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The nonrelativistic version of the authors theory of multiphoton ionization [Phys. Rev. 40, 4997
(1989)] is compared with other forms of scattering-theoretical approaches that employ different bound-
ary conditions. These methods, which are expressed in terms of formal time-independent scattering
theory, are shown to be equivalent in the large-photon-number limit to use of the semiclassical time-
dependent S-matrix theory. In the authors' treatment it is assumed that the photoelectron has escaped
from both the electromagnetic and atomic fields; a perturbation expansion in the photon-electron in-
teraction is obtained that correctly accounts for the atomic final-state interactions of the photoelectron.
The case of multiphoton detachment of I is treated, for which the inAuence of the final-state atomic po-
tential on the transition rate can be ignored. It is shown both analytically and numerically for the
Nd —yttrium aluminum garnet wavelength that the transition rates obtained for this case from the vari-
ous approaches are distinctly different. The present approach is shown to be consistent with an abrupt
switching off of a spatially unlimited monomode field, in contrast with Keldysh-type approaches, which
correspond to a long switch-off time if the ad hoc assumption of ponderomotive acceleration is made.
Above-threshold-ionization spectra calculated from the present approach exhibit interference effects and
are redshifted with respect to what is expected for slow switch-off. It is demonstrated, using the semi-
classical time-dependent approach, that the corresponding final off-field scattering-state wave function
only exists if the ponderomotive potential per unit photon energy is an integer, in accordance with our
earlier time-independent analysis. The origin of this curious feature is made clear.

I. INTRODUCTION

Most theoretical work on laser-atom interactions has
been based on the time-dependent Schrodinger equation
in which the vector potential is described in terms of a
classical time-varying electromagnetic field [1—5]. There
is good reason for this approach, because it is well known
that the laser field can be accurately described as a classi-
cal electromagnetic field. Furthermore, the temporal
characteristics of the laser pulse can be included in a
time-dependent formalism.

Fundamentally, however, the laser-atom interaction
should be treated within the framework of quantum elec-
trodynamics. This requirement becomes increasingly
acute as laser intensities reach higher values, even
exceeding one atomic unit (3.5X10 TWcm ). Even
though the solutions of the Dirac equation for an electron
interacting with a quantized, elliptically polarized elec-
tromagnetic field are known [6], this does not help very
much unless a proper scattering-theoretical approach is
also established. It has been argued that such a treat-
ment can only be carried out within the framework of the
forrnal field-theoretical theory of scattering if it is possi-
ble by means of the density-matrix technique to take into
account the actual scattering conditions that involve the
spatial and temporal characteristics of the laser pulse [7].
It is thus important to examine the question to what ex-
tent formal scattering theory is applicable, in the nonrela-

tivistic limit, to processes such as multiphoton ionization.
It is in the nonrelativistic regime that multiphoton ion-
ization by laser light has been studied most thoroughly
[8—10].

In Sec. II of this paper we reexamine the correspon-
dence [1,5, 11,12] between the quantum-mechanical and
semiclassical descriptions of a system in which an elec-
tron is exposed to an atomic potential, short or long
range, and to the vector potential of a monochromatic,
elliptically polarized electromagnetic field. We present a
completely general derivation of the semiclassical
Schrodinger equation from the quantum-mechanical
equation by projecting on a coherent state and taking the
large-photon-number limit. The derivation of this
"many-photon correspondence principle" does not de-
pend on the boundary conditions imposed on the wave
functions and thus indicates that there is a one-to-one
correspondence between the quantum-mechanical time-
independent and the semiclassical time-dependent
scattering solutions. In the present work, this result is
needed to demonstrate the correspondence between vari-
ous quantum-mechanical and semiclassical scattering
models of rnultiphoton ionization.

