
PHYSICAL REVIEW A VOLUME 44, NUMBER 5 1 SEPTEMBER 1991

Exponential decrease in phase uncertainty
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The phase probability curve of a recently proposed photon state consists of a broad background with a
sharp central peak [J. H. Shapiro, S. R. Shepard, and N. Wong, Phys. Rev. Lett. 62, 2377 (1989)]. These
authors argue that the inverse peak-height phase uncertainty 5y of this distribution decreases inversely
as the square of the mean photon number (m &

—an improvement over either coherent or highly
squeezed states. We show that the width Ay of the best-fitting Gaussian to the central peak —a measure
of phase uncertainty tailored to this narrow feature —decreases exponentially with increasing (m &. The
importance of this result may be offset by the observation that the area under this peak also vanishes
very rapidly.

A recent Letter [1] proposes the reciprocal likelihood,
that is, the inverse of the maximum of the phase probabil-
ity distribution, as a novel measure for phase uncertainty
5y of a quantum state. In the course of that work, the
authors of Ref. [1] have discovered a new and intriguing
quantum state

I g, ) that minimizes 5y for a fixed average
photon number (m ). In this case, 5y is inversely pro-
portional to (m ), a property unique to this state. (Re-
call that 5y ~ ( m ) '~ for a coherent state and
5y~ (m ) ' for a highly phase-squeezed state. ) The re-
sulting semiclassical phase distribution [2,3] W [lg, )]
consists of a broad background essentially independent of
(m ) and an extremely narrow peak W(i'""'. In the
present work we point out an even more impressive prop-
erty of this quantum state: The phase uncertainty hy as-
sociated with the width of the best-fitting Gaussian to
this central narrow peak decreases exponentially with the
average number of photons.

Although this striking feature seems to suggest a vast
reservoir of potential applications for this state, we issue
this caveat: The peak height increases only quadratically
with increasing (m ). Hence, the phase probability asso-
ciated with the area underneath the peak rapidly
vanishes —leaving behind a broad background W'„" '.
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for vr(y vr, bu—t y&0. This curve is shown in Fig. 1

by a dashed curve. In the neighborhood of @=0, we re-
place the central peak, depicted in Fig. 2 by a solid line,
by the best-fitting Gaussian of identical height
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~~~""'[ g, ) ]= W 0 exp

that has a width

Here, g(s, u) denotes the generalized Riemann g function
[6].

In the limit mo )) 1 (corresponding to large mean pho-
ton number), this distribution exhibits a broad back-
ground and an extremely narrow peak at y=0, as indi-
cated in Figs. 1 and 2. We can approximate the back-
ground alone by extending the summation in Eq. (2) to
infinity, and we arrive [3] at
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of Ref. [1] is a superposition of mo+1 photon number
eigenstates

I
m ) . This state enjoys the semiclassical

phase distribution [2—4]

Here the prime denotes the derivative with respect to cp.
When we substitute the phase distribution Eq. (2) into
Eq. (5b) for the width we find [3], in the limit of mo ))1,

JV~(mo)~,[lg, )]= y ( I+)m-' e'-~, (2)
2& o

&p=+2[C+ln(mo+1)]'~2(mo+ 1)

+O([C+ln(mo+1)] '~'(m (6)

shown in Fig. 1 by a solid curve. The normalization con-
dition (g, lg, ) =1 yields, for JV, the equation [5]

where C -=0.577 215 is Euler's constant. We now reex-
press Eq. (6) in terms of the mean number of photons
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could be resolved if the amount of the shift was greater
than or equal to the exponentially small Ay.

However, the phase probability or area "caught" un-
derneath the peak is [7]

(a) ~m~= 3.55
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FIG. 1. The phase distribution W~[ g, ) ], Eq. (2), of the state
~g, ), Eq. (1), is displayed here by a solid curve for a sum cutotf
of mo = 10, corresponding to a mean photon number ( m ) =—l.
This distribution exhibits a maximum at the phase cp=O and
broad oscillatory wings. We approximate these wings by the
background distribution 8"~""'[ ~ ti), ) ] of Eq. (4), shown here by
a dashed curve. This approximate distribution results from ex-
tending the summation in Eq. (2) to infinity, and is hence singu-
lar at tp=0. The replacement of the finite Fourier sum in Eq. (2)
by an infinite one ' wipes out" the oscillations in the wings.
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( m + 1 ), rather than the cutoff mo, by using [5,6]

1(m+1) =A' (mo) g
o m+1 &m~ -"- 5.92

=IV (mo) C+ln(me+I)

+ +0
2(m()+1) 2mo

6 ln(mo+ 1)
[C +ln(m() + 1)]+0

mo+ 1
(7a)

II

II

Pl

II
ll
14

II
fl
P g

P ]

That is,

2

me+ 1 =y 'exp (m+1)
6

(7b)

where we have defined y=exp(C). In determining the
remainder, we have applied, in the last step of Eq. (7a),
the asymptotic expression for JV, Eq. (3). With the help
of Eqs. (7a) and (7b), Eq. (6) reads

