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Higher-order squeezing properties and correlation functions for squeezed number states
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Higher-order squeezing conditions for squeezed number states are derived using a normal-ordering
technique for calculating the moments of the field. Intrinsic higher-order squeezing is also investigated.
It is found that the normally ordered moments of the quadrature operators are oscillating functions of
the squeeze parameter. Also calculated is the exact nth-order correlation function for an arbitrary
squeezed number state. Finally, its behavior for large and weak squeezing is analyzed.

I. INTRODUCTION

Coherent states are conventionally defined with respect
to a set of boson creation and annihilation operators a~
and a respectively, as the eigenstates of the annihilation
operator a. Of particular interest for quantum optics are
the squeezed coherent states, which are the eigenstates of
a destruction operator a, associated with the operators a
and a via a Bogoliubov transformation, [1—4]

a, =SaSt =a coshr —a texp(i 0)sinhr

a, =Sa S =a coshr —a exp( —i0)sinhr . (lb)

In Eqs. (1), S=S(z ) is the squeeze operator,

S(z)=exp[ —,'z(a )
—

—,'z*a ],
with

(2)

z=r exp(i8), (3)

where r = ~z is the squeeze parameter.
The squeezed number states are defined by the action

of the squeeze operator S(z ) on a Pock state:

While the number state ~m & is determined only by its
photon number, the new state (4) is phase dependent,
with important squeezing properties. The photon statis-
tics is also very interesting. These properties strongly de-
pend on the squeeze parameter r and the value of m [5].
The squeezed number states were introduced by Yuen [2]
as the eigenstates of the "quasiphoton"-number operator
X, =a, a, . Indeed

W, ~m &, =Sa "aStS~m &=m ~m &, .

The representation of these states in the Fock basis is
specified by the matrix elements of the squeeze operator,

G„=(n ~S(z)~m & =(n (m &, ,

which were calculated in Ref. [6]. An extensive study of
the squeezed number states has recently been made by

Kim, de Oliveira, and Knight [5]. They have found the
variances of the quadrature operators, the second-order
correlation function, and its behavior for large m, large r,
and small r. The quasiprobability functions and the pho-
ton number distribution were also derived and discussed
in great detail.

The main purpose of the present work is to investigate
higher-order squeezing [7] and to derive the nth-order
correlation function [8] for a squeezed number state. In
Sec. II we show that the photon number distribution in
such a state is, in fact, proportional to the square of a
Gauss hypergeometric function. The matrix elements of
the field operators in the basis of the squeezed number
states are found in Sec. III, using a normal-ordering tech-
nique developed by Wilcox [9].Higher-order moments of
the quadrature operators are also calculated and a com-
pact analytical condition for the Xth-order squeezing is
derived and compared with a recent result of Gong and
Aravind [10]. The normally ordered moments of the
quadrature operators are then obtained and a discussion
on intrinsic higher-order squeezing is given. The exact
normalized nth-order correlation function is derived and
discussed in Sec. IV. In particular, our results for the
squeezed vacuum state are found to be in agreement with
some previous ones [11]. We conclude by stressing the
importance of the squeezed number states for subsequent
applications.

II. PHOTON NUMBER DISTRIBUTION

The matrix elements (6) can be calculated in a direct
fashion using a normal-order form of the squeeze opera-
tor [3,12]

S(z)=(coshr) ' exp@exp(i8)(tanhr)(a ) ]

(sechr —1)"—a "a"
n=0 n.

Xexp[ —
—,'exp( —i8}(tanhr }a ] .

With the squeeze operator written in the form (7) we get
after a simple algebra
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(n+m )/2
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(n+m)/2 —1
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(8)

0, otherwise .

m —1
2 1

n, 1 3 1
for m, n odd

(sinhr )

a squeezed number state. To this end we now obtain
from Eqs. (1) that

S a "S=[acoshr+a exp(i8)sinhr]",

S (a )"S=[a coshr+a exp( —i8)sinhr]",

(10a)

(10b)

as a consequence of the unitarity of the operator S(z).
The matrix element of the operator (a )" with respect to
the squeezed number states

~
m &, and

~

k &, is

, (m ~(at)"~k &,

=(m ~[a coshr+a exp( —i8)sinhr]"~k & . (11)

We are left to calculate a matrix element in the Fock
basis. By introducing the operators

b =a exp( —i8)sinhr, b'= atcsohr, (12)

which satisfy the commutation relation
(9)P„(~m &, }=P (~!n &, ) .