In Sec. III we examine and compare three different
transition matrix elements for multiphoton ionization.
The matrix elements are obtained by means of formal
scattering theory [13,14] and are shown to correspond to
three different boundary conditions in the semiclassical
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framework: (1) the atomic interaction and the photon-
electron interaction are both required to vanish in the re-
mote future, (2) only the atomic interaction, or (3) only
the photon-electron interaction is required to vanish in
the remote future. These three possibilities correspond to
entirely different physical pictures, namely, multiphoton
ionization considered as (1) a breakup reaction like ordi-
nary photoionization, (2) a pickup reaction in which the
electron is captured by the electromagnetic field, or (3) a
single-potential excitation process. It is shown explicitly
that in case (1) the semiclassical final-state scattering
wave function has the same properties as its quantum-
mechanical counterpart. In particular, the final-state
scattering wave function only exists when the pondero-
motive potential energy is an integer times the photon en-
ergy. A simple interpretation of this result is outlined; it
is argued that this curious property of the final-state wave
function may lead to observable consequences when the
switch-off time of the electromagnetic field is very short.
A numerical demonstration of the effect is provided in
Sec. IV, where calculations of above-threshold-ionization
spectra of I are presented for both short and long
switch-off times. We use natural units, A=c =1, unless
otherwise stated.

A( —k.r) —g (eeik r+. ie/2a+eee ik r —i 0'/2
(4)

In Eq. (4), the quantity g =(2V co) ' contains an arbi-
trary normalization volume Vr of the photon field, and 0
represents an arbitrary phase factor.

The polarization vector e is given by e=e cosg/
2+is~sing'/2, so that /=0 corresponds to linear polar-
ization and g=+~/2, to circular polarization. The unit
vectors e and e are perpendicular to each other and to
the propagation vector k=ke, . We thus have

'e =e ''e =cosg, e E='1' (5)

The eigenfunctions %' and the corresponding eigenener-
gies 6' of the time-independent Hamiltonian H=H r
+H, + U+ V can in principle be obtained by substituting
lt =%exp( i At) —into Eq. (1). We introduce the unitary
operator U, =exp(iH~t) and transform Eq. (1) into an
equation for ltt, = U, lt by multiplying it from the left and
using the relation U,~U, = 1. The result is

ay,
H, i', =i

Bt

where H, =H, + U+ V, . The interaction

II. THE MANY-PHOTON
CORRESPONDENCE PRINCIPLE V, =

Pl~

eA(kx) iV+ A(kx)2' ~

where we assume for simplicity that

Hz =(co/2)(ata+aat) (2)

represents a single-mode field. generalizations to spatial-
ly limited and multimode fields are possible but will not
be discussed here. In Eq. (1), H, =(1/2m, )V is the
kinetic-energy operator, and U = U(r) is the potential en-
ergy of the electron. These operators could also be
specified in a many-electron form. The photon-electron
interaction is described in the Coulomb gauge by

e e 2

V = A( k.r).i V+ A —( —k.r),
m~ 201q

We present a completely general derivation of the
semiclassical time-dependent Schrodinger equation which
is often used to describe laser-atom interactions and in
which the laser field is represented by a classical elec-
tromagnetic field. Previous work, which has been re-
viewed by Mittleman [1],is based either on the use of the
phase representation [11] or on the correspondence be-
tween the coherent state and the classical electromagnet-
ic field [12]. The equivalence of the semiclassical and
quantum-mechanical resolvent equations in the large-
photon-number limit has been demonstrated by Faisal
[5]. We utilize the coherent-state description in the
large-photon-number limit, but do not require that the
field is initially in a coherent state [1,12].

Consider the time-dependent Schrodinger equation

(Hz+H, + U+ V)/=i=-a
Bt

now depends on the time, since —k r in the vector poten-
tial has become kx =mt —k.r.

