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The interaction of a two—level atom with a single-mode radiation field through multiphoton tran-
sitions is studied in terms of the dressed-state formalism. It is shown that when only certain dressed
states are initially excited, population trapping occurs. We particularize these results for some well-
known models of one- and two-photon transitions. Photon statistics of the cavity mode is analyzed
in terms of the quasiprobability distribution Q(«). It is shown that when population trapping occurs
some two-time correlation functions become stationary, which allows one to obtain the resonance
spectrum as the Fourier transform of the two-time dipole autocorrelation function.

I. INTRODUCTION

The recent experiments on single Rydberg atoms in-
volving one- and two-photon transitions in a high-Q mi-
crowave cavity have opened new ways for experimental
studies of the interaction of a single two-level atom with
a single mode of the quantized radiation field [1]. Since
photons are bosons and the single atom always acts as a
fermion, the interaction is intrinsically nonlinear, which
provides many characteristics absent in linear models.

The problem of a two-level atom interacting with a
single-mode field has been studied in considerably de-
tail. The Jaynes-Cummings model (JCM) is the proto-
type model to describe such a situation [2]. Within the
rotating-wave approximation (RWA), this model can be
solved exactly, exhibiting many features without classical
analogy, perhaps the most important being the collapses
and revivals of the atomic inversion [3]. This behavior,
that is a clear signature of the discreteness of the quan-
tized field, has been found for several initial states of the
field, and has recently been studied using the @ func-
tion [4] which provides a method to explain this effect in
terms of interference in phase space.

The phenomenon of collapses and revivals depends on
the initial field statistics, but not on the phase of the field
if the atom is initially in one of its two states. However,
if the atom is prepared in a coherent superposition of the
excited and ground levels, the excitation probability de-
pends on the relative phase between the atomic coherence
and the exciting field. This phase sensitivity in the atom-
field interaction provides many useful ways of determin-
ing not only nonclassical properties, but also the means
of testing the predictions of the quantum theory of radi-
ation against semiclassical and neoclassical theories [5],
as well as having applications to noise quenching by cor-
related spontaneous emission [6], quantum beats [7], and
noise-free amplification [8]. Recently, Zaheer and Zubairy
[9] have shown that in the JCM with a pure and decou-
pled initial state, under certain phase-matching condition
between the atomic dipole moment and the field, the am-
plitude of the oscillations of the atomic inversion becomes
arbitrarily small when the field is initially in a coherent
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state and in the strong-field limit. In addition, we have
shown [10] that when besides this phase condition the
atom and the field are in thermal equilibrium, the oscil-
lations are suppressed and therefore population trapping
occurs. The states of the field fulfilling this last condi-
tion are eigenstates of the well-known Susskind-Glogower
phase operator [11]. Slosser, Meystre, and Braunstein
[12] have considered the evolution of a single mode of
the field driven by a current of two-level atoms, each in-
teracting with the mode for a time 7, a problem widely
studied in the context of micromaser theory [13], show-
ing that under certain trapping conditions it evolves to-
wards a new class of pure states which remain unchanged
after each interaction time 7. On the other hand, Gea-
Banacloche [14] has pointed out that in the JCM, during
the collapse time, the atom almost remains in a trapped
pure state, which could be used to prepare atoms in cer-
tain linear superpositions of their levels.

The evolution of the atomic inversion in the semiclas-
sical version of the JCM has a simple periodic behavior
although Bai et al. [15] have shown within this model
that when the atom-field system is prepared in a “dressed
state” the atom remains stationary. However, in the fully
quantum case this evolution is more complicated due to
the existence of a photon statistics for the field; the re-
sulting Rabi frequencies are noncommensurate and the
atomic inversion must be expressed as a sum which can-
not be given in a closed form. Several models involving
interactions which give rise to commensurate Rabi fre-
quencies have been introduced these last years in order
to obtain exactly summable series for the atomic inver-
sion, perhaps the most interesting being the intensity-
dependent coupling [16] and the Raman-coupled model
[17], in which two degenerate levels are coupled through a
virtual level by a Raman-type transition. These models
are exactly summable and the dynamics becomes peri-
odic.

Rydberg atoms are also well suited to study the cou-
pling field atom when the atom makes two or more pho-
ton transitions. The multiphoton generalizations of the
JCM are sufficently complex to be nontrivial but still
they yield nonperturbative results, although the con-
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struction of a real multiphoton oscillator results in a
formidable experimental problem [18].

