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We present a general theory for intensity noise reduction when one beam of light is used to control
another. We use a semiclassical input-output formalism and determine the conditions necessary for
noise reduction below the shot-noise level. Configurations are examined where the intensity of one beam
is monitored and control is effected directly to the other beam (feedforward), or indirectly through the
beam source (feedback). The results are applied to the case of twin beams generated by an optical para-
metric oscillator. We detail for this system the implementation of an electro-optic control channel. Fi-
nally, a comparison is made between theory and experiment.

I. INTRODUCTION

Active control devices have long proved effective in re-
ducing the fluctuations of various physical parameters,
both in electronics and in optics. For example, systems
controlling the intensity fluctuations of a laser beam by
optoelectronic feedback are now widely used to reduce
laser “technical” noise. The potential of such systems for
reducing fluctuations of quantum origin, however, has
only recently been recognized. Yamamoto and co-
workers demonstrated using feedback techniques so that
one could reduce, in a semiconductor laser, either its
phase noise below the Schawlow-Townes limit [1] or its
intensity noise below the shot-noise limit [2]. In the
latter experiment, the generation of sub-shot-noise light
required the monitoring of the total laser intensity to pro-
vide the feedback signal. This light, commonly referred
to as sub-Poissonian or intensity squeezed, was restricted
therefore to only the span between the laser and the
detector and could not be extracted for external use.
Several schemes were proposed for providing a feedback
signal without destroying the controlled beam of interest.
These included the use of the quantum nondemolition
(QND) measurement [3,4] or of correlated beams [5-8].

The interest in correlated beams was first realized in
the photon counting regime where the statistics of a pho-
ton flux were tailored in a closed-loop system, and sub-
shot-noise light extracted using the twin photons emitted
by an atomic cascade or by parametric fluorescence. The
photon count rate of one beam was measured and the in-
formation used to react directly on the twin beam using
gating techniques [9-13]. Experiments in this photon
counting regime yielded modest amounts of quantum
noise reduction [14] or very low photon fluxes [12-15]
because of the poor quantum efficiency of photon
counters. Similar experiments using analog photodetec-
tors of high quantum efficiency have fared better. Inten-
sity noise reductions of more than 20% have recently
been reported, using linear control with parametric
fluorescence [16] and optical parametric oscillation [17].

The purpose of this paper is to study to what extent in-
tensity noise reduction is possible when active control is
applied to correlated (or partially correlated) beams. A
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general theory will be presented for this noise reduction,
from which we will concentrate on the actual implemen-
tation both of a correlated beam source and of an active
control channel. In particular, we will examine the con-
ditions necessary for the generation of sub-shot-noise
light.

The general theory of noise control is developed in Sec.
II, where we determine the optimal amount of noise
reduction that may be obtained given any two beams.
These beams will be specified only by their initial intensi-
ty correlations and respective intensity noises. A semi-
classical input-output formalism [18] will be used since
this is well adapted for control theory. In Sec. III, we
will apply these general results to the specific case of twin
beams generated by an optical parametric oscillator
(OPO). As an extension of previous studies [8], we will
determine for this system the optimal amount of noise
reduction that is possible with active control. Extra
losses and detunings will be included in our treatment of
the OPO [19], which corresponds to the experimental sit-
uation [20-23] where the signal and idler fields are not
perfectly correlated. Finally, in Sec. IV, we will detail
how an active control can actually be implemented to at-
tain this optimal noise reduction. The results of our ex-
perimental study will be presented alongside.

II. THEORY OF NOISE CONTROL
USING TWO BEAMS

A. Basic model

We consider two fields to study to what extent the in-
tensity fluctuations in one field (beam 1) can be controlled
by monitoring the intensity of the second field (beam 2).
We will consider a general control mechanism where the
transfer of intensity information from one field to the oth-
er is linear. Particular examples of optoelectronic control
mechanisms will be given in later sections.

We use here a semiclassical approach [18,24,25] where
quantum field fluctuations are described by classical sto-
chastic variables associated with the Wigner distribution.
More precisely, the electric field operator a; for each
beam (i =1,2) is replaced by
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a;(t)=a;+da;(t), (1)

where &; is the mean-field amplitude and 8«;(¢) a classi-
cal random field that fits the Wigner distribution of the
quantum fluctuations. The evolution of the field fluctua-
tions is described then by classical equations linearized
about the mean-field value. This method is closely con-
nected to the standard linear stability analysis [26], and
has been shown to be equivalent to the standard quantum
linearization method for the case of parametric oscilla-
tors [18,27].

We will be interested only in intensity fluctuations
given by

8I(t)=|a;|8p;(t) , 2)

where Op; are the amplitude fluctuations; that is, the fluc-
tuations of the quadrature component in phase with the
mean field. In the case where the mean fields are real, 6p;
is equal to twice the real part of dc;.

