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Intensity correlation functions of the laser with multiplicative white noise
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Two-time intensity correlations in a laser with multiplicative white noise have been studied experi-
mentally. Multiplicative noise was introduced by applying a Gaussian-noise voltage to an intracavity
acousto-optic modulator in a He:Ne laser operating near threshold. We observe both a shift and a
broadening of the peak in the correlation-time versus mean-light-intensity curve. These observations are
in agreement with the previous measurements of the steady-state properties of the laser near threshold in

the presence of multiplicative noise.

I. INTRODUCTION

The primary source of noise in lasers is spontaneous
emission. This noise together with the nonlinearity of
light-matter interaction determines the Auctuation prop-
erties of laser light [1]. In practice, however, other
sources of noise also contribute to Auctuations of laser
light. Since lasers are open systems coupled to their envi-
ronment, random Auctuations of the environment also
inAuence the statistical properties of laser light. These
Auctuations of the environment enter the laser via pump
or loss Auctuations. Noise due to these Auctuations is
proportional to the electric-Geld amplitude in the lowest-
order approximation. This type of noise is called multi-
plicative noise [2]. It is also referred to as parametric
noise or external noise.

Lasers are but one example of open systems that are
subject to multiplicative noise. The role of multiplicative
noise in such systems has been of great interest recently
[2,3]. The presence of multiplicative noise induces quali-
tatively new phenomena that cannot be induced by addi-
tive noise, white or colored, alone. It may cause the ap-
pearance of new statistically favored states. It may cause
the shift of oscillation threshold. Many of these predic-
tions have been confirmed experimentally in a variety of
systems [4—7]. In a He:Ne laser, for example, the effects
of multiplicative white noise have been investigated sys-
tematically in photoelectric counting experiments [5).
These experiments confirm the predicted shift of laser
threshold and enhanced intensity Auctuations in the pres-
ence of multiplicative noise. The importance of multipli-
cative noise in lasers was realized when the statistical
properties of dye lasers were investigated experimentally
[7]. Experiments revealed that the observed intensity
Auctuations could be accounted for only by including
multiplicative noise, in addition to the additive spontane-
ous emission noise, in the equation of motion for the laser
field amplitude [8]. Early theoretical work on dye lasers
had predicted that the complex structure of dye mole-
cules may alter the nature of nonlinearity [9]. In particu-
lar, the presence of triplet state absorption in the same
spectral region as the singlet laser emission may induce a
first-order phase-transition-like behavior in dye-laser Auc-

tuations. This has, however, not been observed. It is not
clear what role, if any, triplet absorption does play. Ex-
periments that have been carried out to date seem to sug-
gest that triplet states do not play an essential role. This
conclusion can only be tentative since many of the eA'ects

induced by multiplicative noise are similar to those that
would be induced by triplet absorption [9]. Effects of
multiplicative noise and triplet absorption could be del-
ineated in experiments that study the role of multiplica-
tive noise in a systematic way by varying the strength of
multiplicative noise in a controlled fashion. Such experi-
ments have not been carried out in dye lasers. In simple
systems, such as a He:Ne laser, systematic studies of the
e6'ects of multiplicative noise have been carried out by
Young and Singh [5]. In these experiments the steady-
state intensity Auctuations were studied in photoelectric
counting experiments. Corresponding experimental stud-
ies of the e6'ects of multiplicative noise on the correlation
functions of laser light have not yet been reported al-
though this problem has been treated theoretically by
several workers [6,10,11]. In this paper we wish to de-
scribe results of photoelectric correlation experiments
carried out on a He:Ne laser where multiplicative white
noise was introduced in controlled amounts by applying a
Gaussian-noise voltage to an intracavity acousto-optic
modulator. The paper is organized as follows. In Sec. II
we briefly review the steady-state Auctuation properties
of a laser with multiplicative noise. We include both
quantum noise due to spontaneous emission and multipli-
cative noise due to loss fluctuations. Section III discusses
steady-state correlation functions of the laser. Experi-
mental setup and procedures are described in Sec. IV. Fi-
nally, experimental results and principal conclusions are
presented in Sec. V. Although both gain and loss Auctua-
tions may contribute to multiplicative noise in lasers we
confine ourselves to the case where loss Auctuations dom-
inate. In the first approximation, especially when exter-
nal Auctuations are small, both gain and loss Auctuations
lead, qualitatively, to similar results.