In this paper we are concerned with population trap-
ping in two-level systems interacting through m pho-
tons with a single mode of the radiation field. We use
the dressed-state formalism to explain the features of
this trapping, since it gives a simple explanation of this
phenomenon independently of the type of interaction.
We particularize for the Raman-coupled, the standard
two-photon transition [19], the JCM, and the intensity-
dependent coupling model. We show that this trapping
can be viewed as a consequence of the existence of coher-
ent trapping [20] in three-level atoms after adiabatically
eliminating the intermediate level.

The dressed-state formalism allows one to explain as
well that under trapping conditions some two-time cor-
relation functions become stationary, which permits one
to find the spectrum as the Fourier transform of the two-
time dipole autocorrelation function. This spectrum is
seen to be a direct consequence of transitions between
dressed levels.

In Sec. II we introduce a general Hamiltonian describ-
ing the interaction of a two-level atom with an ideal cav-
ity mode. The dressed states and the trapping conditions
for this Hamiltonian are given. In Sec. III we study the
evolution of the @ function when the trapping condition
is fulfilled. In Sec. IV we study some stationary two-
time correlation functions and the spectrum emitted by
the atom in modes other than the cavity ones.

II. POPULATION TRAPPING

We consider a two-level atom with levels | g) and
| e) coupled to a single mode of the radiation field. A
basis for the whole Hilbert space is given by {| n,g),
| n,e},n=0,1,...}, where | n,g) (| n,e)) denotes a state
with n photons and the atom in its ground (excited) level.
We assume the atomic transitions to be mediated by m
photons; i.e., the Hamiltonian in terms of this basis is
given, in the RWA, by (A = 1)

00
H= Zgn I n,g)(n,g I +en |n,e)(n,e|

n=0
oo
+ Y Raln,g)(n—me|+R;|n—m,e)n,g|,

" (2.1)

where g, and e,, are the energies of the state | n,g) and
| n,e), respectively, and R, describes the coupling. This
Hamiltonian may be easily diagonalized with the results

H|n,g)=gn,|n,9), n<m,

(2.2)
H |95 =wE | o), n>m,
where
wf =In Tt En-m +2e,.._m +Qn A,
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ng,A = (An/2)2+ | Rn Iz’

the detuning being A, = ep—p — gn. The eigenstates
| k) are the well-known dressed states defined as

| \Il,:f) =(cos03‘) |n,g)+(sin0f) | n—m,e), (2.3)
with
R;
+ _ n
tan 65 = Yy E o (2.4)

In this new basis the evolution for the general initial
state,

1B(O0) = 3 An [ng)+ S (BF | W) + By | ¥7)),

(2.5)
is given by
| ¥()) = :i:An exp(—igat) | n,9)
+ i[B?f exp(—iwyt) | W)
+Ir;jfn;xr>(—iw; 1), (2:6)

which allows us to study all the dynamical features of
the evolution of the system. In the following we shall as-
sume that the two-level system and the field are initially
decoupled; i.e., the initial state may be written as

| ¥(0)) = ) gn [(cos @) | n,g) + (sing) ¥ | n,e)],

(2.7)

where ¢, = (n | ¢) and | ¢) represents the initial state of
the field. The coefficients appearing in this equation are
related to those of Eq. (2.5) through

A, =¢qpcos g,
(2.8)
1
sin (65 — 6;7%)
X [gn cos (sin 0F ) — gn_m(sin ¢) e'¥(cos 6F)],

and therefore the evolution of the initial state (2.7) is
obtained by substituting A, and BZ given by (2.8) in
Eq. (2.6).

Let us now study population trapping in two-level sys-
tems, i.e., a persistent probability of finding the atom
in its ground or excited states in spite of the existence
of both the radiation field and transitions to the other
level [21]. These probabilities are respectively given by
the expected values in the state (2.6) of the projectors on
the ground and excited levels. On the other hand, these
projectors leave invariant the subspaces with n quanta
Hn, = {| ¥}),| ¥;)} that are decoupled under the evo-
lution and, in each of them, the dressed states evolve
with different frequencies. Hence the trapping condition

Bf=+
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is that each subspace H, must evolve with only one fre-
quency, that is, only one of the dressed states in each H,,
must be initially populated. For the initial state (2.7)
this condition may be expressed as

—In_ tan 0 = (tan ¢) e'¥,

dn-m

(2.9)

which must be fulfilled for the + or — superscript Yn >
m.