The principal effect of a control mechanism is to
correct the intensity fluctuations of beam 1 by a term
proportional to the intensity fluctuations of beam 2.
Neglecting various refinements which will be studied in
later sections, such a correction can be modeled by

8p,()=8p,()— [ “dr G (r)dp,(t —1) . (3)

The tilde here indicates post correction and G(7) is a
transfer function, assumed to be real and causal
[G(r<0)=0]. In frequency space, this becomes

8p1(Q)=8p,(Q)—G(Q)ép,(Q) (4)

where G (1) mediates the direct transfer of fluctuations
from beam 2 to beam 1 at a frequency .

The intensity noise spectrum of each beam is related to
the amplitude fluctuations through

S;(Q)={(8p,(—Q)8p;(Q)) (i=1,2), (5)

where S; is equal to 1 when 8p; represents vacuum fluc-
tuations; that is, for a coherent state. S;(£) is thus nor-
malized to the shot-noise level of each beam. We note
here that, in the semiclassical approach, the fluctuations
Op; represent both the classical and quantum field fluctua-
tions. S;(€) less than 1 indicates that the fluctuations are
smaller than the vacuum fluctuations whereas S;()
larger than 1 indicates the presence of extra classical
noise.

The correlations between the two beams can be charac-
terized by the function

C(2)=(8p,(—Q)8p,(Q)) . (6)
Since 8p;(t) and G (1) are real functions, one finds
Sp*(Q)=8p;(—Q),
G*(Q)=G(—Q), (7
CHIQ)=Cy(—Q)=Cyy ()
obtaining a Cauchy-Schwartz inequality:

|C L (Q)2<S,(2)S,(Q) . @)
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C,, provides a scale for the intensity correlations. The
lower bound C,, =0 means the two beams are uncorrelat-
ed. The upper bound |C},|=1/S,S, means the fluctua-
tions 8p, and 8p, are proportional, such as when the two
beams are perfectly correlated (6p; =8p,, C,=S;=3S,)
or when they are perfectly anticorrelated (8p, = —¥&p,,
Cp=—8,=-—85,).

From Eq. (4), the noise control of beam 1 can be writ-
ten in terms of the spectra

9

It is apparent here that S; and C,, provide sufficient in-
formation on the two beams to determine the possible
effectiveness of noise control. The maximum obtainable
noise reduction in beam 1 at a frequency  is derived by
minimizing §;(Q) as a function of the complex gain
G (Q). One finds

81 (Q)8,(0)—[C ()2

S PH Q) 5,(0) (10a)
for an optimum transfer gain
G°p‘(Q)=—1*2@ (10b)
S,(Q)

We note here that the noise reduction can be perfect
when [C},| is at its upper bound V/S,S,, for example,
when the two beams are initially perfectly correlated. On
the other hand, if the two beams are initially uncorrelated
(C,,=0), then the optimum gain is equal to zero, leaving
the noise spectrum unchanged. It is best not to bother
with control in this case since it is impossible to effect any
noise reduction.

B. Balanced beams

In this section, we restrict ourselves to the simplifying
assumption that beams 1 and 2 have symmetrical proper-
ties; that is, they are of equal intensities (I,=1I,=1),
equal intensity noise spectra (S;=S,=S), and their
correlations are symmetrical (C;, =C,;). We will denote
these ‘“balanced” beams. From Egs. (7) and (10b), one
observes that C,(£) and G°P'(Q) become real functions.

A convenient correlation parameter is the noise spec-
trum S;_,(Q) of the intensity difference between the two
beams, normalized to its associated shot-noise level

Sl_z(Q):<8p——(_Q)8P—-(Q)> ’ (11a)
where
8p_(Q)=[8p,(Q)—8p,(Q)]/V2 . (11b)

This is easily measurable and, for the case of balanced
beams, is simply related to C,(Q) by

Quantum correlations between the two beam intensities
correspond to §;_,(0)<1. Equation (9) for the noise
spectrum after correction can now be written
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S,(Q)=[1—Re(G)]’S(Q)+2Re(G)S;_,(Q)
+Im(G)*S(Q) . (13)

One observes that, for a positive Re(G), the noise § | after
correction is the sum of three positive terms. The first
term represents the incident intensity noise .S, attenuated
by the control mechanism. This vanishes when Re(G) is
set to 1. The second term represents a contamination
noise introduced by the correction mechanism. This
noise is proportional to Re(G) and stems from the
decorrelation between the incident beams. The last term
represents an additional contamination noise due to the
dephasing of G with respect to G°P'.

The optimum gain and optimum noise reduction are
then derived:

gor(a)=1— 212 (14a)
s@Q)
SQ)=25,_, () |1- 222 (14b)
! -2 25(Q)
When the excess noise in each beam is large

[S(Q)>>1], the optimum gain is equal to one and the
optimally corrected intensity noise simply becomes
S PY(Q)=28,_,(Q). An initial quantum correlation of
at least 50% [S;_,(Q2)<0.5] is then necessary to obtain
noise in the corrected beam below the shot-noise level. If
the beams are not initially correlated at the quantum lev-
el [S;_,(Q)=1], then the control mechanism cannot
correct below the shot noise and reacts only on the classi-
cal excess noise in beam 1.

