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Higher-order effects on pair creation by relativistic heavy-ion beams
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Assuming the approximation of pair independence, the number of pairs produced by a classical, im-

perturbable electromagnetic source is shown to be described by a Poisson distribution. The perturba-
tional calculation of pairs by colliding heavy-ion beams is treated by straightforward summation of the

diagrammatically defined series. The extended calculation„ in which all orders of interaction between

colliding ions and the electron-positron system are included, is also demonstrated to result in a Poisson-
number distribution. Applications to current heavy-ion colliders are made.

I. INTRODUCTION

The production of electron-positron pairs by the elec-
tromagnetic fields created as charged particles pass one
another at close distances has been studied over a long
time [1—5]. In recent years, the development of heavy-
ion colliders in which very energetic and fully stripped
high-Z ions are to circulate in countercurrent beams
makes new demands on estimates of these processes. The
large ion charges and energies mean, on the theoretical
side, that the effective interaction strengths have been
moved out of the weak interaction regime, and, on the
practical side, that we are dealing with important beam
loss and background problems. As an example, the
Brookhaven National Laboratory Relativistic Heavy Ion
Collider (RHIC) [6] intends to collide ions perhaps as
heavy as uranium (Z=92) and as energetic as 250
(Z/A ) GeV/nucleon (y —2X10 in the frame of either
ion, 1'=2y„~—1); both the beam loss and background
problems have been most recently addressed in
workshops [7,8].

The theoretical questions posed by the increased in-
teraction strength have also come into recent discussion
[7,9]. The basic problem is best posed by a review of the
perturbational calculations: The perturbative cross sec-
tion corresponds to the diagram shown in Fig. 1(a), in
which the electron-positron field exchanges two photons,
one with each ion. The diagram shows the heavy ions
moving on unchanging straight line trajectories separated
by an impact parameter b. The cross section has been
evaluated in an analytic form by Racah [4], completely
using Monte Carlo techniques [5], and via the
Weizsacker-Williams approximation [1—3]. It is known
that at su%ciently small impact parameters the S-matrix
element corresponding to (e,e ) pair production
violates unitarity bounds; thus, for colliding U
beams at an impact parameter b =A/m, c =Ac (386 fm),
the probability of pair creation exceeds unity at y values
(in the frame of either ion) greater than 2X10 . It is
therefore clear that simple perturbational estimates are
not adequate for the smaller values of impact parameter
at RHIC energies, and higher-order damping effects must
be included. The diagrams corresponding to multiple

pair production that contribute such damping effects are
illustrated in Figs. 1(b) and 1(c); it is to be noted that
these diagrams are only a particular subset of all higher
orders, a limitation that is addressed in more detail
below. In addition to this warning signal from the per-
turbational result, there is also an underlining of the need
to broaden the calculations in order to extract the num-
ber of multiple pairs; perturbation theory is a calculation
of the probability of one-pair formation.

Both of these important points were addressed in a re-
cent paper by Baur, which presented a method for sum-
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FIG. 1. Diagrams representing electron pair creation in the
field of two energetic heavy ions moving in opposite directions
(represented by double solid lines). (a) Single-pair creation, (b)
double-pair creation, and (c) double-pair creation in higher or-
der; the higher orders included correspond to pair creation fol-
lowed by annihilation via interactions with the ions. The single
lines represent electron-positron states; the dashed lines show
interactions between the ion and the electron field.
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ming the higher orders based on a boson mapping [7,9].
This calculation results in a Poisson distribution PI, (X),
for the probability of producing N pairs at an impact pa-
rameter b, thereby providing the necessary inclusion of
damping and describing the multiple pair contributions.
The method has been criticized [7] as failing to distin-
guish possible off-shell contributions and including possi-
ble artifacts of the boson mapping. In this paper we ad-
dress these criticisms and show what approximations are
required to achieve the results.

The Poisson form is, in fact, an immediate consequence
of the classical, imperturbable nature of the electromag-
netic source (the unchanging heavy-ion motion) taken to-
gether with the noninteraction between the produced
pairs. This general statement is illustrated in the follow-
ing by analysis of the two technologies that have been ap-
plied to the pair-creation problem: the various forms of
perturbation theory and more recent efforts to include
higher-order ion-electron interactions via a coupled-
channel approach [10—12].

We begin with the first of these, perturbation theory.
The analysis here is based on a direct summing of the re-
stricted class of S-matrix diagrams that correspond to the
subset illustrated in Fig. 1. This direct procedure enables
us to explicitly examine the contribution of on-shell and
off'-shell parts of the amplitudes (in fact, the latter do not
enter), and to free ourselves of any mapping problems.