Before we particularize for some well-known Hamilto-
nians, note that in order for the state for the field to be
normalizable (for A, = 0), | tan¢ |< 1 which indicates
that the population inversion is negative. However, for
nonzero detuning atoms in states with positive popula-
tion inversion may be trapped. Besides, for zero detuning
trapping conditions do not depend on the interaction be-
tween the atom and the field, but only on the number of
photons which mediate the atomic transition.

A. Raman-coupled model

This model consists of two degenerate levels coupled
through a virtual level by a Raman-type transition [see
Fig. 1(a)]. The Hamiltonian is obtained from the A-type
three-level system coupled to a single mode of frequency
w, far from resonance, after adiabatically eliminating the
upper level [21]. It reads

(a)
| e) | 9)
(b)
| 9)
| 1) — 6

| e)

FIG. 1. Atomic level diagrams under two-photon reso-
nance for (a) A-type and (b) Z-type three-level models.
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H =wdla+ ata(ot +07), (2.10)

where the o’s are the usual pseudospin operators acting
in the space of atomic states, a and a! are annihilation
and creation operators for the mode, and A is the effective
coupling constant.

Note that the interaction does not change the field en-
ergy and then the Hamiltonian commutes with arbitrary
functions of the photon-number operator. Phoenix and
Knight [17] have recently shown that the atomic inver-
sion 03 = o0to~ 4+ o0~ ot undergoes periodic collapses
and revivals when the atom is initially in its ground or
excited state. They have also pointed out that despite
the photon statistics remaining constant, the Shannon
entropy of the phase is periodic, which indicates that
higher moments than the first of the phase distribution
are varying quantities. On the other hand, this model
has been used successfully in the context of trapping and
cooling of two-level atoms with laser fields [22].

In order to apply the trapping condition to this Hamil-
tonian we identify

gn = €np = NW,
A, =0,

R, = R;, = An.
Hence, trapping conditions (2.9) impose (tan¢) e'¥ =
+1; i.e., the initial state for the atom must be

| %+(0))atom =| g)= | €), (2.11)

the state for the field being arbitrary. This result is not
surprising since, as is well known, in three-level systems
with the A configuration coherent trapping occurs. In
such a case one of the dressed states in every subspace
with n quanta depends on the detuning § between the
atomic transition frequency [see Fig. 1(a)] and the mode
frequency, but not on the coupling constant; the atom
and the field state remain separated under evolution and
therefore the population of the levels does not change.
With two-level atoms when the initial state for the atom
is (2.11) the population inversion remains constant de-
spite the fact that the dressed states depend on the ef-
fective coupling constant A. This dependence is due to
the fact that the effective coupling constant A contains
the detuning é.

B. Two-photon transition model

This model consists of a two-level atom making two—
photon transitions at frequency 2w through a single in-
termediate level | i) [see Fig. 1(b)]. The coupling con-
stants g, (for | g) —| i) at frequency w — 6) and g2
(for | i) —| €) at frequency w + ) determine the Stark-
shift parameters and the coupling between the effective
two-level atom and the field mode. After adiabatically
eliminating the intermediate level, the Hamiltonian reads

(19]
gt 93
H = w(ala+03) + aTa—6i | 9)(g | +aa172 I e)(e |

+9—1;’2(af20- +ota?). (2.12)
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In this Hamiltonian the second and third terms are re-
sponsible for the Stark shift while g;g2/6 is the effective
coupling constant. By identifying the Hamiltonian (2.12)
with (2.1) we find

_(]2

gn = w(n — 1)+Tl'?1,
g2
en=wn+1)+(n+ 1)72,

2 2
An :(n—l)%—n%,

Rp = i‘f%\/n(n —1),

and

[n—1
tan&,’f:g—% n——, tanﬁ,’;:—-“’,—2 =
()1 n gyn-1

Hence the trapping condition (2.9) becomes

qn g1 iy n
= =2t 2.13
qn-2 92( and) e -1 (2:13)
for the 4, and
n ; -1
:Ii__z = —~§—j—(tan ) ey ]2 (2.14)

for the — sign in Eq. (2.9). Note that this last condition
is fulfilled by the squeezed vacuum state

gan41 = 0,

1 2n — 1! n
& = T i e

with a = (tan¢) exp(i2¢)g2/91, and | a |< 1. Note
also that for g; > g» this condition may be fulfilled with
tan¢ > 1, which corresponds to a positive population
inversion. As with the Raman-coupled model this can
be explained through the coherent trapping appearing in
the = model [21]. Finally, we note that if we naively
neglect the effect of the Stark shift in the Hamiltonian,
we obtain a model that has been worked out by several
authors [23], but which predicts other trapping states
which is an incomplete result. Hence we conclude that
to study population trapping in the two-photon model,
the Stark shift must be taken into account.