When the excess noise in each beam is small
[S(Q)=1], noise levels less than 2S;_,({Q) can be
reached for optimum gains smaller than 1. An initial
quantum correlation of at least 50% is no longer neces-
sary for the sub-shot-noise correction.

These results can be understood alternatively by
separating the beam fluctuations into their symmetric
[8p . =(8p,+8p,)/V'2] and antisymmetric (§p_) com-
ponents. One then finds

S(Q)=[11—GI%S,,(Q)+[1+GI%S,_,(2)]/2, (15

where S,,,(Q) is the noise spectrum of the symmetric
fluctuations &p , , defined in the same way as in Eq. (11a).
The fluctuations in beam 1 can be reduced to zero by sub-
tracting the incident fields from one another (G=1)
when they are perfectly correlated (8p _ =0), or by add-
ing them (G =-—1) when they are anticorrelated
(8p+ =0). For intermediate cases when the beams are
neither perfectly correlated nor perfectly anticorrelated,
such a subtraction or addition of the two fields leaves a
residual noise in beam 1 equal, respectively, to twice the
symmetric or antisymmetric noises. In general, this is
not the optimal noise reduction. The noise can optimally
be reduced further by making a compromise (|G| <1),
leaving a residual noise in beam 1 containing both sym-
metric and antisymmetric noise components.
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(a)

Beam 1
[ 1
Source Corrected
beam 1
Beam 2
(b) Corrected beam 1
Source
Beam 2

FIG. 1. Examples of control configurations using two light
beams: the intensity of beam 2 is monitored and regulates the
intensity fluctuations of beam 1 either (a) by direct feedforward
control or (b) by indirect feedback control to the source.

C. Examples of control mechanisms

Two general classes of control configurations will be
examined: those where the control is effected after the
two fields have been generated (feedforward correction)
and those where the control is effected retroactively at
their source (feedback correction). Particular examples
where the transfer channels are optoelectronic are shown
in Fig. 1. The transfer function G(Q) comprises a
transfer of intensity fluctuations to voltage fluctuations
by detection of beam 2, a voltage gain, and a transfer of
voltage fluctuations back to intensity fluctuations by ana-
log modulation of beam 1 either downstream or at its
source. Such channels are easily realizable in practice
and will be elaborated on at length in Sec. IV. In the
present section, we examine the validity of the idealized
model presented above [Eq. (4)] by outlining some exam-
ples of its implementation.

We turn first to a feedforward configuration, and adopt
a simple transfer mechanism where beam 1 is subject to a
transmission proportional to the measured intensity of
beam 2. Such a loss can be modeled as a simple beam
splitter with a variable transmission ¢:

t=t—gdp, , (16)

where 7 is the bias of the beam splitter (7<1) and g the
gain of the control mechanism. In a semiclassical
analysis, the incoming fluctuations §p; are coupled to the
vacuum fluctuations 8p, entering through the unused in-
put port of the beam splitter (see Fig. 2). The resultant
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v
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FIG. 2. Beam splitter model: outgoing field p, is the sum of
incident field p, partly transmitted and vacuum fluctuations 8p,
partly reflected.
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outgoing fluctuations are
8p, =178p, —gla,|dp, +rdp, , 17

where r =V 1—72 is the reflection coefficient of the beam
splitter.

This differs from the idealized model [Eq. (4)] in that
beam 1 is attenuated by the bias 7 and there is an addi-
tional noise term [last term in Eq. (17)] associated with
the losses in beam 1. Although the reflection coefficient »
cannot be chosen arbitrarily small since the total
transmission ¢ [Eq. (16)] must be smaller than 1, it can be
chosen of the order gAp,~Ap,/|a,|. The last term in
Eq. (17) becomes negligible then and one recovers our
idealized model.

The implementation of a feedback configuration is
more complicated since it is necessary to consider the de-
tails of the beams’ source. A general case is examined
where we assume both beams are derived from a single
driving field ;. In a linear fluctuation analysis, the am-
plitude fluctuations of the beams are related then to those
of the driving field 8p, through linear transfer functions
A;:

dp;=A;dpo+m, (i=1,2), (18)

where m; are other possible noise sources uncorrelated
with 8p,. Such a transfer is found, for example, in the
case of parametric downconversion (see Sec. III).

An identical mechanism to that described above is con-
sidered for the transfer of fluctuations from beam 2 to the
driving beam. The amplitude fluctuations 8p, in Eq. (18)
then become

8py—Tdpy—glayldp, +rép, . (19)

One can relate the fluctuations 6p,, 8p, with feedback

(g#0) to the fluctuations 8p,, 8p, without feedback

(g =0):

_ gA]lao|
1+gA4,]al P2
1

=—8p, .
1+g4d,lal P2

o8p,=dp, (20a)

6p, (20b)
One observes that, for large gains g, the amplitude fluc-
tuations in beam 2 are completely attenuated by the feed-
back control. This is not necessarily the case for beam 1
where the amplitude fluctuations are attenuated only to
the extent that the two beams are correlated. The effect
of feedback on beam 1, however, is the same as that de-
scribed by our idealized model [Eq. (4)], independent of
the noise terms introduced by the source (7;) or by the
transfer mechanism (8p,). The feedback configuration
therefore presents a relative advantage over the feedfor-
ward configuration that the transmission 7 can be arbi-
trary.

