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I investigate a recently developed method for obtaining bound-state eigenvalues of anharmonic oscilla-
tors, and from it derive useful approaches that converge faster. The method consists of writing the
eigenfunction as an exponential of a polynomial times a power series, in which the former factor is prop-
erly chosen to simplify the resulting recursion relations for the coefficients of the expansion. I also apply
the method to central-field models.

u
"—2fu '+ (E —V f'+f )u =0 . — (2)

The form of the function f (x) depends on the form of
V(x) as illustrated below. For the sake of concreteness,
and to facilitate the discussion of the method, I choose

Quantum-mechanical anharmonic oscillators and sim-
ple central-field-potential models have received consider-
able attention for many reasons. In addition to their
physical applications, they are interesting as a benchmark
for new algorithms to solve the Schrodinger equation.
Furthermore, the simplicity of the Schrodinger equation
for these models enables one to investigate their
mathematical properties in detail, so that one can under-
stand more complicated quantum-mechanical problems.
In this respect I mention the remarkable knowledge of
perturbation theory resulting from the study of anhar-
monic oscillators [1].

There is a vast literature on anharmonic oscillators and
central-field models. Here I only mention those methods
based on a power-series expansion of the wave function
[2,3], because they are relevant to the present Brief Re-
port. In particular, I am interested in the approach
developed recently by Chhajlany and Malnev [4], which
they applied to one-dimensional anharmonic oscillators.
In order to discuss this method I write the one-
dimensional, time-independent Schrodinger equation as

qI"(x)+ [E —V(x) ]~II(x)=0,
in which E is the energy, V(x) is the potential-energy
function and primes indicate differentiation with respect
to x. I look for a solution of Eq. (1) of the form
'P(x) =u (x)C&(x), where 4&'(x) = f (x)4(x), and rewrite-
Eq. (1) as a differential equation for u (x):

the quartic oscillator for which V(x)=x . Following
Chhajlany and Malnev [4] I consider V(x)=x +P x . If
f (x)=fox +f,x and

u(x)= g u, x '+t',
j=0

the coefficients u have to obey the recursion relation

(2j+p +1)(2j+p +2)u, +, + [E f&&(4j +2p + 1)—]u,

+[fo f, (4j +2p —I)]—u, +(2fof, —I)u~

+(f, —p )u 3=0, (4)

where j =0, 1, . . . and u =0 if j &0. It follows from the
indicial equation obtained when j = —1 that uo&0 pro-
vided that either p =0 (even states) or p =1 (odd states).
Chhajlany and Malnev [4] chose f„=(2X+p —1/2)'
and f, =p= I/(2fo) so that Eq. (4) reduces to a three-
term recursion relation because the coefficients of u z

and u 3 vanish for all j values. Furthermore, if one
chooses the energy in such a way that u& =0 then u&+ &

also vanishes and u =0 for all j ~N. As X tends to
infinity P tends to zero and E(x"+P x ) approaches
E(x ) from above. The wave function is square integr-
able because it is a finite polynomial times
exp( fox /2 f i x /4—). An a—dditional advantage of
this method, as pointed out by Chhajlany and Malnev [4],
is that one can find upper and lower bounds to the ener-
gies of a given quartic-sextic oscillator.

I carried out a numerical investigation using the
method of Chhajlany and Malnev [4] and found that it
converges rather slowly to the energies of the quartic os-
cillator. The main reason appears to be that P does not
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approach zero quickly as X increases. Therefore, in or-
der to improve the rate of convergence, I simply set P=0
in the recursion relation (4) keeping fo and f, exactly as
above because their choice is perfectly justified in the
method of Chhajlany and Malnev [4]. From now on I
call this approach case II. Because f, ~0 as N~ ~, I
also tried a case III which is obtained from case II with

f, =0. In the latter two cases I obtained the energy from
the roots of u&+, =0. I refer to the choice made by
Chhajlany and Malnev [4] discussed above as case I.

It is worthwhile to compare case III with the method
of the Hill determinant proposed by Biswas et al. [2] and
improved by Banerjee et al. [3]. The former authors
chose fo= 1 for the anharmonic oscillator, finding that
the convergence properties of the method deteriorated
rapidly as either the quantum number or the coupling pa-
rameter increased. Banerjee et al. [3] adjusted the value
of the scaling parameter a= fo/2 according to the state
and value of the coupling constant considered and ob-
tained highly accurate eigenvalues for many states and
several problems. In the present case the value of fo is
dictated by the recursion relation, depends on X explicit-
ly, and is apparently independent of the state considered.
An appealing feature of the procedure discussed here is
that one obtains the value of fo directly from the recur-
sion relation instead of resorting to external criteria and
empirically fitted constants in the expression for the scal-
ing parameter [3].

The power series u (x) in cases II and III does not
reduce to a polynomial because the recursion relations
for the coefficients u have four terms. For this reason
one should prove that the resulting wave functions are
square integrable. Besides, as the roots of u&+&=0 are
not exact eigenvalues of a closely related model as in case
I, one cannot say beforehand whether they are bounds to
the energies of the quartic oscillator.