(2.15)

C. Jaynes-Cummings model

The Hamiltonian for the JCM is[2)
H = twoos +wala+ A(ato™ + ota), (2.16)

where now wyg is the atomic transition frequency and A
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the coupling constant. Comparing with (2.1) we have

—_ 1
gn = wn — 3w,

€p =wWn — %wo,
An =Wy — W,

R, = R% = M.

Substituting these values in Eq.(2.9) the trapping con-
dition is easily found. Note that, as mentioned above,
for A, # 0 population trapping with positive population
inversion is possible. However, the states for the field in
this case are very complicated and it does not seem pos-
sible to reach them experimentally. We focus now on the
case of zero detuning. Trapped states are then given by

| %) = (1 — tan® ¢)'/?
X Z[(tan $) "

n=0

x[(cos @) | n,g) + (sin ¢) e™¥ | n,e)]. (2.17)

With this state population inversion is always negative.
The states of the field which fulfill (2.17), the eigenstates
of the Susskind-Glogower phase operator, have been ex-
tensively studied in Ref. [10] and we refer the reader to
this work for a detailed analysis. As has been recently
shown, the states appearing in (2.17) are generalized co-
herent states for the SU(1,1) group [24] corresponding
to the representation with Bargmann index k = % Us-
ing the disentangling theorem for SU(1,1) operators [25]
under this representation one can show that [24, 26]

| ¥) = exp(Bav/'N — 8*VNal) | 0), (2.18)
where
tang = —tanh|B|, ¥ =-p*/|8], (2.19)

and hence the state (2.17) might be generated with an
interaction of the field mode with an external current
through the Hamiltonian [26]

H = BVNd' — g*aV/N. (2-20)

On the other hand, the intensity-dependent coupling
is represented by the Hamiltonian [16]

H = iwoos + wala+ A(VNalo~™ + ot aV/N).

Note that this Hamiltonian is constructed in terms of the
generators of the SU(1,1) algebra. Comparing with (2.1),
this model is identical with the standard JCM except that
now R, = R} = An. So, in this case of zero detuning,
trapped states are those given in Eq. (2.17), since now
the trapping conditions do not depend on the interaction,
as discussed above.

(2.21)
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III. PHOTON STATISTICS

As we have shown in the preceding section when trap-
ping conditions are fulfilled the atom has a constant pop-
ulation inversion. In order to derive this condition we
have taken into account that the projectors on the atomic
levels do not change the subspaces H,,. This property is
not only fulfilled by these projectors but also by other op-
erators as the photon-number operator ata. Hence, when
trapping conditions hold, all the diagonal elements of the
density operator for the field also remain constant. How-
ever, off-diagonal elements vary; their evolution may be
characterized by the @ function which, in the JCM-type
interaction, has been seen to explain important features
such as collapses and revivals of the population inver-

m—1

>

n=0

a*n

Qo t) = elel? (

s *n—m

>

n=m

+
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o a*"
. + + . + -— -— . -_—
mAn exp (—ignt) + n_g .l [Bf (cos 0 )exp (—iwlt) + B, (cos b, ) exp (—iw, t)]

[B}f (cos 0}) exp (—iwt) + B, (cos 0;) exp (—iw;; t)]
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sion. In this context Eiselt and Risken [4] have shown
that in the JCM, when the atom is in its upper state
and the field in a coherent state, the @ function splits
into two peaked functions, counterrotating in the phase
space. When these peaks collide a revival of the popu-
lation inversion is found. In this section we investigate
the evolution of the @ function when the atom is initially
trapped by the field. This function is defined as

Qe 1) = Tr(a | p(2) | @), (3-1)

where | a) is the coherent state and the trace must be
taken over the atomic states. For the Hamiltonian (2.1)
and the initial state (2.5), it is given by

2
(3.2)

)