II. EQUATION OF MOTION

Consider a single-mode laser operating close to thresh-
old whose losses are modulated by a white-noise Gauss-

3239 1991 The American Physical Society



3240 K. J. PHILLIPS, M. R. YOUNG, AND SURENDRA SINGH

where q (t) is the spontaneous emission noise which is
taken to be an additive Gaussian white-noise process with

(q(t)) =0=(q*(t)), (q "(t)q(t')) =4&(t —t') . (2)

Multiplicative noise due to loss Auctuations is taken to be
another Gaussian white-noise process with

ian random process. The equation of motion for the
scaled slowly varying complex field amplitude E (t) of the
laser can be written as [5,10-12]

E(t)=E(t)[a —E(t)l2]+g(t)E(t)+q(t),

for laser light. This is a single peaked distribution for all
values of pump parameter a and multiplicative noise
strength Q. For a fixed value of Q this distribution does
not develop a nonzero maximum until a )2Q. This
means that in the presence of multiplicative noise the
laser threshold shifts from a =0 to 2Q. Furthermore,
distribution (8) is wider than the corresponding distribu-
tion for the ordinary laser. This implies that intensity
Auctuations are enhanced when multiplicative noise is
present in the laser. From Eq. (8) we obtain the following
expressions for the mean light intensity (I ) and normal-
ized variance ~2 of light intensity:

(2)(t) ) =o= (2)*(t)), (2)*(t)21(t') ) =4Q&(t —t') (3)

and is assumed to be statistically independent of spon-
taneous emission noise q(t). The average pump parame-
ter a can be expressed in terms of gain per pass 2 and
average loss per pass C as [12]

—1/2Q
(I & =a+

(2Q ) 'I (v, 1/2Q )

~,= ((I—(I ) )'/(I )'
a+2Q 2

(9)

(10)

C
—1 &urn

O (4)

E(a —IEI2) (E, t)

where no is the mean number of photons in the laser at
threshold in the absence of multiplicative noise. Depend-
ing on the operating point of the laser the pump parame-
ter may be negative, zero, or positive. Because of the
presence of noise terms given by Eqs. (2) and (3) the laser
field amplitude becomes a stochastic variable. Equation
of motion (1) then has the form of a nonlinear stochastic
equation which has no known analytic solution. It is
convenient to replace the nonlinear stochastic equation
(1) by a Fokker-Planck equation for the probability densi-
ty p (E, t) for the field amplitude to be characterized by
value E at the time t [13]. This equation has the form

Predictions of Eqs. (8)—(10) regarding steady-state fluc-
tuations were tested in photoelectric counting measure-
ments by introducing controlled amounts of multiplica-
tive noise in a He:Ne laser [5]. These measurements pro-
vide a quantitative understanding of the role of multipli-
cative noise in determining the fluctuation properties of
laser light. We now consider the time dependence of Auc-
tuations in the steady state.

III. TIME-DEPENDENT SOLUTION

In order to discuss the time-dependent solution we ex-
press the Fokker-Planck equation (5) in polar coordinates
r, P by writing

E =re'~, 0&r & ~, 0& /&2' .
a2

+2 (1+QlEl )p(E, t)+c.c. ,azar* (5) Then the probability density p(r, P, t) of amplitude r and
phase P satisfies

where in obtaining Eq. (5) from Eq. (1) we have interpret-
ed the multiplicative noise term in the Stratonovich
sense. This is because in our experiments multiplicative
loss noise is not a true white-noise process. Instead it is a
Gaussian-noise source with a very short correlation time.
The steady-state solution of this equation satisfies p, =0.
Solving Eq. (5) in the steady state with natural boundary
conditions we find [5,10—12]

p, (r)=const[r(1+Qr ) 'e "~ ~],

p(r, P, t)= — r a —Q r+ +— (1+Qr )
a, 1 a, a
Br r2 Br Br

1+Qr B
( ~ )