II. DIRECT SUMMING

A. Summing higher-order diagrams

In this section we discuss the approximations required
to enable higher-order effects to be resummed. The na-
ture and limitations of the calculation are best explained
in terms of diagrams. Figure 1(a) shows the lowest-order
pair-creation diagram. The motion of the very energetic
heavy ions, represented by the double solid lines, is as-
sumed to be unperturbed by the pair-creation process.
The very large momenta of the heavy ions suffer total-
ly negligible recoils or energy losses. Within this un-
perturbed-ion assumption the creation of two pairs, as
shown in Fig. 1(b), is understood to involve independent
ion-electron interactions for both the first and second
pairs. Since the energy of the pairs is of the order
rn, c lny while those of the heavy ions are of the order
y AM, this assumption appears quite valid for large y.

In addition to the creation of 1,2, . . . multiple pairs,
the creation followed by destruction of pairs will be in-
cluded; this is illustrated by the example in Fig. 1(c). Not
included is the interaction between the electrons (positive
or negative). Since we have very heavy, completely
stripped ions with high charge Z, this approximation can
be seen as ignoring interactions of relative order 1/Z.

In summary, higher-order diagrams to be included in

FIG. 2. Diagrams representing the same physical processes
as in Fig. 1. The reference frame is fixed in one of the ions,
which is taken as stationary (represented by the encircled cross).
The electron lines are understood to include Coulomb interac-
tions with the stationary ion.

[(p —b) +y (z ut) ]'i— (2.1)

where (p, z) are the electron coordinates measured from
the stationary ion and 1 represents the transverse separa-
tion of the ions. u is the usual fine-structure constant,
and a, is the Dirac matrix.

The S matrix can be written in the usual time-ordered
form:

this restricted summation of higher-order effects consist
only of (1) any number of pair creations, but each pair
taken as independent of all other real or virtual pairs, ig-
noring interactions or Pauli blocking; and (2) any number
of pair creations, followed by annihilations. Again, it is
understood that interactions or exclusions between pairs
are ignored.

Since we here analyze the semiclassical case in which
the two energetic heavy ions, moving with very large mo-
menta in opposite directions, are not effectively perturbed
by momentum recoils or energy losses, it is very useful to
choose the reference frame on one of the ions, and take
all Coulomb interactions between the electron field and
the stationary ion as included in the electron state
represented by the particle lines. Then, the processes of
Figs. 1(a)—1(c) can now be pictured as in Figs. 2(a) —2(c).

The interaction between a moving ion (velocity
uz, u -c, and energy y AM& ) and the electron field P is
the usual Lorentz-transformed Coulomb form,

S= 1 + . f V(t)dt + , f V(r, )dt, f V(t, )dt, + , f V(t, )dt, f V(t, )dt, f V(t, )dt, +
(iA') — —~ (iA')
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The interaction operator V(t ) can be written in symbolic form as

i(c,. +c. ))tV(t)= f dna(co)e ' 'H(i,j,co)e ' ' b;ta +H c.
= g V,'+'(t)b; a + g V,

' '(t)a b (2.3)

and for the creation of the particular pair, i j,

JN,
+ '=-. i j —f V(t)dt 0 = f deva(co)H(ij;co)5(co e ,

——e-:. ), (2.4)

where b; and a are the creation operators for positron i and electron j with energies c.,
+. and cJ, respectively. Since we

J
are interested only in the cross sections for pair production and not speci6cally in the angular or momentum distribu-

tion we can ignore the details of differentiating between incoming and outgoing wave boundary conditions. Instead, it
is to be understood that we limit ourselves to probabilities that arise from summing over the whole energy shell.

To illustrate the structure of the resumming technique we 6rst concentrate on the third-order contribution in the S-
matrix expansion (2.2) for the production of a pair i j; the detail serves to explain the treatment of all higher orders. In
the third order, one of the three V factors corresponds to the creation of the i j pair, the other two to the creation—
followed by destruction of all possible pairs, ij. We speci6cally assume, following the overall format, that we are to
drop the interference between the i j pair and the sequence of ij pairs, as we have dropped the interactions between
pairs. Then the Vfactor corresponding to the i j pair creation commutes with the other Vfactors; this in turn allows the
three terms (the i j factor can be first, middle, or last) to be very usefully combined. Thus we have

s-,"-.'= ', y f" V,~j '(t3)dt3 f V,'+'(t2)dt, f '
V-,'+'(t, )dt,J (ig)3 V V j

l,J
E2

+ f +jj (t3 )dt, f V,
'+'(t2 )dt2 f V-. -'. ~J'(t& )dt,

f2+ f V,
'-+. '(t, )dt-, f V,', '(t, )dt, f V,',

+ '(t, )dt, (2.5)

