rameter plane where both oscillators are active. The
upper part of this curved triangle, indicated by the arrow
in Fig. 2(b), represents the previously reported
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FIG. 3. The phase portrait for system (3) with parameter
values a, = —1.3, al, =1.5, y, =0.3, y~ =0.3, P=10, a.=0.3,
k =6.5 (a) with frequency detuning 6=17.0 and (b) 6=17.5.

phenomenon of an island steady state [5], totally over-
lapped by another steady state of different frequency so
that the system cannot be brought to the island state by
changing only the frequency detuning, A.

Another part of the region where oscillations of both
frequencies E& 2 compete occurs near another area where
the system shows hysteresis between oscillation suppres-
sion and oscillation generation. The existence of this
latter area is a consequence of the fact that the stability
of the trivial steady state 2 =0 and B =0, in the linear
approximation, does not depend upon terms in the sys-
tem containing the parameters of nonisochronism Pa
and ab, but instead these terms change the stability of
those nontrivial steady states that, in the isochronous
case, are unstable when 3 =0 and B =0 are stable. If ei-

FIG. 4. Fourth iterate return map for the amplitude b, with
a, = —1.3, a~=1.3, y, =0.3, y~ =0.3, P=10, «=0 3, k =.6.5,
and 6=17.65, showing patterns of regular behavior (along the
diagonal) interrupted by chaos.

ther I3 or tr is not equal to zero, the regions of stability of
trivial and nontrivial steady states overlap and form an
area where the two regimes compete [the double hatched
area with the horizontal grid in Fig. 2(b)]. In this region
we observe a kind of hard excitation of oscillations, in
spite of the fact that our nonlinearity in Eqs. (1) is cubic
and not of fifth order.

We should also mention that a hysteresis between oscil-
lations with different numbers of independent frequencies
is characteristic of nonisochronous systems. A similar re-
sult was reported by Aronson et al. [I], in their study of
scalarly coupled oscillators with shear. For two coupled
active modes, nonisochronism leads to the formation of a
wide zone along one or two sides of the synchronization
area where one-frequency F2 and two-frequency T2 oscil-
lations compete. A discussion of the analytical interpre-
tation of this phenomenon is published, by the authors, in
a separate paper [3].

To summarize the results of this study, we show that
nonisochronism of a coupled oscillatory system dramati-
cally changes its fundamental behavior. In particular,
coupled active and passive oscillators may exhibit not
only one-frequency generation or a generation gap, but
may also show two-frequency and chaotic dynamics. The
observed transitions to chaos occur through period dou-
bling or via type-I intermittency. An additional charac-
teristic of nonisochronous systems is the presence of hys-
teresis between two- and one-frequency regimes and be-
tween one-frequency and suppressed oscillations.
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