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Berry's phase in rotating systems
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It is shown that, in addition to the Aharonov-Bohm-like phase studied previously [M. V. Berry, Proc.
R. Soc. London Ser. A 392, 45 (1984); Y. Aharakov and J. Anandan, Phys. Rev. Lett. 58, 1593 (1987);C.
H. Tsai and D. Neilson, Phys. Rev. A 37, 619 (1988)],Berry's topological phase also appears for purely
mechanical reasons in systems rotating at slowly-time-varying angular velocity about a fixed center. A
possible experiment to probe this manifestation of Berry's phase is discussed.

As first recognized by Berry [1], the wave function of a
quantum-mechanical system will acquire a topological
phase factor exp[iy(C)] in addition to the familiar
dynamical phase factor exp[i Jdt E(t)] if the evolution

of the system is induced through a Hamiltonian which is
varied adiabatically around a closed path C in parameter
space. This new topological phase has been of interest in
a number of recent investigations, including the
Aharonov-Bohm effect [2], fractional statistics [3], the
quantum Hall effect [4], non-Abelian gauge theories [5],
and chiral anomalies [6]. In addition, various experimen-
tal verifications of Berry's phase have been reported via
techniques such as photointerference [7], neutron-spin ro-
tation [8], polarized-light rotation [9], electron diffraction
[10], nuclear magnetic resonance [11], and laser inter-
ferometry [12]. Berry's result has also been generalized
[13,14] further to cases where the adiabatic assumption
and cyclic evolution in parameter space are not neces-
sary.

Reference [15] is a discussion of a quantum interfer-
ence effect (the mechanical counterpart of the
Aharonov-Bohm effect) in general rotating systems. Re-
cently this effect has been experimentally verified [16].
The purpose of this Brief Report is to study further
another related phenomenon, i.e., the topological effect,
known as Berry's phase, in general rotating systems, and
suggest a possible experimental test of this e6'ect.

Consider a transformation from an inertia1 frame
r'=(x', y', z') to a reference frame r=(x,y, z) attached to
a physical system that is being rotated at slowly varying
angular velocity co(t ) about a fixed center related to the
inertia1 frame. By means of a canonical transformation
in the active sense, the dynamical system with a Hamil-
tonian in the inertial frame

g2
V„.+ U(r'),2'

with U(r') a central-field potential (for a free particle,
U—:0), can be shown [15] to be described equivalently in
the rotating frame by a time-dependent Hamiltonian with

co(t) as a parameter:

h2
A(co)= — V„+U(r) co(t—) L,

2m
(2)

where L is the angular momentum of the system. The
last term in expression (2) might be inferred from the
Larmor theorem as discussed by Richardson et a/. for
the case of a neutron spin [8]; however, it is here derived
exactly and no approximation is implied. The instantane-
ous eigenstates of 8, Eq. (2), can be written as

(co) =R, (r ) Y, (e(co), C&(co)), (3)

(6)

and the Berry's phase factor

exp[i yt (co)]=exp[ —im Q(C)] . (7)

Here, m is the eigenvalue of the component of the orbital
angular momentum along co and Q(C) is the solid angle
that C subtends at m =0. It is interesting to note that this
phase exists purely due to mechanical effects, i.e., due to
the rotation.

where RI(r ) are radial functions depending on U(r ), YI
are spherical harmonics, and e(co) and 4(co) are the
functions of the spherical coordinates O and P related by
an orthogonal matrix A [co(t ) ]:

sine cos+ sinO cosP
sine sin4' = A [co( t ) ] sinO sing (4)

cose cosO

The corresponding eigenvalues are

Et (co) =E& —m co%',

where Et is the eigenvalue of H'. Equation (5) shows
that there is a (2l+1)-fold degeneracy when co=0.

When co(t ) changes slowly enough in a periodic
manner, a Berry's phase shift will be induced. Following
the formula given by Berry [1], the phase shift is readily
obtained using Eqs. (3) and (5):
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We now conceive an experiment to verify the solid-
angle dependence of the Berry's phase, consisting of an
apparatus mounted on a table that can be rotated at an
arbitanly time-varying angular velocity about a fixed
center —for example, given by

i0 = (co cosP, ro sing cos( coot ),co sing sin( coot ) )

l = 1, because for free particles and atoms such as H, Na
and K with ground state l =0, it is impossible to observe
the effect of Berry's phase in rotating systems. The be-
havior of the atom beam in general rotating systems is
described by the time-dependent Schrodinger equation
with the Hamiltonian of Eq. (2), which is readily solved
by assuming

for 0(t (NT, T=2rr/coo, with co, coo, and P each in-
dependently adjustable. Let us consider an atom beam,
initially in a spatial state I =I =1 along the z direction,
selected by passage through a magnetic filter. The atom
beam should be chosen as B, Al, or Ga with ground state

I

+1
P, (t)=exp — Elt—R, (v) g a (t)Y, (g, g) .

m= —l

Since the initial state is chosen to be a+ &
(0)= 1,

ao(0)=a, (0)=0, we obtain

a+ t ( r ) = —,
' exp( i/3) [sin(At )sin(coot ) + [cos/3 cos(coot ) i sin—/3]cos(At ) +cos/3 i si—n/3 cos(coot )],

v'2
ao(t ) = exp(i/3) [i sin(At )cos(not ) i [cos/3—cos(At ) i s—inP]sin(coot )], (9)

a t(t ) = —,
' exp(i/3) I sin(At )sin(coot)+ [cosP cos(coot )+i sin/3]cos(At )

—cosP —i sin/3cos(coot )],

where

co sin
tan/3=

co cosp+ coo

A=+(coo+co +2cooco cosP) .

The total phase for a cyclic evolution is then
1 /2

(10)

mediately have

I~+ t(T)l'=cos'[[P++y+(C)]/2]

lao(T)l =
—,
' sin I [P++y+(C)]/2

—(P +y (C))/2],

la, (T)l =sin t[P +y (C)]/2] .

(14)

AT=2~ 1+ +2 cosP
coo COO

—2', (12)

where the extra term —2~ insures that AT=0 when
co=0. In the adiabatic limit (co ))coo)

AT=coT 2~(1 —cosP)—

=coT A(C) =$++y—+(C)—$ —y (C),
with P+ and P the dynamical phase and y+(C) and

y (C) the Berry's phase corresponding to m =+1 and
m = —1, respectively. In this case, from Eq. (9), we im-

We note from Eq. (14) [or Eq. (9)] that the change of the
atomic state is related to Berry's phase and therefore
reAects the additional topological effects.

Therefore, after X cycles of evolution of the system at
time t =AT, we can measure the states of atoms by again
using a magnetic filter, and then extract the Berry's phase
from the data.

In conclusion, we have shown in this paper that
Berry's phase appears in general rotating systems purely
for mechanical reasons. A possible experiment is sug-
gested, which could easily be constructed to probe
Berry's topological phase.
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