Y~ ( m + I ) )/2e —(4/6)(m+1)
V'3

+g ( ( + 1 )
—) /2 —

( m /6) ( m + ) )
) (8)

which shows that the Gaussian-approximated width Ac@

of the central peak decreases exponentially with the aver-
age number of photons. Applying the well-known
Rayleigh's criterion of peak resolution from optics to the
Gaussian, a shift of the central peak away from y=O

FIG. 2. The phase distribution W~[~I(, ) ], Eq. (2), of the state

~It, ) is displayed here by solid lines. This distribution shows a
maximum at y=0 which develops a remarkably sharp peak
when the mean photon number (m ) increases consecutively
from (m ) —=3.SS via (m ) —=4.53 and (m ) =4.95 to
(m ) —=5.92—depicted in (a), (b), (c), and (d), respectively. The
upper cutoff mo, used in the numerical evaluation of the sum,
is related to the mean photon number ( m ) by
C+ln(ma+1)—= (m /6)[(m )+1]. The values used were

mo = 10, 5 X 10, 10, and 5 X 10 for (a), (b), (c), and (d), respec-
tively. The best-fitting Gaussian distribution, Eq. (Sa), of width

hy, Eq. (5b), is shown here by dashed lines. This Gaussian
represents an excellent approximation to this narrow peak and
shows an exponential dependence of Ap on (m ), Eq. (8). This
narrow spike rests on a background which seems to be indepen-
dent of mo, provided mo »1. However, the area of this Gauss-
ian, and hence the probability trapped under the peak, also van-

ishes exponentially with increasing mean photon number, Eq.
(10). This result could have unfavorable implications concern-
ing the usefulness of this state.
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Hence, the area decreases rapidly to zero with increasing
average photon number. Equation (9) makes the origin of
this decrease apparent: The width of the Gaussian de-
creases exponentially with & m +1 &, Eq. (8), whereas the
height

However, we recall that the phase probabihty curve
W~[~f, &] consists of a broad background W'b""' that
contains almost all of the probability, whereas the area
underneath the central peak decreases rapidly with the
average number of photons & m &, as implied by Eq. (10).
Hence, we cannot approximate this area by unity but
have to use the explicit expression for A(p""), Eq. (10),
that yields

g (peak) /~ y=0

W ()=(2vrJV )
' JV g (1+m)

2 3/2 2~
& m+1&'" exp — &m +1& =m'/2bq,

rn =0

= (2vrJV )
'

& m + 1 & —= & m + 1 &

12

increases only quadraticaIIy. Here we have also made use
of Eq. (7a).

The rapidly decreasing area underneath the peak for
increasing & m & has important implications on the option
of the reciprocal likelihood [8] as a measure of phase un-
certainty 5qr for the state ~P, &. We can visualize the
quantity 5y in the most elementary way for a probability
distribution with a dominant central maximum and no
broad wings. We crudely approximate this peak by a rec-
tangle of identical height. We choose the width 6y of the
rectangle so as to have an area underneath the mock-up
distribution identical to that under the original peak:
The area of this rectangle, 8' 05@, equals the area un-

derneath the peak. When almost all of the probability
concentrates in this dominant peak, we can approximate
its area by its normalization condition —that is, by
unity —and we find 5y equals the unit area underneath
the peak divided by W, which equals ( W~=~ )

+max

For the state ~g, &, Eq. (1), the expression for W+ —p,
Eq. (11),immediately yields the result of Ref. [1];

which, apart from a factor of m', is identical to the
quantity b,y, Eq. (8), defined as the width of the best-
fitting Gaussian.

In the limit of large photon numbers, that is, when
mo ))1, the broad background, W' ""', Eq. (4), governs
the phase uncertainty. We illuminate this from a
different angle by calculating the periodic phase uncer-
tainty measure

D q—= &»n'y& = f dq W sin'q . (12)

This is a reasonable measure for distributions with a
dominant maximum at cp=O. Why? Three arguments
offer themselves: (1) For a state of random phase, that is,
Wz=(2') ', we find D y= —,', (2) for a state of well-
defined phase, W =5(y), we arrive at D @=0, and (3)
for a narrow distribution with maximum at y=O we
linearize the sine function and D y approximates the
second moment of 8'; that is,

D (p-=f dye W„.
So motivated, we now substitute the phase distribution
W [~g, &], Eq. (2), into Eq. (12) and arrive after minor
algebra [3] at
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Equation (7b) allows us to express this moment in terms
of the average number of photons; that is,

approaches the & m &-independent, constant value of
[1 9/(2~ )]/2=0. 27. We identify this contribution as
the periodic phase uncertainty measure

D 2 (back)
& sin2 &(back)

—f d W(back )

Hence, the periodic phase uncertainty measure D cp de-
cays exponentially [9] with increasing photon number and
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of the background distribution, W' ""',Eq. (4). The im-
provement over a homogeneous phase distribution, by
roughly a factor of 2 (a constant 0.27 rather than 0.5),
rejects the localization of the phase distribution around
(t(=0, indicated in the figures.

We conclude by emphasizing again that the width of
the central peak of the phase distribution of a novel quan-
tum state of Shapiro and co-workers decreases exponen-
tially with the average number of photons in this state.
However, its phase probability rapidly disappears from
the peak —rendering the utility of such a state open to
question.
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