When we substitute BT given in Eq. (2.8) we obtain a very complicated function that becomes much simpler when
we use one of the trapping conditions [e.g., that of the + superscript in Eq. (2.9)]

m—1 ,n

Qa,t) = eI’ ( (cos? ¢)

n=0

+(sin? é)

n=0

It is easily shown that by defining o =| a | ¢ and
integrating Q(a,t) over £ the result depends on | « | but
not on time. Thus, in the phase space, the @ function in
every circle centered at a = 0 has constant area. This is
due to the fact that, as mentioned at the beginning of this
section, all the expected values of antinormally ordered
functions of the photon-number operator are constant
and they may be calculated as the expected values of
these functions in | « |2 with the probability distribution
given by Q(a,t).

Let us particularize now for the case of one-photon
transition and zero detuning. For the intensity-
dependent coupling model (R, = An) and in a rotating
frame at the mode frequency, expression (3.3) simplifies
to

Q(a,t) = e~1°(1 — tan? ¢)

2
= i) ok (—iAt)n
9 E [(tan ¢) e*¥a*e ] ’ (3.4)
n=0 \/;ﬁ
and therefore Q(a,t) rotates around o = 0 without

changing its shape. For the JCM (R, = Ay/n) we have

(e}

o ) a*m .
Z 1 n ©XP (—ignt) + n;n ﬁqn exp (—iw;t)

oo a*n
E ﬁqn exp (—zw,f+mt)

2

) . (3.3)
[

Q(a,1)

= e"""z(l — tan? ¢)

2

X ( (cos? ¢)

o [(tan ¢) e a*]" W

o [(tan ¢) e¥a** _i\ mrrs
ZT—E +
n!

2
+(sin? ) ) .
(3.5)

In Fig. 2 we have plotted the @ function for (ata) = 4,
and ¥ = 0 in the complex phase space for several inter-
action times At. Initially [Fig. 2(a)] this function has a
maximum near {«). As time increases it is broadened, its
maximum decreases and is displaced from the initial situ-
ation [Fig. 2(b)]. For At = 3 [Fig. 2(¢)] the @ function has
rotated, the height is smaller and another maximum ap-
pears. For longer interaction times [Fig. 2(d)] it is clearly
deformed, tending to an annular but coarse structure, as
reported in Ref. [4]. Hence we can conclude that popula-
tion inversion remains constant despite the fact that the
@ function is deformed and rotates in the phase space.

n=0
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IV. TWO-TIME CORRELATION FUNCTIONS functions become stationary. This is also due to the ex-
istence of only one frequency in each subspace H, and
to the invariance of these subspaces under the action of

Under the same condition as when trapping occurs, the whole operator. In particular, for the following first-

it can be easily shown that some two-time correlation  and second-order atomic correlation functions we find

= sin? 6%
(O~ @+ 1) = 3 1B P i cxp(— i ) (50 O) exp(iif ) + (s OF_) xp(i )
(4.1)
> sin g, sin g} 2
(et(W)ot(t+T)o " (t+T)o~ (1)) = Z | BE |2 (sin? 6%) (( s?rrll(_eff)—- 9_?')‘_"') 4sin%(Q,a7), (4.2)
n=2m n n
(a) (®) . z
\ i G
\ I[ i
| i
all N
\
éf;é%/fmmf'bf%‘&\\ o

Re(a)

(0) 3 (d)

il
U0
AR
AN
fi A
N
a0 '.“\\\\{\\\\\\ R
:‘%/7%"‘0‘\\\\\‘\\\\\‘
’ll"og\}\&%

FIG. 2. Q(a,t) function in the phase space for interaction times (a) At = 0, (b) 1.5, (c) 3, and (d) 100. The value
of tan? ¢ is % The inset in each figure represents the contour plot.
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where the + or — sign depend on which of the B’s co-
efficients is not zero. The second function describes the
joint probability of detecting one photon at time ¢ and
another photon at time ¢t + 7 [27], and the first is used
to obtain the spectrum of the light emitted by the atom
[28]: In nondissipative models this correlation function
J

sin? g

S — Bi: 2
(UJ) n;ml n | sin2(0; _0;!.)[

It is composed by a summation of é functions each one
corresponding to the transition of an initially populated
dressed level with n quanta to others with n — m quanta.
The intensity of each line is proportional to the initial
(and constant) population of the dressed level. This is
due to the fact that, contrary to the general case, here
there are no interferences between transitions from differ-
ent dressed levels with the same amount of quanta since
only one is populated.