The next step involves the projection of Eq. (6) onto
the coherent state la ) =2)"l0), where

ea a —aa

is the unitary shift operator [2]. By introducing a com-
plete set of photon states ln ) (n =0, 1,2, . . . ), we have

y &0 +HE)'ln ) &ning, ) =i &olnlt, ),
which is exact. It is straightforward to calculate the ma-
trix elements &Ol2)H, 2)tin ) using known properties of
the shift operator [2], that is,

2)a2) =a+a, 2)a 2) =a +a" . (10)

Clearly, n is limited to n (2. From Eqs. (5) and (10), we
have

&oluHP)'lo&=&alH, la&=H, +U+V„+ ' g',

where the "classical" interaction operator V,i is obtained
by replacing a by a and a by a* in the corresponding
quantum-mechanical operator (7). The two other non-
vanishing terms are

&OlnHP)'ll &= 'g e "(e.iV)
m~

where we have e = —
l el and the photon field is described

by the vector potential

2 2
+ (a cosine '~+a*)

m~
(12a)
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2 2

(0laH a'l2 &
= ' g "'~

e -"&
&2m,

(12b)

where we have used the abbreviation y =kx —9/2.
If it is assumed that the parameter a in a a &

=a la & is
real, then it can be shown with the aid of the relation
la&=2) l0& and Eqs. (10) that

& ill)l/J, &
= &Olx)(a —a)lq, & (13a)

&2ll&q, ) =(o n ' — y, )
. (13b)

We use the notation A=ga and, in accordance with
Eq. (11),define the semiclassical Hamiltonian

imposed on P=%'e ' '. The coefficients cj are uniquely
determined by Eq. (1) or Eq. (16) once the boundary con-
ditions have been established. In the application of for-
mal scattering theory [13,14] to collisions in the elec-
tromagnetic field, these conditions are specified in terms
of (fully or partly) noninteracting states, corresponding in
the semiclassical picture to the requirement that the ex-
change of U and V must take place in time intervals
which are used to define the switch-on and -off of the po-
tentials in the beginning and end of the collision. This re-
quirement is fully justified by the wave-packet formalism
[13,14].

An analytical example of the correspondence principle
is provided by the solution of Eq. (16) in the limit of a
vanishing atomic potential U. The vector potential (15) is
assumed to be switched on and off adiabatically. These
"Volkov" solutions [15]correspond to

H, ) =H, + U+ V,)
= [i V +e A, (( kx) ] + U,l

2fPl e
(14)

)
—3/2 ~ (P+(Z —J)k].r —iJ(fr+8/2)++(~

(19)
where in Eqs. (17a) and (18). The eigenenergies 6', are given by

A (kx) =A(ee 'r+e*e')') (15) e, =E„,„+a, (20)

is the classical vector potential with y=kx —0/2. Ac-
cording to Eqs. (11)—(13), the semiclassical time-
dependent Schrodinger equation

where Edrjft P /2m, is the drift energy of the electron
in the electromagnetic field and

B(alp, &„
H„&al@,&„=i

at
(16)

e A6=Zco= (21)

is obtained from Eq. (9) by taking the limit g ~0
(a —+ ~,A=const). We wish to find the solutions
( a

l f, & „which correspond to the stationary solutions

is its ponderomotive potential or quiver energy. The gen-
eralized Bessel function 8, in Eq. (19) depends on

(22a)

g=e ' ' g c~(r, k, e) lN+ j &

j=—N

(17a)
i) = ( Z/2)cosg, (22b)

of Eq. (1), where we have expanded 4 in terms of the
photon-number states lN+ j &. With the notation
8, =6 —(N+ —,

' )co, we have

and the angle (t &
in

P e=lP ale '.ip
(22c)

c, (r k e)(alN+j &e"'"' . (17b)
j = —N

(18)

where the cj are the same time-independent expansion
coefficients as in the stationary solutions (17a).

