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Addendum to "Coulomb-diamagnetic problem in two dimensions"
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It is pointed out that the recently proposed set of conjectured solutions [Phys. Rev. A 39, 5082 (1989)]
for this problem predicts an unacceptable behavior of the energy function in the perturbative regimes. A
modification of the conjectured conditions provides an alternate set of solutions that permits the devel-

opment of a useful approximation scheme. An appealing approximate description of the entire spectrum
that retains the previously obtained desirable features is thereby realized. Only low- and high-field re-

gions are studied. A second derivation of the threshold regime spectrum is furnished.

An attempt to solve the four-term recursion relation
for the planar Coulomb diamagnetic problem on the basis
of two conjectured conditions was recently reported [1].
The results embody a number of attractive features. One
finds a simple closed-form energy expression that repro-
duces the limits in full and provides a very welcome
description of the quasi-Landau regime. The normaliza-
bility of the solutions was not established in that work.

In spite of such features, these solutions turn out to be
unphysical. The predicted energy is a linear function of
the magnetic field —a fact in violation of the require-
ments of the perturbative regimes. Intimately tied to this
fact is the violation of variational bounds by the ground-
state energy, first noted by Pandey and Varma [2]. Clear-
ly, the physical set of exact solutions cannot be obtained,
therefore, in the manner of Ref. [1].

There is, however, another challenging and important
aspect of this problem that can be addressed meaningful-
ly within a similar conjecture-based approach, this being
to obtain a unified, consistent, and accurate description
of the spectrum at least for realizable magnetic fields
(iilcu, ((R, ro, being the cyclotron frequency). We wish to
demonstrate that a natural, economical, and admissible
modification of the previous conjecture (which its above-
mentioned failure, in fact, motivates) allows one to realize
such an approximate description for the case of low and
high magnetic fields, at least. Such a description emerges
through the use of a set of formal solutions that involve
two unknown functions that can be estimated systemati-
cally using perturbative and variational inputs.
Specifically, in the following, we shall estimate these us-
ing first-order perturbative constraints near the two lim-
its. Having thus secured a realistic behavior of the ener-

gy function near the limits for the case of low-lying states
one will find that perturbation theory breaks down natu-
rally and desirably for the higher states such that the an-
ticipated features of the nonperturbative quasi-Landau
regime emerge automatically.
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The original conjecture consisted in simultaneously im-
posing the two conditions that separately solve the
Coulomb and Landau problems. It predicted an energy
function E(a) with an unacceptable derivative dE/da
that renders it untenable. A permissible modification of
the imposed conditions provides a very useful way out.
The modified conjecture reads: a coefficient ak does not
contribute to the coefficient ak+, and the coefficient a2k
does not contribute to the coefficient a2k+2 via the recur-
sion relation Eq. (2) up to nonsingular functions
A (p, k, a) and B(p, k, a), respectively, that vanish in ei-
ther limit. Here, k(=0, 1,2, . . . ) will continue to play
the role of the radial quantum number as in Ref. [1].

With A and B so constrained the limits are recovered
in full, as before [1]. We have no means to determine
these functions exactly anymore. However, we can nail
them down suitably by imposing some perturbative and
variational requirements that are readily available for
low-lying states. The worthiness of the approach will be
judged through its performance for other states. Follow-
ing Ref. [1],we now have, straightforwardly,

or, equivalently, the recursion relation (p +2k)
2+A

(p +2k)
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It is useful to parametrize A and B as

3 =—exp( —f/a2), f )0 (6)

& =ah exp( —aq), q )0 .

The functions f,g, h, q can be estimated using the known
constraints in the neighborhood of the limits, the incor-
poration of which is, in fact, binding in a correct theory.

It is an inescapable consequence of strict variational
considerations that, for the low-lying states, the energy in
the limit co, ~O may not contain a term linear in co, ex-
cept the Zeeman term. The same is also demanded by
perturbation theory. This is guaranteed by selecting

g = (2k +p)(4k +p + 1)/2 .

n 2

This gives straightforwardly, for the spacings in the
quasi-Landau regime,

1 BE 1 2R
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the spectrum. To discuss this we introduce the principal
quantum number n =k+~m~. For a))1, n is large in
the threshold region. Consider the case n )) ~m~ and m
fixed. For E =0 we obtain from Eq. (5) the following ex-
pression for energy:
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is the expectation value of g in the Coulombic states. As
required f)0.