D. Channel imperfections

Additional refinements can be made to our idealized
model by including such imperfections as a nonideal
quantum efficiency 7 in detector 2, and transfer channel
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noise. Loss in the detector is treated in the same manner
as before, as a beam splitter of transmission V'7, and
channel noise is treated by including additional fluctua-
tions 8p, at the input of the control mechanism, charac-
terized by a power spectrum S,. The measured fluctua-
tions 8p, are modified to

8p,—V'ndp, +V1—n8p, +8p, , @1

where Op, represents the vacuum fluctuations coupled
through the detector loss. From Eq. (4), the effect of con-
trol becomes

891 =8p1 —VnGdp,—V1-—nGép,—Gép,, (22a)
S,=S,+1|G|>S,—2Re(VGC,)
+(1—=9)|G2+|G]%s, . (22b)

Both refinements have the similar effect of introducing
additional noise terms in beam 1. These are the last two
terms in Eq. (22b), associated, respectively, with nonideal
detector efficiency and channel noise. In addition, the
gain G becomes effectively reduced by the factor V', due
to the loss incurred by beam 2.

The results derived from the previous sections still
remain valid except that S, must be replaced by an
effective spectrum:

— S

S, S+ 1L 2 (23)
n n

and G modified to G/V'y. One finds the expected result

that imperfections in the control channel tend to

deteriorate the amount of attainable noise reduction.

III. APPLICATION
TO TWIN BEAMS GENERATED BY OPO

We now consider an application of the above results,
where beams 1 and 2 are generated by an optical para-
metric oscillator comprising a nonlinear medium inserted
in an optical cavity (see Fig. 3). A theoretical model is
presented in this section for the operation of the OPO.
We use the semiclassical formulation which is well adapt-
ed for treating the OPO as a quantum network where in-
coming mode fluctuations are transferred to outgoing
modes.

o™ o
— — — —
out in
% X B;
i M

FIG. 3. Model of an optical parametric oscillator: a non-

linear medium (second-order susceptibility y) is placed in an op-
tical cavity with port mirror reflection coefficient 1—y; (i =0,
1, 2 for pump, signal, and idler modes). o, a;, and a* are, re-
spectively, input, intracavity, and output fields. Losses are
modeled by a back mirror reflection coefficient 1—g,; (input

modes S).
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We examine OPO operation in the nondegenerate re-
gime where output modes 1 and 2 are separable either by
frequency or polarization. The modes inside the cavity
are coupled through a port mirror to the external output
modes. Incoming mode O is the pump field channel and
incoming modes 1 and 2 are assumed in the vacuum
state, while outgoing modes 1 and 2 are the channels for
beams 1 and 2 from Sec. II.

For small one-pass gain and losses, the semiclassical
equations governing the field evolutions during a cavity
round trip of time 7 can be written as differential equa-
tions:

Ty = —2x0 2, Yol 1 +iggag

+1 2y 0air + v 2,80 (24a)
& =2xaa; —vi(l+ig))a,

+1 2y &+ 2u, 8", (24b)
Ta,=2)xasal —vy(l+ip,)a,

+1 2y,0"+ 1/ 2,80 (24¢)

The first terms on the right represent the parametric cou-
pling due to the second-order susceptibility y of the non-
linear medium. The second terms represent the field
damping due, in part, to the port mirror (y;) and, in part,
to extraneous intracavity losses (u;), where y; =y, +u;.
The damping parameters y; are related to the transmis-
sion coefficients ¢; of the port mirror through

t, =12y, (25)

and u; are related similarly to a “transmission” of the
second mirror which models all other loss mechanisms
(see Fig. 3). Detuning is also included in Egs. (24) where
the phase shift from resonance of each field after a round
trip is y;@;. The last terms in Egs. (24) represent the cou-
pling to the external modes, respectively, through the
port mirror (external modes }") and through the losses
(external modes ).

The outgoing fields a"* are obtained simply from the
superposition of the intracavity fields leaking out the port
mirror and the incident fields reflected directly off the
port mirror:

a®=1"2y,a,—a" . (26)

A. Stationary solutions for OPO

The stationary mean field solutions &; are obtained
from Egs. (24), noting that all the external mean fields are
equal to zero except the pump &;. When this pump is
large enough, the solutions for &; and &, become nonzero
and the OPO is set in oscillation. This oscillation im-
poses the restrictions that ¢, =@, =@ and that the sum of
the signal and idler phase is fixed. We neglect in this
treatment the phase diffusion of each field taken individu-
ally since this occurs on time scales much longer than the
fluctuation dynamics of interest [28]. A phase reference
is chosen so that the stationary solutions for the intracav-
ity signal and idler fields are real:
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Vylyl
=————(1+ip), (27a)
— 1 1
_5\/ yorso—1), 27b)
1 SNy
—E\/yo'yl(a—l) , (27¢)

where o is a pump parameter related to the incident
pump intensity |@ |2
172

8xyolain|?
X TVo%ol + @@ - (28)

YoY1va
These stationary solutions provide the working point
about which the field fluctuations will be studied.