Table I shows the roots of uz+, =0 for the ground
state of the quartic oscillator and for the three cases dis-
cussed above. I also considered the choice fo= 1, and

f &
=P=O that leads to the method of the Hill deter-

minant [2,3]. It follows that cases II and III converge
much faster than case I and that the former become rap-
idly indistinguishable as expected from the fact that
f &

—+0 as N —+ oo. Case II provides upper bounds to the
energy that are much tighter than those given by case I,

but I am presently unable to justify this result. I found
the same behavior for all the states considered of this and
other models. The only difference is that the velocity of
convergence decreases slightly with the quantum number
as expected from the following heuristic argument. Since
u is a polynomial function of E of order j then the root
u&+, =0 for the nth eigenvalue appears for the first time
when iV =n —1 and is thereby further from the conver-
gence limit than the smaller roots that appeared in earlier
steps of the convergence process. Because the value of X
for a given accuracy depends on the quantum number
and f0 depends on N explicitly, one concludes that fo de-
pends on n indirectly. One may therefore argue that case
III is closely related to the method of the Hill deter-
minant proposed by Banerjee et al. [3]. As shown in
Table I both case II and case III converge faster than the
method of the Hill determinant [2,3], which suggests that
present choice f0=N' is preferable to the prescription
in Ref. [3]: a =n '~ .

To apply case II to a problem with a polynomial poten-
tial of order 2k one just chooses f (x) to be a polynomial
of order k + 1 or k +2 and sets its coeKcients so that as
many terms as possible in the recursion relation vanish
when j =X. Case III is simply given by the asymptotic
behavior of the coefficients of f (x) in case II as N tends
to infinity. In general, one can slightly modify the
coefficients of f (x) without much altering the conver-
gence velocity of the method, as shown in case II for the
central-field model below.

For illustrative purposes I briefly discuss the anhar-
monic oscillator with potential-energy function
V(x)=x +Ax . For case II one finds f I

=A, /(2fo) and

fo(fo —1)=(2N+p —1/2)A, . The cubic equation for fo
has only one real positive root fo & [(2N +p —I/2)A, ]'~ .
When A, =O the method yields the exact answer f, =0
and f0 =1, so that one reasonably expects accurate re-
sults for small values of A, . For large values of XA, one
has fo=(NA, )'~, which reminds one of the scaling pa-
rameter a=(nA, )' proposed in Ref. [3].

Problems that require recursion relations with more
terms offer no difficulty other than the consequent en-
largement of the polynomial f (x). For instance, to treat
the pure sextic oscillator V(x) =x, one chooses
f (x ) =fox +f,x +f2x '. According to the rules given
above, the coefficients of this polynomial should be

TABLE I. Ground-state energy of the quartic osci11ator.

5
10
15
20
25
30
35
40
45
50

Case I

1.084 980 850 452 169
1.076 878 718 042 57
1.073 269 963 666 968
1.071 154053 375 611
1.069 737 387 436 911
1.068 710 743 276 925
1.067 926 388 284 179
1.067 304 041 481 431
1.066 795 989 946 699
1.066 371 937 516 946

Case II

1.061 914 178 316474
1.060 370 578 598 638
1.060 362 131 737 679
1.060 362 090 679 441
1.060 362 090 485 096
1.060 362 090 484 187
1.060 362 090 484 183
1.060 362 090 484 183
1.060 362 090 484 183
1.060 362 090 484 183

Case III

1.071 648 920 792 634
1.060 431 975 560 799
1.060 361 430 045 079
1.060 362 083 913079
1.060 362 090 514 02
1.060 362 090 484 709
1.060 362 090 484 182
1.060 362 090 484 183
1.060 362 090 484 183
1.060 362 090 484 183

Refs. [2,3]

1.000 127 603 528 244
1.073 514 792 645 938
1.057 844 471 312046
1.060 735 617 551 881
1.060 363 396 936 691
1.060 324 297 550 187
1.060 386 166 945 727
1.060 350 676 931 148
1.060 366 754 261 531
1.060 360 408 362 112
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0"(r)+[2E —2V(r) —/(/+ 1)/r ]4'(r) =0, (5)

in which / =0, 1, ... is the angular momentum quantum
number. To illustrate the procedure I choose the simple
potential V(r)=r, for which the Schrodinger equation
cannot be solved exactly. In order to apply the method
of Chhajlany and Malnev [4] I consider the potential
V(r)=r+/3 r and choose f (r)=f0+f, r. As before I
factorize the wave function as u (r)4&(r) in which
@'(r)= f (r)@(r). —Under such conditions the
coeKcients of the expansion

(ur)= y u, r/+'+' (6)
j=0

have to satisfy the recursion relation:

(j+2)(j+2/+3)u +z
—2fo(j+/+2)u +,

+[2E+f0 f&(2j +2/ +3—)]u +2(fof &

—1)u

+(f, —2/3 )u ~=0 . (7)