By rearranging and relabeling the dummy integration variables these three terms can be rewritten as

g f V,
' '(t )dt f V+'(t )dt f ' + f '+ f" V,

' +'(t, )dt, --.
&J (ig)3 ~ ~, ~ t2 t~ ~J

l,J

+ oof V,''(t")dt" f. . V,' +'(t')dt'.
( iA') QO

(2.6)

It is important to note that the V-,.'-+. ' refers to the creation of a particular pair, i j, while the combined other factor is a
sum over the creation and destruction of all possible pairs; we shall return to the necessary analysis of this latter part.
The (n+ 1)th order can be shown in the same way to result in a contribution to the creation of an i j pair. In this way
we get, for the (n + 1)th order,

g(n+1)
/ J , g f V,', '(t")dt" f V,', '(t')dt'

n! (ifg)2
l,J

n

f V,
'+'(t )dt-.

iA
(2.7)

and the whole series can be immediately summed as

g f V,', '(t")dt" f V,',+'(t')dt'
g2 iJ

co
l, J

L

S-, —.= V, —. (t )dt exp-(+)
iA

Similarly, the S-matrix element for the creation of particular pairs i j,& j, . . . gives, in just the same way,

(2.8)

f VI+'(t)dt . . exp, g f V,', '(t")dt" V,',+'(t')dt'
if) —oo ~ J

l,J
(2.9)

One of the reasons for explicitly carrying through the simple combinatorics required to arrive at Eq. (2.6) is to em-
phasize that there is no limitation on the time overlaps or time orderings of the separate pairs (within our overall as-
sumption of no interactions between pairs).

From Eq. (2.8) we can write immediately the probability of forming the particular pair ij:
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2

Pb(i j)= —f V,.
'-. -'(t)dt exp Re g f V '(t")dt"f V.+'(t')dt'

l&J

or more compactly

P, (i j)= ~At-,'+'~'e~,

(2.10) .

E:—Re — g f V,
' '(t".)dt" f V,'+'(t. .')dt'

g2 J oo
l, J

Equation (2.10) may be readily extended for the particular ij,i j, . . . pairs.
The probability of forming any one pair is just

2
Pb(l)= QPb(i j)= g At, +'. -.e

l J
l,J l,J

while that for forming two pairs is seen from Eq. (2.9) to be

(2. 1 1)

y At='+=' eE
l J

l&J

2 2
E1

2! y At-', +'
l J

E
P~(2) =—g At ,

'+'-
i j (2.12)

(2.13)

In general, for N pairs we can write (dropping bar notation)
N

P (N)= g At'" ' eN, 7

l, J
(2.14)

where once again we ignore the multiple appearance of any given pair in two or more factors.

B. Evaluation of exponent

Written out more fully, the exponent E is

E=Re g f dt" f dt' f dv f dred a( ) v(ac@) e ' ' e ' ' H'(ij, v)H(ij, co)(,0~aj.b;b~a; ~0)
QO

l, J

(2.15)

2n. 5(v —e,
+ —e, )5(co—e,+ —ei )

&ri 5(v —co)P— 1

(co —e,+. —e ) i5—(2.16)

where the usual damping factors, i.e., e* ', are to be un-
derstood in the time integrations. On carrying out the
time integrations we arrive at the principal-value integral;

abilities. Recalling that the first-order perturbational re-
sult for the one-pair probability is P( b ),

2

(2.19)

the N-pair probability can be written in terms of the
lowest-order result:

In this way we find P(b) exp[ —P(b)]
b (2.20)

E= —4&r2 g —f

deva�(co)H(ij,

a&)5(a& e,+ —ej )—
l& J

(2.17)

2= —y AtI,
+' (2.18)

'~

The off-mass shell portion of E does not enter because
only the real part of E contributes. Combining (2.18) and
(2.14) proves that P&(N ) is a Poisson distribution of prob-

From this equation we obtain the probability of an
event (1,2, . . . pairs) as

Pb(N )= 1 —Pb(0) = 1 —exp l' —P( b ) ] .
N=1

(2.21)

The fact that we can write higher orders in terms of
the lowest order is a direct consequence of the pair in-
dependence ansatz made throughout the derivation to-
gether with the classical, nonperturbed nature of the
sources.
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C. Comments on resummed series +~N pair ~c (2.25)

From Eq. (2.20), the N-pair cross section cr~ „., is ob-
tained by integrating the X-pair probability over the im-
pact parameter b, i.e.,

crtv p„,= f d b Pb(N), N=1, 2, . . .

and the cross section for any number of pairs is given by
(2.21) as

where o., is the perturbative cross section discussed in
the Introduction.