(po+o)?

B. Field Fluctuations in OPO

The dynamics of the field fluctuations derive essentially
from the linear expansion of Egs. (24). Since the concern
of this paper is the application of the OPO to single beam
noise control, we skirt a general treatment of the OPO
and adopt several simpliﬁcations In particular, we as-
sume the OPO is balanced (y;=y,=y and u,=p,=pu).
In this way, the output beams are also “balanced ” as
defined in Sec. II. In addition, we assume the pump is
resonant with the cavity (¢,=0), considered here in a
bad cavity limit (y’' <<y;). These assumptions do not
greatly affect the underlying physics but considerably
simplify our analysis.

The intracavity fields are written in a symmetric and
antisymmetric form

ay=(a,xa,)/V2 (29)

and the rate equations for the intracavity fields con-
veniently separate into

78a = —2y'(i —@)Im(8ax ) — A8

+V2y8a™ +V2u8B™" + \/27u5a , (30a)
78a_= —2y'(1+ip)Re(ba_)

+V2y8ai" +V2u8B" (30b)

where A=2y'(o0 —1) characterizes the parametric cou-
pling to the pump mode and

8air =1 (yo/v)0cif +V (1o /v 8B . 31)

An advantage of these equations is that the incident fluc-
tuations are all uncorrelated with one another. The sym-
metric and antisymmetric components of the fields can
therefore be treated independently (see Fig. 4).

The intracavity fields are coupled to external modes via
three channels, admitting the vacuum fluctuations 8ol
through the port mirror, the vacuum fluctuations 8833}
through the other intracavity losses, and the fluctuations
in the pump modes 8, through the parametric conver-
sion process. The intracavity fluctuations are driven only
by these incident fluctuations. This differs from the stan-
dard quantum treatment of the OPO where the intracavi-
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(a)

in
% 6ocp

6a+m
—AANNS — —
€N~ -— -— <N~

out in
da,ou 8,1

(b)

Sat in
e AA A — —
NN~ -— —— AN~
So out 6[3 in

FIG. 4. Input-output model for the (a) symmetric and (b) an-
tisymmetric field fluctuations. Output fluctuations Sa%" are
driven by input vacuum fluctuations 8a'f (port mirror) and 8431
(extra cavity losses), and by pump fluctuations Baj,“ through the
parametric conversion process (symmetric case only).

ty fluctuations are said to originate entirely from the non-
linear medium [27,29]. With Eq. (26) relating the output
field to the input and intracavity fields, the OPO can be
viewed as a quantum network where input fluctuations
are transferred to output fluctuations.

By separating the complex fields into column matrices
[8c,,ba;] with real and imaginary components, and tak-
ing the Fourier transform, Egs. (30) become

[8a3"]=(v2yC —1)[8a™} ]
+V2uC  [8B2 ]+ V2AC , [8al"],
[8a]=(V2yC_ —1)[8a™ ] +V2uC_[8B™],

(32a)
(32b)

where the coefficients multiplying each column matrix
are the transfer functions for the separate input fluctua-
tions. The matrices C. are defined here as

c V2y 2y'c+iQr  2y'g
T QYo +iQn(A+iQT) 0 A+iQr |
(33a)
Dy iQr 0
_=—,‘—‘/%Z_— At 'y : (33b)
iQr2y'+iQr) |—2v'e 2y +iQr

We note here that the intracavity and output mean
fields are of the same phase. The real and imaginary
components of their fluctuations therefore correspond to
the quadrature components in phase (amplitude com-
ponent 8p) and out of phase (phase component 8q) with
the mean fields.

It is apparent from the above equations that both
quadratures of the fluctuations remain uncoupled on res-
onance (¢ =0) during the transfer process and are subject
to simple low pass filtering in the cavity with differing
time constants. At frequencies above the cavity band-
width, C tends towards zero and the output fluctuations
tend towards the vacuum level. The output fluctuations
are attributable then only to those input contributions
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not subject to cavity filtering; that is, the vacuum fluctua-
tions reflected directly off the port mirror.

The effects of being off resonance (¢70) are a reduc-
tion in the pump parameter o [Eq. (28)], and a mixing of
the filed quadratures. It can be shown that these increase
the symmetric intensity noise in general but leave the an-
tisymmetric intensity noise unchanged.

The relevant spectra from Sec. II are determined from
Egs. (32). When all input fluctuations correspond to vac-
uum fluctuations, one finds

S=(|8p. 1>+ |8p_1*)/2
3

- 8yy
=1+
4y o —172+Q%
o(2—o0) ¢*(20—1)
X , (34a)
47+ Q%7 4y%0r+ 0% :
4 ’
Sl—2='5P7|2:1‘“:7—,2%};};W . (34b)

The intensity difference spectrum S,_, is independent of
the pump and of detuning. At zero frequency, it is sim-
ply equal to the proportion u /¥’ of the cavity damping
due to extraneous losses.