Our derivation of the correspondence between the
wave functions (17a) and (18) is completely general, in the
sense that it is valid for any boundary conditions that are

We assume that, for a given average intensity
I=¹o/Vr =2Ng co, N is a large number of photons,
such that the average number j of transferred photons is
much smaller than X. Since classically
I =2A co =2a g co, we set a=i/N. Consequently, the
limit a—& ~ (g~0, I const) is obtained in Eq. (17b) in
such a way that the coeflicients (alN+ j &

—+(2m.N)
become independent of j according to Stirling's formula.
In this limit, we have ( a lHr la &

= ( 0'lH& l%' &
=N, and

+
(alp, &„=e ' g c, (r, k, e)e'J ',

It is defined by

+/(g, ri, Pg)= g J
~ ~ (g)J (r))e (23)

where the J are ordinary Bessel functions.
The coefficients (19) have also been obtained from the

exact quantum-electrodynamical solution [6] by taking
the large-photon-number and nonrelativistic limits [7],
and from the time-independent, nonrelativistic
Schrodinger equation by replacing the number operator
N, in the field momentum operator k(N, + 1/2) by a real
number [16].

Kelsey and Rosenberg [17] have previously noticed a
similar correspondence between approximate semiclassi-
cal and quantum-mechanical Volkov solutions. These
authors' solutions do not incorporate the ponderomotive
momentum Zk, which may have important conse-
quences. First, the construction of Green's functions in
scattering wave functions involves an integration over ail
kinematical momenta P [13], and thus also incorporates
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absolute values of P that are equal to or smaller than Zk.
Second, one can easily imagine scattering situations
within the nonrelativistic regime in which P =Zk. As an
example, consider an electron with 1 Ry energy, scatter-
ing or drifting in a long CO& laser pulse of intensity
I =10 a.u. and wavelength A, =10.6 pm. Yet, its classi-
cal peak velocity of oscillation is only =0.3c.

III. FORMAL TIME-INDEPENDENT SCATTERING
THEORY OF MULTIPHOTON IONIZATION

Multiphoton ionization (MPI) involves scattering from
two potentials, U and V, that describe the atom (ion)-
electron and photon-electron interactions, respectively.
Initially, the electron is bound by U but does not interact
with the electromagnetic field. In the semiclassical ap-
proach based on Eq. (16), this situation corresponds to
the boundary condition that U is on but V is off in the re-
mote past. In formal scattering theory [13,14], this
boundary condition is introduced by defining the corre-
sponding noninteracting atomic-electron and free-photon
states.

The interaction is assumed to take place in the pres-
ence of the time-independent potentials U and V. After
the interaction, the wave function of the electron may be
subject to three different boundary conditions, which cor-
respond to entirely different physical pictures of MPI and
in the semiclassical approach are as follows: (1) U and V
off, (2) U

off

bu V on, and (3) U on but VoF. In the for-
mal scattering theory these boundary conditions are
again established by defining the corresponding nonin-
teracting electron and photon states. According to the
many-photon correspondence principle of Sec. II, the
semiclassical approach and formal scattering theory
should lead to the same ionization rates, provided the
photon-electron interaction takes place in the presence of
a large number of photons, i.e., the "laser approxima-
tion" [5] is valid. Then there is a one-to-one correspon-
dence between the transition matrix elements, i.e., they
look exactly the same in both representations. In the fol-
lowing, we examine the ionization process under all three
conditions indicated above.

Model (1).' MPI as a breakup process. This case, which
implies U oQ V oQ after the interaction, has been con-
sidered by Gersten and Mittleman [18] in terms of the
semiclassical approach and by Guo, Aberg, and
Crasemann [7] in the framework of formal scattering
theory. We review the results of Ref. [7] and show ex-
plicitly that they remain valid within the semiclassical
approximation.