In a real experiment, in order to see the resonance
spectrum, it is necessary that part of the light emitted
by the atom be outside the cavity, and therefore, there
must be some spontaneous decay at rate 4 into modes
other than the cavity mode. In such a case a full master
equation accounting for this effect should be used, but
now the trapping condition does not hold. However, if
we consider that the coupling between the atom and the
cavity mode is much stronger than the coupling between
the atom and the external modes, the model considered
here holds, at least for times ¢ < 1/4. The spectrum
measured then is given by Eq. (4.3) but instead of é’s
there will be Lorentzian-type functions of v width. In
Fig. 3 we have plotted the spectrum obtained for the JCM

PN Y ST W U T T U U O T T VS W Y B B

0.80
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0.40

0.20

L B L L B B

coer el el NN ENEEE NN NERE|

0.00

L B B S B N I O O O L L

0.00 2.00 4.00 6.00 8.00

(w=wo) /A

Resonance spectrum for the JCM with tan? ¢ =
, and ¥/A = 0.05.

(Sin2 ag—m)‘s(w - writ: + w:—m) + (Sil’l2 Hi—m)é(w - wr:i: + w;——m)]'
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is not stationary in general and therefore the physical
spectrum of Eberly and Wédkiewicz [29] must be used.
However, in the case under study, we can find it as the

Fourier transform of the two-time correlation function
(4.1). The result is

(4.3)

with the initial state (2.17), with tan? ¢ = % and 1 = 0,
assuming that the decay due to spontaneous emission in
the external modes is larger than the atom-field coupling
(A/y = 0.05). It is composed of Lorentzian functions of
width v centered at w —wg + A(v/n + 14+/n) (n integer).
Note that the Lorentzian functions at the left of w—wg-+A
overlap, and therefore the peaked structure is lost, giving
rise to a new function of width larger than 4. The recent
successful experiments involving high excited Rydberg
states of certain atoms in a microcavity seem to be the
adequate framework to see this effect since in them the
condition for the couplings is fulfilled and it is possible to
observe several Rabi oscillations before the atom decays
to its ground state due to spontaneous emission [1].

V. CONCLUSIONS

Trapping states for a two-level atom interaction with a
single cavity mode through an m-photon transition have
been found. When the system is prepared in one of these
states the atomic population inversion remains constant
and therefore there is a persistent probability of find-
ing the atom in its ground and excited levels. The exis-
tence of these trapped states may be explained within the
dressed-state formalism: the whole Hilbert space splits
into one- and two-dimensional subspaces with n quanta
which are decoupled under the action of the Hamiltonian
and the atomic population inversion operator. When
only one of the dressed levels in each subspace is ini-
tially populated, there is only one evolution frequency
in each subspace and therefore the population inversion
becomes constant. We have particularized for some well-
known models: for the Raman-coupled model and the
two-photon transition model. We have shown that trap-
ping is related to the existence of coherent trapping in the
A- and E-type three-level atom model, if the intermedi-
ate level is eliminated adiabatically. In the last model
some care must be taken since one cannot neglect the
resulting Stark shift in order to obtain the right trapping
condition. For the JCM we have analyzed the trapping
condition and proposed a theoretical method to obtain
the trapped states.

We have also analyzed the behavior of the @ function,;
as has recently been shown this function splits into two
peaked functions counterrotating in the phase space. The
revivals of the population inversion appear when both
functions collide. We have pointed out that when the
trapping condition holds, in the case of the intensity cou-
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pling model, the @ function rotates in the phase space
without deforming its shape. In the JCM, the @ function
is deformed and also rotates in the phase space.

Finally we have shown that when the trapping condi-
tion is fulfilled some two-time correlation functions be-
come stationary. This fact allows one to calculate the
emission spectrum as the Fourier-transformed two-time
dipole autocorrelation function. It is composed by a sum-
mation of §’s centered at the transition frequencies be-
tween the dressed levels of n + 1 and n quanta, and the
intensity is proportional to the population of the dressed

J. 1. CIRAC AND L. L. SANCHEZ-SOTO 44

level from which the transition is performed. In a real
experiment it is necessary for the atom to be coupled
to other modes than the cavity in order to see the light
emitted by the atom. In this case the é functions become
Lorentzian with a width of the order of the spontaneous
decay rate in these other modes.
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