These results can be extended to include pump detun-
ing (@y70) and cavity imbalance (y|{#v3). The beams
generated by the OPO are then no longer “balanced” and
it is necessary to evaluate C;,. A general solution for the
OPO operation may be derived in analytical form from
Egs. (24), using a method similar to the one presented
above. It can be shown that C;, remains real at zero fre-
quency. Furthermore, if the proportion of cavity damp-
ing due to extraneous losses is assumed constant
(/7 1=p,/73), then S{_,(Q=0) remains independent
of pump detuning and cavity imbalance, and equal to
u1/71- One notes from Egs. (2) and (11) that S,_, is a
measure of amplitude correlations and no longer of inten-
sity correlations when the OPO is not balanced since the
output beam intensities are no longer the same [19].

C. Single-beam control

It is straightforward to apply the expressions obtained
above [Eq. (34)] to the results from Sec. II. One then
finds the maximum noise reduction attainable for a single
beam as a function of the OPO parameters (see Fig. 5).
This maximum is valid regardless of whether the control
is feedforward or feedback. In a feedforward
configuration, the intensity of beam 2 is monitored and
used directly to control the intensity noise of beam 1. In
a feedback configuration, the control is more complicat-
ed. Since the output fluctuations of the OPO are func-
tions of the well-identified input fluctuations, and since
the input fluctuations from the pump beam in particular
are readily accessible, a feedback loop can be realized
where the output intensity fluctuations monitored at the
output beam 2 are regulated by adjusting the intensity
fluctuations of the pump. This has the effect of compen-
sating not only the pump input fluctuations but all the
other input fluctuations as well (to within the feedback



&

w

Noise Power
[\S)
T
w
_
1

L S 1 _2 1
0 Frequency Qt/y’ 3

FIG. 5. Optimal noise control for twin beams generated by a
balanced, tuned OPO (0 =1.3, y/y'=0.9). S$,;(Q)and S,_,(Q)
are single-beam noise and intensity difference spectra. S ¢PH(Q)
is the noise spectrum after control using optimal transfer gain
G°P'(Q). Q is normalized to the cavity half-bandwidth y' /7.

bandwidth), producing the same results as a direct feed-
forward control.

From Eqgs. (32), one notes that feedback to the pump
acts only on the symmetric noise and not the antisym-
metric noise of each beam. It is interesting to consider
then why such a feedback cannot, in general, completely
eliminate this symmetric noise, thereby reducing the
noise in beam 1 to S;_,. The difficulty is that both the
symmetric and antisymmetric output noise components
are registered from beam 2. These are transferred to the
pump beam by the feedback mechanism and even though
the pump beam acts only on the symmetric noise, it con-
tains deleterious information on the antisymmetric noise.
In effect, the more one tries to correct the output sym-
metric noise, the more one contaminates it with antisym-
metric noise. A compromise must be made, in general,
for an optimum. In the limit where one tries to com-
pletely correct the symmetric noise, as in Fig. 5 where it
is dominant at low frequencies, one ends with twice the
antisymmetric noise in the controlled output beam,
whereby S 9" tends towards 25 _,.

In general, signal or pump detunings (@, ¢,70) and
cavity imbalance (y|#v,) produce only little effect on
single-beam control. This may be seen, for example, in
Fig. 6 where S ¢! is displayed as a function of cavity im-

Imbalance
Y1 1

0 Frequency Qt/y’

FIG. 6. Effect of cavity imbalance on optimally corrected
noise spectrum S {PY(Q). Imbalance of a tuned OPO (o =1.3,
y /y'=0.9) is varied for ¥’ =177} held constant.
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balance. One observes that, at zero frequency, the op-
timum noise is left unchanged. Since single-beam excess
noise is large, S P is related only to S,_,, and indepen-
dent of cavity imbalance at zero frequency (see discussion
above). At higher frequencies, S P! tends to degrade as a
result of a reduction in the bandwidth of the intensity
correlations.

An additional effect of cavity imbalance is that C,, be-
comes complex at nonzero frequencies. This may be in-
terpreted as a frequency-dependent time delay between
the two output beams, linked to their different cavity
storage times. From Eq. (10b), one finds that the optimal
control gain must be complex as well and of phase oppo-
site to C,. This reflects the intuitive result that for the
reduction in noise to be optimal, the control mechanism
must compensate for the time delay between the output
beams by introducing its own supplementary time delay
on the monitor beam. Of course, for this mechanism to
be causal, the monitor beam must be chosen as the output
beam with the shortest intracavity storage time.

IV. PRACTICAL REALIZATION
OF BEAM CONTROL USING OPO

We examine here the implications of a realistic control
channel on noise reduction. For noise reduction to be op-
timal, such a channel must be tailored to produce a glo-
bal control gain G°P'(Q). Unfortunately, it is often im-
practical or even impossible to realize such a fit over all
frequencies, and, in general, one must settle for optimal
noise control only over a limited bandwidth. We first
study the limitations imposed by a stability analysis. We
outline a specific realization of a control channel, de-
lineating, in turn, the relative advantages and disadvan-
tages of both configurations feedback and feedforward.
Finally, we will discuss the results of our recent experi-
mental study where we used a feedforward configuration.