The Gauss hypergeometric functions 2F1 entering the
expressions (8) are polynomials [13]. Essentially S(z)
creates two excitations every time it acts, therefore only
odd-odd and even-even elements G„are nonvanishing.
The matrix elements G„were also obtained in Ref. [6]
by a different method and in a slightly different form. It
is worth mentioning that we have recovered the result (8)
by applying the method indicated by Yuen [2]. This
method is an indirect one and makes use of the Fock rep-
resentation of a squeezed state [14].

The photon number distribution P„( ~
m &, ) =

~ G„
was derived by Kim, de Oliveira, and Knight [5]. We
stress that their result can be written in a compact form
involving the square of a certain Gauss function. Then,
by a suitable transformation of this 2F, function [15] it
takes the simpler form given by our formulas (8), which
display the symmetry property

An extensive discussion of the photon number distribu-
tion for large squeezing and large m is also made in Ref.
[5].

[b,b']=exp( —i8)sinhr coshr =—c, (13)

we can use a normal-ordering formula given by Wilcox
[16],

III. HIGHER-ORDER SQUEEZING

The matrix elements G„are complicated enough to
use them for the calculation of some expectation values in

!n/2! n —2k ) bi sbn —2k —s(b+b')"= g g ( —,'c)"
k!s!(n—2k —s )!

After simple algebra we get

(14)

n!
p!(n —2p )!

1/2

, ( m
~
(a )"

~
k &, =exp[i(p n)8]—k!

&&(sinhr)"(2tanhr) 2E)( —p, —m;n —2p+ I;2)5 +„k+zz, p integer .

In what follows we denote by ( A &sN the expectation value of an operator A in the squeezed number states
~
m &, .

(15)
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For k =m, Eq. (15) yields

in'
exp — (n —1)!!(sinhr coshr)"~ 2F, —m, ——;1;2,n even,

SN

0, n odd. (16)

By specializing our result (16) to n =2 we recover a known formula [5]

( (a ) ) sN
=exp( i 0—)(2m + 1)sinhr coshr . (17)

An equivalent form of Eq. (15) can be readily obtained by use of some transformation rules for the Gauss hyper-
geometric function [15],

(m lS (a )"Slk)=,
&z

(sinhr)"(tanhr) ~zF, ( —p, —m; —k —p; —1)5 +„&+@~, p integer .exp[i(p n)—8](p+k )!2

p!(n —p )!(m!k!)'~

(18)

X, =a+a, X2= i(a —a—) .

These operators satisfy the commutation relation

[X„X2]=2i .

(20)

(21)

If the Nth-order squeezing condition (19) holds for the
quadrature X& the expectation value ((hX& ) ) is less
than it is for a coherent state. There is no classical
description for a state that exhibits higher-order squeez-
ing. In a squeezed number state we obtain from (16)

(Xi)sN ——0

so the condition for Xth-order squeezing reads

((a+a ) )sN((N —1)!!, N even .

From Eqs. (10) one gets

((a+at) )sN=(ml(aa +a a) lm)

with

(23)

This formula proves to be useful in the calculation of the
nth-order correlation function.

The higher-order moments of the field are involved in
the generalization of the squeezing concept. According
to Hong and Mandel [7], a field is squeezed to any even
order N if

((aX, )")&(N —1), (19)

where AX =X.—(X ) and X. is one of the quadrature
operators defined as

Nth-order squeezing is possible for some phase angle for
which

l~l ,F,x N
(27)

In the case 8=~, which is the phase choice in Ref. [5] we
get the condition

(28)

TABLE I. The minimum squeeze parameter r';„' for higher-
order squeezing in the cases N=2, 4, 6, 8 for squeezed number
states with m =1,2, 5, 10.

The squeezing in the different orders sets in at different
squeeze parameters r ';„'. A condition for 1Vth-order
squeezing in a squeezed number state was recently ob-
tained by Gong and Aravind [10]. Our result is in full
agreement with their condition which by a simple algebra
can be cast into the compact form (28).