The derivation of the exact transition matrix element

mfa,"=&of-,mI vIq,+)+&ef, mI UIa, , i) (24)

is analogous to the treatment of a "breakup" process,
such as ~++d ~2p, in which case U would describe the
nucleon-nucleon and V, the pion-nucleon interaction
[13,14]. It also gives the correct transition matrix ele-
ment for ordinary photoionization [13], as shown below
by Eq. (35). In Eq. (24), the direct products
I@; &) =+; Il ) and IC&f, m ) =@f Im ) involve the
initial- and final-state wave functions of the electron and

the corresponding photon-number states. Since m%1,
the second amplitude vanishes. The scattering wave
function 4,+ is

'Ii,+=(1+G+V)I@,, l ), (25)

Qf =(I+Gi, V)I@f,m ), (27)

where Nf is usually taken to be a plane wave without dis-
tortion, and where Gi, =(8 IC —V iE—) —'. The next
step in the derivation is based on the assumption that the
Nf 's in Eqs. (26) and (27) are identical, but not necessari-
ly plane waves. We have [7]

(28)

and note that so far there are no constraints on the poten-
tials U and V, other than their time independence during
the combined atomic (ionic) and photon-electron interac-
tions.

An examination [7] of the wave function (27) shows
that, if 4f is a plane wave and there is no spatial restric-
tion of the vector potential A( —k r), then 1iif reduces in
the large-photon-number limit to

iZ(gt+ 8/2)
f =%p „ze (29)

if and only if Z is an integer, equal to m n Oth—erw. ise,
approximately vanishes. The Volkov state qip „ isf, n

given by Eq. (17a) with the coefficients (19) and with
N =n =m —Z; P=Pf is the momentum of the electron
in the field-free region. In the Appendix we show that
the corresponding semiclassical scattering wave function
exhibits the same behavior, in accordance with the
many-photon correspondence principle. Hence we can
trace the origin of this curious behavior and decide
whether it is an artifact or not; this is done in Sec. IV.

Model (2): MPI as a pickup process This case, .which
implies U 0+ V on after the interaction, has been treated
by Mu [21] from the point of view of formal scattering
theory. The result, which originates from work by Kel-
dysh [22], has apparently been considered earlier by Reiss
[23,24], who employed the semiclassical time-dependent
scattering approach. The derivation is analogous to the
evaluation of the cross section for a "pickup" reaction
such as n +p ~d [13], in which the proton is initially
bound by U. The interaction between neutron and pro-

where G+=(6 —K —U —V+iE) ' is the full Green's
operator and where we have used the notation
E =H&+H, . The final-state scattering wave function

(26)

where GU =(O' —K —U i —E) ' accounts for the scatter-
ing of the electron by the potential U. If U is a short-
range atomic potential, Nf is a plane wave. If U is a
long-range ionic potential, a Coulomb-distorted plane
wave must be used [19],such that the off-shell wave func-
tion of form (26) becomes in the on-shell limit equal to
the incoming-wave-normalized wave function [20] for an
electron that moves in a potential with a Coulomb tail.
We introduce the off-field scattering wave function
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=&@,IVIC„»+&@,IUG+Vlc„i&,

where 4, is given by Eq. (25) and we have

gv =(1+G U)fv .

Here, gv satisfies the Schrodinger equation

«+VWv=&fv .

(30)

(31)

(32)

This means that fv should be taken to be the Volkov
solution [Eqs. (17a) and (19)] in the large-photon-number
limit. The equality of the two forms in Eq. (30) is based
on the fact that (Kgv~C&, , i ) = (Pv~K@;, l ).

The difference between this MPI model and model (1)
becomes apparent if one compares Eqs. (28) and (30):
The scattering wave function gf is replaced by the Vol-
kov solution gv in the "pickup" model and, in accor-
dance with Eq. (29), there is no reason why it should lead
to the same transition rate as model (1), even for the case
in which Uis weak compared with V.

Model (3): MPI as a single potential -excitation process
This case, which implies U on, V a+after the interaction,
is equivalent to scattering from a single potential, which
is V. According to formal scattering theory [13,14], we
have

(33)

where 4; is given by Eq. (25). The final-state scattering
wave function yf =(1+G V)~@f,m ) describes the
scattering from V in the presence of U and should not be
confused with any of the final-state scattering wave func-
tions in models (1) and (2).