A. Stability analysis

To illustrate the essential features of a control channel,
we consider the simplified model where it comprises only
a gain g, a simple filter of roll-off frequency (,, and a
time delay 7,;. The transfer function H () for this chan-
nel is
g Qoe iQry

H(Q) Qi (35)
A standard method for analyzing the stability of the
resultant control is to analytically continue G ({) into
the complex Q plane and follow the location of its poles.
If all the poles are in the upper half-plane (uhp), the con-
trol is stable. If a single pole falls on the real frequency
axis, the system is set into oscillation. Poles in the lower
half-plane are forbidden by causality.

When our simple model is applied in a feedforward
configuration, that is, when G (Q1)=H (Q), the control is
always stable. The poles of G(Q) lie in the uhp and
remain fixed there independent of g. We illustrate this in
Fig. 7(a) for the case of a balanced, tuned OPO, where
G°P'(Q) is real. It is clear that the bandwidth over which
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0 Frequency Qt/y’

FIG. 7. Corrected noise spectra S,(Q) for (a) feedforward
and (b) feedback configurations using a control channel
comprising a gain g, a low-pass filter (roll-off frequency
Q,=2y'/7), and a time delay (7,=0.257/y’). OPO is tuned
and balanced (0 =1.3, ¥ /y'=0.7) Dashed curves represent the
optimum noise reduction S $** for comparison. Shaded regions
correspond to noise reduction below the shot-noise level. Q is
normalized to the cavity half-bandwidth y' /7.

the noise control is near optimal is smaller than the band-
width possible in theory. The noise control becomes op-
timal only at low frequencies where G () is also real,
and only for a specific value of g. We note that this op-
timum may be shifted to nonzero frequencies with more
complicated control channels.

In a feedback configuration, on the other hand, G (Q})
comprises both the transfer from beam 2 to the pump
through the control channel and the transfer from the
pump to beam 1 through the OPO cavity. As in Sec. II,
we ascribe to the latter the transfer function A4() [see
Eq. (18)]. From Eq. (32a), one finds, for the example of a
balanced, tuned OPO,

_ V' 2yyeh/7h

A1) A+10r

(36)

where A4 () takes the form of a simple filter with roll-off
frequency A /7. For pumping close to threshold where A
tends towards zero, this filter is dominant over the con-
trol channel filter.

Referring then to Eq. (20a), the global transfer function
for feedback control becomes
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A(Q)H(Q)

GO AE@Q) 7
The pole locations of G () are this time manifestly
dependent on g. For small gains, they are in the uhp and
the feedback loop is stable. For larger gains, the poles
are displaced and become ‘“nudged” by even the slightest
time delay 7, towards the real axis. At a critical gain, the
loop is set into oscillation. This sets an upper limit on the
gain allowed in a feedback configuration. Illustrations of
noise reduction using feedback with our simple channel
model are shown in Fig. 7(b). The onset of oscillation is
apparent. In many cases the maximum gain that is al-
lowed before oscillation is not sufficient for the noise
reduction in beam 1 to approach optimal. This max-
imum gain is largely governed by the location of the poles
of filters 4 (Q) and H(Q). The lower these poles are in
frequency, the lower the frequency of oscillation and, in
general, the lower this maximum gain. For effective noise
reduction, therefore, it is important to keep these pole lo-
cations at high frequencies. This usually entails maximiz-
ing the OPO parameter A/7 or working with fast elec-
tronics.

B. Feedforward versus feedback

It was shown in Sec. II that the transfer of fluctuations
from one beam to another is possible using a variable at-
tenuator. In practice, such an attenuator might consist
of an electro-optic modulator followed by a polarizer.
The intensity fluctuations in beam 2 are registered as
voltage fluctuations which then pilot the attenuator
transmission and modify the intensity fluctuations in ei-
ther the pump beam or beam 1. A side effect of this type
of channel is that it also modifies the phase fluctuations
of the controlled beam. This may pose a problem in a
feedback configuration since the phase fluctuations of the
pump beam are mixed into the intensity fluctuations of
the signal and idler beams when the OPO is detuned.
One can circumvent this problem by inserting into beam
1 a second modulator + polarizer run in parallel with the
first modulator+polarizer but with opposite polarity.
The transfer to intensity fluctuations is doubled then,
whereas the transfer to phase fluctuations is canceled.

An advantage of feedback control over feedforward
control is that the transfer function G (Q) is relatively in-
sensitive to variations in g. As observed in Fig. 7(b), for
example, it suffices for optimal control that g be large (al-
beit not so large that the system oscillates). This allows
the noise control to be effective over a larger bandwidth
than in a feedforward configuration, where g must take
on a specific value.