2 Qp2
(12)

By using the method of separation of variables the gen-
eral solution of Eq. (12) can be written in the form

a 1v= +
2Q 2Q' ' p(r, P, t)=g C„&e' ~g„&(r)[p, (r)]'~ e (13)

for the steady-state probability density of amplitude r and
phase P(E =re'~) of the laser. We note that the steady-
state distribution (6) is independent of phase P. It de-
pends only on the amplitude r. This means that in the
steady state phase is uniformly distributed in the interval
0 / &2'. Introducing light intensity I = lEl we find
the steady-state intensity distribution

P, (I)=const[( 1+QI)' 'e ~],

where 0+n & ~ and —~ &I & ~ are integers. The ei-
genvalues A, „&

)0 and the eigenfunctions g„,(r) are labeled
by two indices because they satisfy a two-dimensional ei-
genvalue problem. CoeKcients C„& are determined by the
initial condition. The steady-state amplitude distribution
is given by Eq. (6). Substituting Eq. (13) into Eq. (12) we
obtain the eigenvalue equation
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Qr(a —Q —r )

2(1+Qr )

J'2

, +QI'+
4(1+Qr ) r

(1+Qr ) g„l+ [k„i F—((r)]g„i=0,d 2 d
dr dr

Fl(r)= +(a —Q —2r )
r (a — —r )~

4 1+Qr

(14)

This equation has the form of a radial Schrodinger equa-
tion for a particle with space-dependent mass.

In the steady-state single time averages are described
by the distribution (6) and (7). In order to evaluate the
multitime averages we need higher-order (multitime)
probability densities. For our purpose the most impor-
tant probability density is the second-order (two-time)
probability density. In order to obtain this probability
density we note that the solution with initial condition

The lowest eigenvalue A,00=0 corresponds to the steady-
state solution. The corresponding eigenfunction is given
by

"dr g„,(r)g„,,(r)=5„„,,
0

00 oo il (P—P')

g„l(r)g„l(r')
=o I =—

(16)

=5(r r')5(P —P'—) .

(17)

No analytic solutions for Eq. (14) are known. The eigen-
functions and eigenvalues are determined by numerical
solution of Eq. (14). For this purpose Eq. (14) can be
simplified further by making the substitution

gpp(r)=[p, (r)]'" .

The eigenvalue equation (14) is a self-adjoint equation
with boundary conditions g„l(r)~0 as r —+ ~ and regular
at the origin r =0. The eigenfunctions form an orthonor-
mal complete set

p (r, P, t =0)=5(r rp )5(P——$0) (21)

is the Green*s function or the conditional probability
density G (r, P, t~r0, $0,0) for the field to be characterized
by amplitude and phase r, P at time t given that it was
characterized by amplitude and phase rp and $0 at t =0.
Using Eqs. (13), (16), (17), and (21) we find

oo oo

G ( r, 0, t
~ ro t)l'0 0) = g

n =Ol= —oo

l(tt —Po)

g„l (r)g„l (rp )
27T

—i. t goo(r)
Xe "' . (22)

g~(ro)

oo oo il g
nlp2(r 0 t rp 40 0) r rf g l(r)g l(ro)e

—0 l — 2&

If the initial state p(r, P, t =0) is the steady-state

p, (r, ltd) =g~~(r)/2' we find the two-time probability den-

sity p&(r, P, t;r0, $0, 0) for the field to be characterized by
r p at time t and by rp and $0 at time t =0 in the steady
state. From Eqs. (17), (21), and (22) we find

nl
( 1 + P)i/Pg„l(r) =

where P„i(r) satisfy the following equation:

(18)
Xgpp(r)gpp(rp ) ~ (23)

d g„i(1+Qr ) + [A.„i—Vi(r)]i'„i =0,
dr

r (a —Q
—r ) q Qr(a+Q —r )Vlr= + a 2r—

4 1+Qr' 2(1+Qr')
I2

, +QI'+
4(1+Qr ) r' (20)

Because we are dealing with a Markov process E(t), all
higher-order probability densities can be expressed in
terms of the second-order (two-time) probability densi-
ties. For two-time intensity and field correlations we only
need the second-order (two-time) probability density.