The transition matrix elements Tf; ' (v= 1,2, 3) lead to
distinctly different transition rates. It is instructive to
compare the transition amplitudes in the weak- and
strong-6eld cases.

(i) Weak field case From the fo.rm

ton is described by V, both initially and in the "picked-
up" deuteron state. There is also a close relationship be-
tween the distorted-wave theory of electron capture [25]
and model (2) [26].

The exact transition matrix element [13,21] can be
written

T(2) (y ~
gy+ )

ie„p&&e.,pi
G +-

E——to(p+ I /2)+i e
(36)

IV. STRONG-FIELD MULTIPHOTON DETACHMENT
RATE FOR NEGATIVE IONS

A. Photoelectron energy

Before considering the energetics predicted by the
scattering models discussed in Sec. III, we briefly summa-
rize the current view regarding nonresonant photoioniza-
tion by a realistic laser pulse [28,29]. Let the electron
originally be bound to an atom with binding energy E~.
The electron is released from the atom during a laser
pulse under absorption of j =j;„+sphotons, where we
have j;„co~E~ but (j;„—1)co(E~, and s ~0. If the
pulse has a duration ~, energy conservation requires

where
~
@,p ) are eigenstates of K + U, immediately

leads to the lowest-order nonresonant transition-rate for-
mula [8] for the absorption of j =i —m photons. The
final-state wave function ~&If, m ) is the correct wave
function, normalized to the incoming wave, for scattering
by U [20]; thus Tf;" can be used for calculations of angu-
lar distributions or for studies of final-state channel in-
teraction in the many-electron case at any field strength.
This becomes apparent when one realizes that the v=0
term in Eq. (35) gives the correct transition matrix ele-
ment [20] for ordinary photoionization. In Tf ~4 f m )
is replaced by one of the standing-wave eigenfunctions of
K+ U, which indicates that this transition matrix ele-
ment can only be used to obtain total lowest-order MPI
rates. Hence model (3) will not be considered further
here.

The expansion (34) of the propagator G+ in Tf; ' does
not lead to the perturbation expansion (35). This fact
may limit the validity of model (2) for a universal descrip-
tion of MPI.

(ii) Strong field case. If the potential is short range, it
may be argued that the second amplitude in Eq. (28) can
be neglected; there is numerical evidence that this is pos-
sible [27]. Then we have Tf,"-(g& '~V. ~—C&, , l ). Accord-
ing to Eq. (30), the same procedure leads to
Tf (Qf ~

V~@&;—, 1), which is equivalent to the strong-
field approximation in the semiclassical approach
[21—24]. Equation (29) shows that we have T~,"&TfP, in
general. The corresponding rates are compared in detail
in Sec. IV, with MPI of I as an example.

and the expansion
jco= —E+xA+E&+6; —6 (37)

G+ =G++G+ VG+U U

=GU +G+ VG++ GU VGU VGU +

we obtain

Tf,"= 4f, m VGU V 4;, I
v=o

The representation

(34)

(35)

e I
2c rom, e2

(38)

In Eq. (37), hs and 6; are the ac Stark shifts of the
ground and ionized states, respectively. We shall neglect

where E =E,b, is the energy of the photoelectron as ob-
served in a detector, and 6 is the ponderomotive potential
energy (21). Equation (21) is usually expressed in terms
of the time-averaged peak intensity I of the field, i.e., in
Systeme International (SI) units,
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the small difFerence 6;—6 in the following. The factor
~, which lies between 0 and l, describes how much of 6 is
converted back to the electromagnetic field when the
pulse vanishes and the electron leaves the pulse; this de-
pends on the pulse duration h~= ~,„+~,z, particularly on
the switch-off time ~,&. The factor ~ also depends on the
spatial extension of the pulse, on the peak intensity I, and
on how many times the electromagnetic field oscillates
during h~, i.e., on co. It should be noted that inside the
field the energy of the electron consists, in accordance
with Eq. (20), of both the potential-energy part b, and a
kinetic-energy part Ed fg [28']. As shown in Fig. 1, there
are two limiting cases.