A second advantage of feedback over feedforward is
that beam 1 is left uncluttered of extraneous losses. It
was shown in Sec. II that these losses could be reduced in
theory to the point where the noise they introduced was
negligible. This is often not the case, in practice, and, for
a mean amplitude transmission 7 through the feedforward
intensity modulator, the optimally reduced noise spec-
trum of beam 1 becomes degraded to 725, +1—72

A notable disadvantage of feedback, however, is its
propensity towards oscillation. As illustrated in the
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FIG. 8. Experimental layout: twin beams generated by an
OPO are separated by beam splitter BS1. One beam is used to
correct the intensity fluctuations of the other by active control
(photodetector P2, amplifier G, and intensity modulator IM).
BS2 is a 50% beam splitter and signals from photodiodes PA1
and PA2 are added or subtracted to measure respectively the in-
tensity noise spectrum or shot-noise level of the corrected beam
with spectrum analyzer SA.

above stability analysis, this imposes restrictions on the
loop gain which hinder the effectiveness of the noise
reduction. A feedback loop that is conditionally stable
may be used to bypass these restrictions, obtaining higher
gains below the oscillation frequency.

C. Observation of sub-shot-noise light
using feedforward control

We now consider an experiment we recently performed
using a feedforward configuration. Although the results
of our experiment are presented in Ref. [17], emphasis
will be made here on the technical aspects of the control
channel.

The layout of the experiment is shown in Fig. 8. The
twin output beams were approximately balanced (their
mean intensities differed by less than 3%). The single-
beam noise spectrum S; and the difference spectrum
S|—, are shown in Fig. 9. The maximum attainable noise
reduction for beam 1 deduced from these spectra [using
Eq. (14b)] is also shown in Fig. 9.

Noise Power

Shot
noise

S1—2

0 . . ‘
0 Frequency (MHz) 20

FIG. 9. Experimentally observed single-beam noise spectrum
S1(Q) and intensity difference spectrum S, ,(Q) for twin
beams out of OPO. S ¢P'(Q) represents the theoretically obtain-
able spectrum after optimal noise reduction deduced from these
spectra. Scales are linear.
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The feedforward channel in this experiment consisted
of a low noise amplifier followed by an electro-optic in-
tensity modulator presenting a total transmission loss in
beam 1 of 20% (due to transmission biasing and intrinsic
EOM losses). It is observed that the noise in each output
beam was substantially above the shot-noise level at low
frequencies, due to the fact that the OPO was pumped
close to the threshold. A consequence of this large excess
noise was that high-pass filters (12-dB roll off below 1
MHz) were required in the feedforward electronics to
prevent amplifier saturation. A low-pass filter was insert-
ed at 6 MHz along with the intrinsic amplifier roll off
around 12 MHz resulting in zero-phase lag in the feedfor-
ward channel near 5 MHz. The overall gain was adjusted
for optimal noise reduction at this frequency. For an ini-
tial beam correlation S;_, at 5 MHz of 0.44, this noise
reduction went as much as 24% below the shot-noise lev-
el (see Fig. 10). Given the parameters of the experiment,
this result is in complete accord with theory.

The principal limitations of the channel used in this ex-
periment were twofold. It is clear from the results that
the bandwidth over which the noise reduction in beam 1
was effective is small compared with the bandwidth
theoretically available. The primary reason for this is
that the actual transfer function presented by the channel
only fit the optimal transfer function G°P'(Q) over a lim-
ited frequency range, centered around 5 MHz. Devia-
tions from this optimal occurred both in the magnitude
of the transfer, which only approximately followed G°",
and in its phase, which unavoidably varied with channel
response. A second limitation imposed by the channel
stemmed from the losses presented by the intensity
modulator due in part to transmission bias. A higher
transmission bias would have necessitated a higher feed-
forward gain, running again into the problem of amplifier
saturation. The modulator loss resulted here in a degra-
dation from a possible noise reduction of 30% to an actu-
al noise reduction of 24% below the shot-noise level.

Possible improvements for this experiment are, of
course, minimizing the effects of the above limitations;
that is, better tailoring the feedforward electronics and
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FIG. 10. Experimental noise spectrum S,(Q) using feedfor-
ward correction with OPO. S $P(Q) represents the theoretically
obtainable spectrum, taking into account optical losses. Scales
are linear.
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reducing the modulator loss. The feedback configuration
also seems promising, and studies are underway to
temper the effects of oscillation with improved OPO pa-
rameters and feedback electronics.

V. CONCLUSION

A theoretical optimum was determined for the amount
of intensity noise reduction one can obtain when one
beam of light is used to control another. It was found
that the resultant noise spectrum of the controlled beam
could be reduced to twice the intensity difference spec-
trum for beams with large excess noise, but that it could
be reduced even further for beams with small excess
noise. Conditions were determined for the generation of
sub-shot-noise light using this control technique, both on
the source of the two beams and on the control channel.
Although we restricted our study to the case where the
source was an OPO and the channel was electro-optic,
the results we derived are general. They may be applied,
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for example, to all-optical channels or even to the case of
a single beam where the control signal is provided by a
QND measurement. OPO’s present the experimental ad-
vantage, however, that they have already demonstrated
their effectiveness in producing highly correlated light
beams [30] which are easy to manipulate. This makes
them particularly adapted for further studies of active
noise control.
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