From these equations it is obvious o., )0
p

of
P(b))Pb(N), N=1, 2, . . . ; i.e., according to this sum-
mation procedure the first-order perturbative result al-
ways overestimates the probability for producing a pair
at a given impact parameter.

~...,= f d'b [1—exp[ —P(b ) J
= y ~x ..., .

N=1

The average number of pairs,

g NPt, (N ) =P(b ),
N

(2.23)

(2.24)

D. More general analysis

The above discussion is based on a detailed examina-
tion of matrix elements, and was designed to immediately
connect with traditional perturbational calculations.
However, a much simpler proof follows on noting that

(2.26)is just equal to the perturbational value for the one-pair
probability. Similarly the weighted cross-section sum
gives

so that within the expression for the exponent term E, we
can separate into real and imaginary parts:

, f V,', '(t" )dt" f V,, (t')dt' = , f V,',
+ ' (t")dt" f V,',

+ '(t')dt' + f V,',
+ '(t" )dt" f V,',

+ ' (t')dt'
g2 &J

OO 2A OO OO OO

t'

II

+ f V'+' (t")dt"f V'+'(t')dt'
2A 2 EJ

OO
/J

II

V'+'(t")dt" . V '+' (t')dt'.
lJ lJ (2.27)

The first term, which by its construction is real, is just
OO OO

2' 2 f V'+' (t")dt" V'+'(t')dt'=.
1J

OO
1J 2 &J

tion

H(t)% = —.
A 8%

i Bt
(3.1)

Then, since only the real part enters into the expression
for E, we directly obtain (2.18), without the need to know
the details of the matrix elements.

where H(t) is a sum of one-electron Hamiltonians. The
wave function %'(t ) for such a Hamiltonian is given as an
antisymmetrized product of one-particle functions,

III. APPLICATION
TO COUPLED-CHANNEL APPROACH

e=A+e. , (3.2)

Coupled-channel calculations [10—12] aim at the in-
clusion of interactions between the electron system and
the projectile ion to all orders —within as large a func-
tion sub-space as the available computers permit. In this
section we will again demonstrate the relevance of the
Poisson distribution for the nonperturbative procedures
inherent in these coupled-channel methods.

The basic procedure is the solution of the Dirac equa-
tion for electrons in the classical time-dependent field of
the two potentials, again with neglect of the interelectron
interactions and any source perturbations. The electron-
ion forces are kept to all orders. Then the problem
reduces to the solution of the time-dependent Dirac equa-

where each 4 is the solution to its corresponding one-
particle Hamiltonian and obeys the further condition that

lim 'Il (t)~y (3.3)

where y is an unperturbed, steady-state function that
represents the initial electron state. For our purposes
here the cp are the negative-energy solutions, and the full
Aii y represents the original, unperturbed, and filled
Dirac vacuum. The 4 can be written in terms of the
basis made up of the unperturbed negative- and positive-
energy solutions:
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where

y IA., '+ y IA., '=1,
p i

A p(
—oo ) =5 p, A; (

—oo ) =0 .

A &(t)q&(t)+ g A, (t)q, (t)
c(p) (0 c(i ) )0

(3.4)

Of course, the actual calculation of the central in-
gredient, g;p;, is not to be obtained by such generalities.
The Poisson form follows from the general assumptions
of independence of pairs and imperturbability of the
source, whereas the magnitude to be inserted in the Pois-
son form does not.