Once the two-time probability density is known we can
calculate correlation functions. Thus for two-time field
correlations we obtain

&E*(t)E(t+r) ) = f dr f dro f dP f dgprrpe' p~(r, P, t;rp, &0,0)
0 0 0 0

n1=g u„,e
n=0

where
2

400(r)0 i(")
u i

= dr rgpp(r)g„, (r) = f dr r
0 0 1+Qr

and for two-time intensity correlations we obtain

(I(t)I(t +)r) = f dr f drp f dP f dolor roe Pz(r ltd, t;rp, g0, 0)
0 0 0 0

= g u„pe

(24)

(25)

(26)
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where

"dr r gpp(r)gnp
(x' 2 (r)Un0

(30)

f
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which leads to the following expression for A.,ff.
.

jef g vno~no
n=1

Vn0 (32)

4(I)(1+aQ+2Q )+8Q
(a +2Q)(I ) +2—(I )

(33)

This equation was used as a consistency check of our nu-
merical results [Fig. (9)]. Our approach parallels the

Behavior of T, and A,,ff has also been discussed by other
workers [10,11,14] by using several different techniques.
An exact expression for A,,ff in terms of the steady-state
moments of the light intensity can be derived based on
the approach of San Miguel et al. [14]. For our case this
leads to the following expression for A,,ff..

treatment of the ordinary single-mode laser. This
method [15] is based on the fact that if Eq. (19) is in-
tegrated using some A, WA, „&, the solution diverges ex-
ponentially as r~~. Integration is ceased as soon as
g„&(R )P'„&(R ) )0 for some value of r =R such that
V&(R))A, . The value of f„& at this point is recorded.
This value g„&(R,A, ) depends on A, . The problem of deter-
mining the eigenvalue A, „I then reduces to a search for a
zero of Q„I(R,A, ). For numerical integration we used the
Bulirsch-Stoer method [16]. The starting guesses for ei-
genvalues were the eigenvalues for the conventional laser.
Once the eigenvalues and eigenfunctions are determined,
the coefficients v„& were computed by using Eq. (27).
Correlation time T, and the effective eigenvalues A,,ff were
measured in photoelectric correlation experiments and
compared with the predictions of Eqs. (30) and (32). In
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the threshold region correlation functions cannot be ap-
proximated by a single exponential. In general several
terms must be retained. Figure 1 shows the variation o
the first few eigenvalues that occur in p(r) with pump pa-
rameter a for several difFerent value s of ~. Note that the
lowest eigenva uel A, =0 corresponds to the steady state.
One consequence of multiplicative noise is to lift the de-
generacy o eigenf igenvalues encountered in the ordinary laser
(Q =0) threshold. With increasing multiplicativenear

holdnoise strength the minima of eigenvalues near thresho
become progressively shallower. The behavior of eigen-
f @„ f a = —6 and 4 is shown in Figs. 2 andfunctions @„I or a =—
F m the eigenfunctions and eigenvalues we can calcu-
late the intensity correlation time via Eqs. ,'27~ an
Figure 4 shows the variation of correlation time with the
strength Q of multiplicative noise for several di6'eren

rameter a. In the neighborhood ofvalues of pump parame er
=0 the correlation time always decreases as in-a= ec

creases. For large negative and positive va ueses of a the
correlation time first increases slightly for small values of
Q and then decreases slowly as Q is increased further.

IV. EXPERIMENTAL SETUP

The experimental arrangement is s ow 'g.wnin Fi . 5. It
has been described in detail elsewhere [S,6]. A single-
mode He:Ne laser was used in these experiments. Laser