Further orders of perturbation theory can be incor-
porated if necessary. This accord guarantees that the en-
ergy of any low-lying state follows the desirable path
quite accurately as a function of co„away from the
Coulomb limit. The functional form of f ensures that as
we move up the spectrum the perturbation theory will
break down for suitably high levels well below the thresh-
old.

The function B is constructed similarly by examining
the Landau limit 0.~0. Again using variational and
perturbation-theory considerations one finds

h=— 1 1 q)0
(p+2k) h

where & 1/g &I is the expectation value of 1/g in the Lan-
dau states. This ensures the proper continuation of E(a)
away from the Landau limit. The functions f,g, h, q so
fixed, already provide close accord with good variational
bounds also, for low-lying states near the limits.

We now come to the discussion of our main result,
namely, the energy spectrum given by Eq. (5). For the
physically interesting case a ))1, the deep levels now fol-
low perturbation theory since the function B is negligible.
As we move up the spectrum, the function 3 begins to
decrease and the energy gradually develops a linear co,
dependence leading to the eventual breakdown of
Coulombic perturbation theory.

Moving further up we reach the nonperturbative
threshold regime which is the most challenging part of

Indeed, this requirement cannot only be met, but com-
plete accord with the first-order perturbation theory is
also ensured at the same time by choosing
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In the spirit of our approximation the last term on the
right-hand side of Eq. (5) can be ignored and so also can
an order e contribution to p. The solutions are then im-
mediately seen to be polynomials [5] of degree k
(k =0, 1,2, . . . ) such that
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This shows that the spacing at E =0 is very nearly —,'Ace,

[3]. The other features of the spacing remain the same as
in Ref. [1].

Continuing upwards in energy the function 3 de-
creases exponentially. The entire Landau term is re-
stored whereupon the Landau-regime perturbation
theory controlled by the function B begins. Thus, for any
e whatsoever, the high enough levels of positive energy
remain perturbative. This is consistent with the
Wentzel-Kramers-Brillouin (WKB) requirement.

To summarize, the entire spectrum divides into three
characteristic regimes [4], namely, the two perturbative
ones and the nonperturbative quasi-Landau domain with
a typically equally spaced spectrum described by the re-
markably simple energy formula given by Eq. (12).

We now come to an additional approximate descrip-
tion of the quasi-Landau regime. For this we introduce
the parameter c—=Ace, /2R. Consider c «1 and focus at-
tention on levels near the threshold so that the principal
quantum number n ))1. Rewriting the recursion rela-
tion Eq. (2) in Coulombic units we have

s (s +p —1)a, + [2—P(p —2s +2) ]a,
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This directly substantiates our previous result near E =0.
Interestingly, a second pacing of —,Ace, is also indicated
by Eq. (17).

Going back to Eq. (15) one notices easily that it admits
a set of forrnal solutions which correspond precisely to
the energies given by Eq. (17), obtained by demanding
that a given coefficient ak does not contribute to the next
two coefficients ak+& and ak+z. This leads to the two
conditions in Eq. (16) and hence to Eqs. (17) and (18). In
view of the above results one can say with justifiable
confidence that the solutions in the threshold region
indeed are obtained essentially in this manner. This is
obviously true for c. «1, at least. Coupled with the fact
that the deep and the high levels are well described by
perturbation theory, we have a description of the entire
problem again.

The modified conjecture integrates all the three re-
gimes into a set of two basic conditions. A little
reAection will show that in the threshold regime it
reduces de facto to the conditions noted in the previous
paragraph and which already have been made plausible.

Two remarks are in order. First, we would like to
point out that the energy expression of Eq. (5) represents
the simplest dimensionally permissible structure that is
consistent with the limiting and perturbative constraints
and capable of accommodating the entire spectrum accu-
rately. That such a structure emerges naturally from the
Schrodinger equation via the conjecture is gratifying.

Second, it must be stressed that a specific problem
whose set of unique features have no known parallels in
all of quantum mechanics has been addressed here.
Hence, in no way is a similar conjecture-based approach
suggested to be a recipe for other multiple-term recursion
relation problems in general.

To summarize, the fact that the conjectured solutions
correctly contain the limits, are in accord with the atten-
dant low-order perturbation theories, and predict a
verifiably satisfactory description of the nonperturbative
threshold regime is a clear testimony to the effect that the
modified conjecture is able to extract the essential under-
lying physics of the problem, at least for realizable fields.
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