In Table I we present a numerical evaluation of the
minimum squeeze parameter r ';„' for higher-order
squeezing in the cases of N=2, 4, 6, 8 for squeezed num-
ber states with m = 1,2, 5, 10. It is interesting to note that
r';„' decreases when N increases, at a fixed m, namely, for
r mIII & r & r mjII the squeezed number states exhibit Xth-

a=coshr+exp(i8)sinhr .

We apply (14) to have finally

((~) ) )sN= lal (N —I)!!2F( ——,—m; 1;2

(25)

(26)

1

2
5

10

0.549
0.805
1 ~ 199
1.522

0.402
0.641
1.027
1.349

0.324
0.536
0.907
1.225

0.274
0.464
0.815
1.129



3328 PAULINA MARIAN

Z:

OC

CI

V

0,6

0.2

In the case of a squeezed number state, making use of our
result (26) and a known summation formula for Gauss
hypergeometric functions [19],Eq. (30) gives

&
.(QX )N.

& ( 1 )N/2(N 1 )If( 1 tz!2)N/2

X2F, ——,—m;1;—,(31)
N 2ai

-0,2

-0,6

where a is given by Eq. (25). For r =0 in Eq. (31) the
normally ordered moments characteristic to a number
state

~
m & are obtained

0.& 1.2
(gX)~&2(N1)m (32)

FICx. 1. The dependence of &:(~,!~:&sN/(N —1)!!on
squeeze parameter r for N=2 [curve (a)]; N=4 [curve (b)],
N=6 [curve (c)], and N= 8 [curve (d)] in the squeezed number
state with m = 1.

order squeezing but not second-order squeezing [17].
Consequently we ask if the squeezing is intrinsically of
higher order (in the sense of Ref. [7]). To answer this
question we have to calculate the normally ordered mo-
ments, &:(~,):&sN, and to examine their sign.

For a coherent state all the normally ordered moments
vanish. The condition for intrinsic higher-order squeez-
ing 1s

(29)

Following Hong and Mandel [18] we have found the
normally ordered moments as a finite expansion of the
higher-order moments

lim &:(bX,):&sN=( —1) (N —1)!!
7 —+ QO

(33)

For large squeezing there is an Nth-order intrinsic
squeezing for all values of X for which N/2 is odd.

IV. HIGHER-ORDER CORRELATION FUNCTIONS

m ——!
2

J
2

a result given also by a direct calculation.
The normally ordered moments (31) are interesting be-

cause they are oscillating functions depending on the
squeeze parameter, in contrast with the similar ones for a
squeezed coherent state [20] whose sign is entirely deter-
mined by the parity of N/2. We have plotted the depen-
dence of &:(hX, ):)sN/(N —1)!!on the squeeze parame-
ter r, for N=2, 4, 6, 8 and m = 1 (Fig. 1), and the same for
m =5 (Fig. 2). It is clear from these figures that intrinsic
squeezing is possible for every N in some ranges of r.
However, for large squeeze parameter r the normally or-
dered moments have the same limit as in the case of a
squeezed coherent state [20]

&:(b.X, ):&
=N! g I I(N 2I )!2'— (30) It is well known that in a single-mode multiphoton ab-

sorption process the rate of change of the average photon
number in the field strongly depends on the statistical
properties of the light [21],

a &ata &
= —2ng'"'&(at)"a "& . (34)

5

b)
(d)
Cc)

)

cF'"' is the coefficient for n-photon absorption process.
On the other hand the statistical properties of the light

passing through the absorber change in time due to the
nonlinear process itself. This time evolution is consider-
ably influenced by the initial statistics of the light beam.
Therefore calculation of the nth-order correlation func-
tion for a squeezed number state is important for the
evaluation of the efFiciency of a multiphoton process us-
ing a beam prepared in such a state. In order to give a
compact expression for the expectation value
& (a )"a "

& sN we make use of the expansion

1.2

& (a )"a "
&,N

= g ~ & m ~S (a")"S~k & )' . (35)

FICx. 2. As in Fig. 1 for m =5.
After inserting Eq. (18) and some minor rearrangements
the nth-order correlation function is written as
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((a )"a") = ' (sinhr)" g (m + n —p )! (2 tanhr ) [2F(—p, —m; —m —n+p; —1)]m! p!(n —p)! (m+n —2p)!