modulator (AOM). For small amplitudes of noise voltage
the transfer characteristics of the AOM were linear. Loss
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FIG. 4. Variation of the intensity correlation time with mul-
tiplicative noise strength Q for several diff'erent values of the
pump parameter a in the neighborhood of threshold.
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fluctuations were found to be Gaussian and their spec-
trum was fIat within 2 dB up to 12 MHz. Because the
correlation time associated with this bandwidth, —8 ns,
is small compared to the correlation time of the laser,
-50 ps, loss fluctuations can be approximated by a
Gaussian white-noise source. The strength of multiplica-
tive noise was varied by changing the rms amplitude of
the noise voltage applied to the AOM. The laser operat-
ed in a single longitudinal and transverse mode with the
cavity frequency tuned to line center with the help of a
piezoelectric transducer (PZT). The entire assembly was
enclosed in a temperature stabilized housing with acous-
tic isolation. Once thermal equilibrium was reached the
laser was quite stable and frequency drifted less than 5
MHz over a period of several minutes. This time was
long enough to make several measurements of correlation
function. Operating point of the laser was varied with
the help of a knife edge which was partially inserted into

the beam inside the laser cavity. By pushing the knife
edge in and out of the beam the net gain of the laser
could be changed. The knife edge along with a pho-
tomultiplier tube monitoring a small portion of the beam
emerging from the laser was part of an electronic feed-
back loop. The feedback loop could stabilize the laser in-
tensity to better than 2%%u& over the entire threshold re-
gion.

To perform the experiment a certain amount of noise
voltage with appropriate attenuation was applied to the
AOM. The laser was stabilized at some mean intensity
by the feedback loop. The main beam of light coming
out of the laser was allowed to fall on a fast high gain
counting photomultiplier tube (PMT). The photoelectric
pulses appearing at the output of the PMT were amplified
and fed to a nonupdating discriminator. The discrimina-
tor produced standard rectangular pulses of amplitude—750 mV and duration 10 ns. The discriminator dead
time, about 30 ns, was the longest dead time and, there-
fore, defined the system dead time for counting. The
operation of the PMT and the counting electronics were
checked by illuminating the PMT with light from a
broadband thermal source. With a 2-ps counting time,
which is large compared to the correlation time of
thermal light, photoelectron statistics were found to be
Poisson and measurements of correlation function pro-
duced a Oat curve as expected. From the measured corre-
lation function of thermal light the probability of after
pulsing was found to be (0.2%%uo. Pulses from the
discriminator were fed to a digital correlator operated in
the autocorrelation mode. For each value of noise volt-
age applied to the AOM, several measurements of corre-
lation function were made by varying the operating point
of the laser. Each measurement consisted of 10 samples
and took approximately a minute to complete.

The correlator divides time into intervals of equal
duration A~. This time is referred to as sample time. In
our experiments it was of the order of 2.5 ps. The num-
ber of pulses occurring during each sample time is count-
ed by a shift register counter. At the end of each count-
ing interval the counter shifts its contents into the first lo-
cation of a 128-location store-and-shift register. At the
end of the next counting interval the number in the first
location is moved to the second location and the number
in the counter is moved to the first location. This pro-
cedure is continued until all 128 channels are filled.
From this stage on the same procedure is continued with
the number in the last channel being discarded. Building
of the correlation function now begins. At the receipt of
each pulse by the counter the contents of each location in
the store-shift register are added to the contents of corre-
sponding memory location in the correlator memory.
Thus at the end of a counting interval in which n; counts
were recorded contents of memory location j will in-
crease by nin; . After X such samples the number in
the jth channel will be

FIG. 5. An outline of the experimental setup. PET/CBM is
PET microcomputer from Commodore Business Machines,
AMP is amplifier, ATN is attenuator, and DISC is discrimina-
tor.

N

N~
= g n; n; , j= 1,2, . . . , 128 ..

i=1
(34)

For large number of samples X we find that, for a station-
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N =a .(b.~) (I) [1+@(jhr)] . (36)

This condition was very well satisfied in our experiments
as Av =2.5 ps and the correlation time was of the order
of 50 ps or greater. The correlator also records numbers
in 16 channels corresponding to large delays that are of
the order of 10285~. Since for large delays no correla-
tions survive, the numbers in these channels essentially
give

N„=a (hr) (I) (37)

Dividing Eq. (36) by Eq. (37) we obtain the normalized
correlation function

p(J Ar) = N. —1
1V

(38)