Orthonormalization for all times follows directly from
the defining equations. The fully antisymmetrized state
may then be compactly represented via creation and an-
nihilation operators as

P (t)= g A &(t)C&+ g A,. (r)C, ,

e'(t) =e'.e' . . Io) .a P

(3.5)

It is simple to verify that ('P(t)% (t) ) = 1 for all times.
The probability of finding an electron in a positive-

energy state i at t = + ~ is then

&~( )C,'C, ~'(
= ( 0

I

. . 0(( oo )0 ( oo )C,tc,0 ( oo )+)( oo ) .
I 0 ) =p, ,

IV. APPLICATION TO HEAVY-ION COLLIDERS

2

c yaccP(b)= (Z a ) ln +b,(Z),9' b 2b
(4.1)

In this section we apply the result of Sec. II to two
planned heavy-ion colliders, RHIC at Brookhaven Na-
tional Laboratory and the Large Hadron Collider (LHC)
at CERN. We assume the form for P(b ) is given by the
lowest-order perturbative result derived long ago and
later modified to include Coulomb correlations to the
positron wave functions [2]. This gives

2
p;= g A, (oo) (3.6)

p; Q (1—
p, ).

j (wi)

Then

(3.7)

and the probability of finding just one such positive-
energy state occupied is

where y5/2 ) b Ilc ) 1, and y is the ion energy in units
of its rest mass as measured in the frame of the other ion
(y=2y„&—1); 5 is a constant that takes the value 0.681
and h(Z) is a modification of the original formula due to
Coulomb distortion that we will ignore here.

In Figs. 3 and 4 we show the X-pair probability distri-
butions Pb(X) derived from the Poisson form as a func-
tion of impact parameter b. Also shown in these figures

P, (1)= g p; + (1—p, )

i j (wi)
(3.8)

is just the one-and-only-one-pair probability. Thus we
find

10

197 79+ &97& 79'
Au + Au

100 (R H I C )

I I I

7= 2x10

Pb(1) = g p; exp g ln(1 —
pj )

gp exp Xp (3.9)

10

10

—10

10

PAIR
= 32.3 kb

PAIR
= 1.96 kb

PAIR
=

PAIR

PAIR
=

Pb(2)= Xp'p exp

Xp e"p Xpk
l k

(3.10)

and finally,

Pb(N) = g p, exp —g p&= 1

1 k

(3.11)

ignoring higher powers of the infinitesimal p s. Proceed-
ing to two electrons in the positive domain and dropping
infinitesimals result in

-4
10

fi
—, i N

I':
510

10-6 )', :. I

0 8 16
I

24 32 40 x10
b (fm)

FIG. 3. Probability distribution for N-pair -production as a

function of impact parameter b. The curves are plotted for

Au + beams at the highest RHIC energies. P(b ) is the

lowest-order perturbative result corresponding to Eq. (4.1) in

the text omitting h(Z ). Pb (N) is the result of the Poisson form

for N-pair production using P(b) as input. The perturbative

cross section o., and the N-pair cross sections o.»„„are also

shown. Note that the value of y as measured in an ion frame is

related to laboratory value by y =2y„l—1. Note, that for a col-

lider, yl» =y, m
=y„„which for RHIC is 100.
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f= 3x10 7
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= I92.4 kt

PAIR
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PAIR
=

PAIR
——820 b

N=3

'-. N=4

'-, N=5

I

8 16
b (fm)

I

24

r, (b)

I

32 40 X10

are the original lowest-order perturbative results that
correspond to Eq. (4.1). The curves are plotted for the
heaviest available nuclei at the respective facilities, and at
top beam energy.

FIG. 4. Same as Fig. 3, but for Pb' + beams at the highest
LHC energies. For the LHC y],b= y, &= 3800.

It can be seen that one-pair production completely
dominates the picture at both RHIC and LHC energies.
Also, the difterence between o., and 0.

& „,can be attri-
buted to the large values of probability at impact parame-
ters very close to the Compton wavelength K&. In addi-
tion, the two-, three-, four- and Ave-pair probability dis-
tributions are seen to decrease very rapidly for impact pa-
rameter values larger than Kc.

Utilizing Eq. (2.24), the average number of pairs per in-
teraction of ' Au + beams at impact parameter 9 & at
the highest RHIC energies is 1.4. For 8Pb + beams at
LHC the corresponding average number of pairs is 5.2.
With a collider luminosity value [6] of 2 X 10
cm sec ', this corresponds to a pair production
rate of 10 /sec at RHIC and 2. 5 X 10 /sec at LHC.

It is important to reemphasize that the above estimates
for X-pair production are based on the Poisson distribu-
tion for Pb(X) and the lowest-order perturbation expres-
sion for P(b). More recent work [10—12] based on
coupled-channel techniques includes the projectile-lepton
interactions to all orders, and predicts a value for g,p,
much larger than P(b). These nonperturbative contribu-
tions continue to be a subject under active investigation.
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