In the case n = 1 we obtain the mean photon number

(a a)sN=m+(2m+1)(sinhr)

Another parameter which is relevant to the photon statistics is the second-order degree of coherence defined as

)
g 0 =

&ata )'
For n =2 in Eq. (36) we get

(36)

(37)

(38)

g"'(0)=1+ 1

(ata )' [ —m+(2m +1)(sinhr) +2(m +m+1)(sinhr) ] (39)

The particular results (37) and (39) were also obtained in Ref. [5].
A particularly simple form has the nth-order correlation function for the squeezed vacuum state. We place m =0 in

Eq. (36) and get

( (a )"a")sv =n!(sinhr ) "2F
&

——,—,1;( tanhr ) (40)

and

g "'(0)=n!2Fi ——,— ', 1;(tanhr) (41)

2
(n!) (sinhr)" + (m+n l)!—

m! i o l!(n —l )!

The normalized nth-order correlation function g'"'(0) = ((a")"a")sN/(( 3 a )sN)" does not depend on the squeeze pa-
rameter in the case of strong squeezing. Indeed

((a a )sN)"=(2m+1)"(sinhr) " .

2
—2l

[2Fi( —m, —l; —m n+l;——1)](m+n —2l )!

(43)

We give the values of the normalized nth-order correlation function in some particular squeezed number states. In the
squeezed vacuum state, m =0, we recover a main result of Ref. [11]

The nth-order correlation function for a squeezed vacuum state is derived in a diFerent way by Janszky and Yushin
[11]. After some algebraic transformations their result can be written in the form (40).

Only for weak squeezing, (sinhr ) ~ m /(2m + 1), and m )0 the field has sub-Poissonian statistics. We discuss now
the form of Eq. (36) for strong squeezing, (sinhr ) ))1,

g~" (0)=(2n —].)!!

For m =1 Eqs. (42) and (43) give

g'"'(0) =(2n —1)!! "
3'

while for m =2 one finds

(44)

2 +2 +1g'"'(0) = (2n —1)!!
5'

(46)

The normalized nth-order correlation function is maximum in the squeezed vacuum state. This state is superchaotic for
every squeeze parameter r as can be stated from Eq. (39) for m =0.

A compact formula for the nth-order correlation function can be found in the case of weak squeezing, (sinhr ) ((1.
For m n the main contribution in Eq. (36) is given by

2 +3-
&( ')"a") = + n(si h )' 1+—"

(m n)! (m —n)! — 4 (m n+ 1)(m n—+2)— (47)
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The first term in (47) is characteristic to a Fock state m ). In the case m (n we approximate (tanhr) =(sinhr)
and get

((at)nan)

(n!)'
m! I [(n —m )/2]! ]

[(n+1)!]
m! [ [(m —n+ 1)/2]!]

sinhr
n —m

for (n —m ) even

' n —m+1
sinhr

for (n —m ) odd .
(48)

For the squeezed vacuum state, Eq. (48) becomes

[(n —1)!!]2(sinhr)", n even
(at)na n)

(n!!)2(sinhr )"+', n odd .
(49)

The expectation value (49) is in agreement with the previ-
ous one in Ref. [11].

V. CONCLUSIONS

The photon number states are nonclassical. To produce
experimentally such states some methods have already
been proposed [22]. Using the number states as an input
field in a parametric amplifier a squeezed number state

can, in principle, be obtained. Therefore we have exam-
ined in this paper some higher-order squeezing and corre-
lation properties of the squeezed number states.

These states exhibit squeezing in every even order N
for r )r';„'. We have found a simple expression of r';„'
for any m. We have also studied the normally ordered
moments (:(~t):)sN and found an oscillatory depen-
dence on the squeeze parameter r, the number of oscilla-
tions being determined by e and X The nth-order corre-
lation function was also calculated in closed form and
discussed in the case of strong and weak squeezing. The
calculation shows a great e%ciency of the squeezed num-
ber states in multiphoton processes.
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