Note that the number in channel 1 does not correspond
to p(0). We also find that p(r) given by Eq. (38) is in-
dependent of quantum efficiency of detection. Thus from
measured values N and N„we can extract the correla-
tion function. In practice several corrections to data
must be applied. First, not all the light falling on the
photomultiplier tube is laser light. Background Quores-
cence from the plasma tube also contributes to pulses at
the output of the PMT. If the background light is un-
correlated with the signal and its bandwidth is large com-
pared to the inverse of the sample time the correlator re-
sults can be corrected readily for its effects. Let IL
denote laser light intensity and Iz denote background
light intensity. Then by writing the total light intensity
as the sum of laser light intensity and the background
light intensity

ary beam of light, the number in channel j is related to
the correlation function of light by

N =a N f dt' J dt" (I(t')I(t"—(j+1)b~)) . (35)

Here a is the detector quantum efficiency. If the sample
time A~ is short compared with the correlation time of
the laser we can approximate Eq. (35) by

I =IL +I' =IL +PI, (39)

with f3=I& /I and using Eq. (39) in Eq. (35) we find that
the true correlation function of laser light alone is given

(40)

We must also correct for dead-time effects. Dead-time
effects were quite small as the total count rate was kept
below about 100 kilocounts per second by using some
calibrated filters. With a dead-time ratio of =0.01 dead-
time corrections were found to be negligible and were not
considered in these experiments. The stability of the
laser during data acquisition was monitored by a pho-
tomultiplier tube. The output of this photomultiplier
also served as a measurement of mean light intensity
characterizing the operating point of the laser.

V. EXPERIMENTAL RESULTS

A typical normalized correlation function is shown in
Fig. 6. In order to extract correlation time from the mea-
sured correlation functions the data were fitted to a func-
tion of the form

IM(r)=C, e ' +Cue (41)

p(0)=C, +C2, (42)

which was found adequate to fit all correlation functions
measured in the experiments. The method used for
fitting the data is a nonlinear least-squares method due to
Marquardt as implemented in an SAS subroutine [17].
The uncertainties in the fitted parameters were computed
by assuming the numbers in various channels to be in-
dependent Poisson variates. From experimentally deter-
mined values of C, , C2, A, and A,2 we can extract various
quantities that can be compared with theoretical predic-
tions by

I

100
g (@sec)

I

200
I

100
t (p.sec)

I

200

FIG-. 6. Examples of measured normalized two-time intensity correlation functions. p(~) is defined in Eq. (40) and
C(~)=p(~)/p(0). The dots represent experimental data and the solid curves are the best fits to the data.
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1 Ci C2

p(0) A, , A2
(43)

0.20

(44)

Variation of the correlation time with mean light inten-
sity is shown in Fig. 8 for several different values of mul-
tiplicative noise strength Q. The points represent experi-

) p-1 lP0

&I&

FICx. 7. Variation of the normalized intensity fluctuations
Ir2= ((ItI) ) /(I ) =p(0) with the pump parameter for Q =0.0,
0.89, and 1.64. Experimentally, p(0) was extracted by extrapo-
lating the measured correlation functions (Fig. 6) to zero delay.
The solid circles represent experimental points and the continu-
ous curves are theoretical predictions derived from Eq. (10).

The correlator does not give p(0) because the first channel
corresponds to a delay of hz=2. 5 ps. For this reason
p(0)=ir2 was extracted by extrapolating the fitted func-
tion to zero delay.

In order to compare the experimental results with
theoretical predictions we need to know the value of Q
and a scale factor that relates measured mean light inten-
sity to the dimensional intensity used in theoretical calcu-
lations. The procedure for determining Q was similar to
that used in Refs. [5] and [6]. By plotting the normalized
variance p(0)=ic2 against mean light intensity on the
1 og& o(I ) axis (Fig. 7), the measurements were compared
with theoretical curves for several different values of Q.
The required scale factor corresponds to a shift along the
1 go& (oI ) axis. Value of Q was determined by comparing
the measured data with a series of Irz versus (I ) curves.
Another scale factor that relates measured times to di-
mensionless times was needed. This was determined by
plotting the measured T, versus (I) curve on a log&oT,
axis. This scale factor corresponds to a shift along the
time axis. For one value of noise voltage (and therefore
Q) a single scale factor was needed as expected. Slightly
different scale factors were needed for different values of