In order to reduce (7) to a three-term recursion relation it

f0
= [(4N +2p —1 ) (4N +2p —3 ) /( 20N + 10p —7 ) ]

'

f, =f0 /(4N +2p —1 ),
and

f~=(I f )
—)/(2fo)

for case II and f0=[(4N+2p —1)/5]', f, =(1/5)'
and f2

=0 for case III. Here, the velocity of convergence
is greater for the latter than for the former, and in both
cases f0=N'~ as N tends to infinity. As in the previous
example, case II converges from above. The velocity of
convergence of the method is remarkably large for this
model, though it is smaller than for the quartic oscillator
as expected from the stronger singularity of the
potential-energy function V(x) =x at infinity. The
method converges quickly even when
f0=[(4N+2p —1)/5]', and f&=f2=0, which leads
to an improved method of the Hill determinant.

The method developed above also applies to three-
dimensional models with central-field potentials. After
factorizing the angular degrees of freedom one is left with
the radial part of the Schrodinger equation, which one
can write

is necessary that f, =2'~ P= 1/fo. If in addition one re-
quires that fo be a root of fo+2Efo 2—N —21 —3=0
and obtains the energies from the roots of u&+, =0, then
the expansion (6) reduces to a finite polynomial and the
resulting eigenfunctions are square integrable provided
f0 )0. The latter condition is met for all N ) 1. So far I
have described case I. To derive case II one should sim-
ply set P=O according to the above-mentioned prescrip-
tion. However, for the sake of simplicity I choose
f &

= I/f 0, and f0
= (2N +21 +3 )

' ~, the latter coming
from the fact that for a given energy value the root of the
cubic equation for fo satisfies fo/(2N+2/+3)~1 as
N~~. Clearly, this choice is a mixture of what I de-
scribed as cases II and III, but I will refer to it as case II
nonetheless. Case III follows from case II and the condi-
tion f, =0, which again leads to the method of the Hill
determinant [2,3] with an exponential factor exp( for)—
that depends on the approximation order N.

Table II shows the roots of u&+2=0 for the three cases
discussed above. Again cases II and III converge much
faster than case I and cases I and II yield upper bounds
to the energy. Furthermore, in this example the equa-
tions for cases II and III are simpler than those for case I
because in the latter one has to solve the cubic root for
fo. Excited states behave exactly in the same way, the
only difference being that the larger the radial quantum
number the larger the value of X for the same accuracy.

The results above suggest that the approaches termed
case II and case III are useful in obtaining highly accu-
rate eigenvalues of the Schrodinger equation with a poly-
nomial potential. Case II is preferable because in the ex-
amples considered it converged smoothly from above and
in this sense it is an improvement to the method of the
Hill determinant which does not exhibit an orderly be-
havior [2,3]. Furthermore, cases II and III converge fas-
ter than the method of the Hill determinant and do not
require an empirical fitting of the scaling parameter [3].
However, for case II to be sound theoretically one has to
prove rigorously under which conditions it converges
from above. On the other hand, case I converges more
slowly, but it is constructed in such a way that
E (N) )E ( N + 1))E (exact) always occurs, at least for
the simple examples considered here. In addition to this,
case I gives the exact answer for a particular class of
problems and enables one to derive upper and lower

TABLE II. Ground-state energy for V(r) =r.

5
10
15
20
25
30
35
40
45
50

Case I

2.079 180908 203 125
1.995 303 955 078 125
1.960 924 072 265 625
1.941 705 322 265 625
1.929 246 826 171 875
1.920 428 466 796 875
1.913 814 697 265 625
1.908 636 474 609 375
1.904 461 669 921 875
1.901 011 962 890 625

Case II

1.913 363 278 357 528
1.857 621 858 328 545
1.855 794 540 395 09
1.855 757 642 573 641
1.855 757 088 496 917
1.855 757 081 566 467
1.855 757 081 490 014
1.855 757 081 489 246
1.855 757 081 489 239
1.855 757 081 489 239

Case III

1.881 563 508 502 779
1.851 423 063 510716
1.855 816 542 272 643
1.855 758 809 791 133
1.855 757 046 255 503
1.855 757 081 161 458
1.855 757 081 499 385
1.855 757 081 489 280
1.855 757 081 489 237
1.855 757 081 489 239
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bounds to the eigenvalues of others [4].
The results obtained in this paper show clearly that the

minimum size recursion relation is not necessarily the
most ef5cient way to calculate the eigenvalues. The
choices of the parameters in cases II and III are not the
best ones. A numerical investigation showed that other
values of fo and f, led to faster-converging algorithms.
However, as I have been unable to develop a systematic

procedure to obtain them I believe it is of no value to dis-
cuss here such alternative choices. Besides, the gain of
convergence speed did not seem to be worth the addition-
al effort required to optimize the values of fo and f, in
such a numerical way.
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