0.15-

E

o 0.10

0
U

0.05

0.1 10

FICx. 8. A comparison of the measured intensity correlation
time with the theoretical predictions for several different values
of Q:Q =0.0, 0.89, and 1.64. The solid circles represent experi-
mental points and the continuous curves are theoretical predic-
tions derived from Eq. (30).

mental data and the solid curves are derived from Eq.
(30). Curve Q =0 corresponds to the ordinary laser
without multiplicative noise. In all cases we find that the
correlation time increases as excitation is increased at
first. It reaches a maximum near threshold and decreases
thereafter as mean light intensity increases. It is seen
that the effect of multiplicative white noise is to decrease
correlation time. This decrease is rapid first with increas-
ing strength of multiplicative noise. Most dramatic de-
crease occurs near threshold. Away from threshold
correlation time is relatively insensitive to the strength of
multiplicative noise.

Variation of the effective eigenvalue which is the initial
slope of the correlation function is shown in Fig. 9. Be-
cause the value of the correlation function at zero delay
was not available we relied upon the fitted function to ex-
tract A,,a. from the data via Eq. (44). This procedure
seems justified because when the fitted function is extra-
polated to zero delay we obtain ir2=p(0) via Eq. (42). A
comparison of ~2 obtained by this procedure with
theoretical predictions in Fig. 7 shows very good agree-
ment. There is reasonable agreement between measured
and predicted values of I,,&. Note that A,,& depends only
on the first few channels. However, the fitted function is
affected by the Auctuations in the tail of the correlation
function also. This may explain the slight discrepancy
between the measured and predicted values of A,,z. Be-
havior of A.,z is qualitatively similar to the behavior of
1/T, . As mean light intensity increases the initial slope
of the correlation function decreases first, indicating a
slow decay of correlations. It reaches a minimum near
threshold and increases after that with increasing light
intensity. The effect of multiplicative noise is to increase
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FIG. 9. A comparison of the measured initial slope A,,& of the
correlation functions with the theoretical predictions for several
different values of Q: Q =0.0, 0.89, and 1.64. The solid circles
represent experimental points and the continuous curves are
theoretical predictions derived from Eq. (32). Predictions of Eq.
(33) are indistinguishable from the continuous curve.

ff This means multiplicative noise increases the rate of
decay of correlations in the laser. Once again for small
values of Q we find a rapid increase in A,dt as Q is in-
creased and this increase slows down as Q is increased
further. Far from threshold both T, and A,,z are only
weakly affected by the presence of multiplicative noise.

In the conventional single-mode laser intensity correla-
tion time has a maximum near threshold. In the presence
of multiplicative noise this maximum shifts very slowly to
larger values of mean light intensity as multiplicative

noise strength is increased. This shift is in agreement
with a similar shift that was observed in the photoelectric
counting measurements of the steady-state intensity dis-
tribution [5]. In these measurements it was found that
the value of mean light intensity at which the steady-state
intensity distribution exhibits a nonzero maximum for
the first time increases with increasing multiplicative
noise. Note that our definition of threshold corresponds
to that used in the theory of oscillators [18]. Another
effect associated with multiplicative noise is that the laser
threshold transition becomes diffuse because the peak in
the correlation time versus mean light intensity curve is
relatively broad when multiplicative noise is present. We
could not achieve higher multiplicative noise strengths in
the experiments because for large noise voltages the
transmission characteristics of the AOM were not linear.
We were also limited by the small gain tube available for
the experiments. Nevertheless we believe that we were
able to access perhaps the most interesting regime in
which the strengths of intrinsic and multiplicative noise
are comparable. The presence of multiplicative noise
changes laser characteristics significantly and this change
is most pronounced for relatively small values of Q = 1.
For large values of Q we do not expect qualitatively new
features. At very high noise strengths and for high exci-
tations some other issues may have to be addressed. For
example, the assumption of a white-noise source for loss
Auctuations may break down. In this case a model that
incorporates a colored multiplicative noise source may be
more appropriate [7]. In the region of threshold, howev-
er, with small amount of multiplicative noise the white-
noise model seems to describe laser Auctuations quite
well.
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