(i) r,&=0. When the pulse vanishes suddenly, the elec-
tron has no time to escape. It stops jittering, and 6 van-
ishes together with the field; we have ~= 1 and

E =Edrift j& ~ E8 (39)

(ii) r,~= oo. When the pulse is turned off' slowly, the
electron has time to escape from the field. It slowly stops
jittering while increasing its velocity, since it is repelled
by the field. Hence we have ~=0 and

E =E „,+A=jco —E (40)

E =(l m)co Eii =—(l n)—co E~ —6—,
—

where j =l —n is the number of photons which is ab-
sorbed by the atom inside the electromagnetic field.
Model (1) thus predicts that the electron enters the detec-
tor with a kinetic energy E that corresponds to r,&=0 [cf.
Eqs. (39) and (42)].

In order to see why model (1) corresponds to a sudden

(3
CC

D
CL
I—

drift

Eobs

(n+ 1/2)co

(m+ 1/2)~

I

33
D—(t+ «2)~

off
nx'= 0 —~

FIG. 1. Energy-balance diagram for the switching-oA of a
monomode electromagnetic field. The quantities shown are
defined in the text in association with Eqs. (37) and (38).

We now use the scattering-theoretical description of
models (1) and (2) of Sec. III. The total energy 6' is given
in model (1) by

Eii+(l +—I/2)co=E+(m + I/2)co, (41)

where E =PJ /2m, is the energy of the electron outside
the field.

It follows from the form (29) of the final-state scatter-
ing wave function P/ that 6' is also given by
6'=E+(n + I/2)co+6, where b, =(m —n)co. We have

pulse switch-off we substitute the wave function (29) in
the transition matrix element (28) and notice, according
to Eqs. (17a), (19), and (30), that

—iZ(/~+0 /2)
where (4&,m~'Ilp „&=8&e ~ 6(P& —P) is the
probability amplitude per unit momentum that the elec-
tron finds itself in the free-electron and free-photon state
~0&/, m &if the photon-electron interaction is suddenly re-
moved. In Eq. (43), TI, ' must be evaluated using
gi, =%'p „, and we have Z=m n—A. ccording to Eq.
(A12), the use of the semiclassical scattering wave func-
tion (A10) also leads to the result (43), which shows that
it follows from the sudden approximation if it is assumed
that the pulse is suddenly switched oF after an adiabatic
rise.

Since the energy of a monochromatic field can only be
changed by changing the number of photons, Z must, in
accordance with Fig. 1, be an integer in b. =Zen. The
electron thus responds to the sudden drop in field intensi-
ty by the opposing efFect of converting its ponderomotive
potential energy entirely into free photons. As shown in
the Appendix, the constraint Z=integer also prevents
the semiclassical oF-field scattering wave function from
vanishing and reduces it to the Volkov solution gp multi-
plied by the overlap matrix element (gP(t)~P&(t) &. Ac-
cording to Eqs. (A4) and (A5), this result is essentially a
consequence of the Bessel-function expansion (18) of the
Volkov solution (19), which leads to the proportionality
relation (A9). This expansion is consistent with an adia-
batic switch-on of a plane-wave electromagnetic field of
infinite extent. When this spatially unlimited field is
switched oF, however, the electron would never become
free in a finite time, and that is why the scattering wave
function leads to the solution (A12) or (29). It is thus
clear that a spatial confinement of the electromagnetic
field in the scattering wave function (27) or its semiclassi-
cal counterpart (Al) is required for a consistent treat-
ment of the case (37) in which only a fraction of the pon-
deromotive potential energy is converted into an average
number of photons. This conclusion agrees with a simi-
lar suggestion by Kristic and Mittleman [30]. Neverthe-
less, we can use model (1) as a simple approximation to
examine what happens to the photoelectron at a sharp
cutoF of a not-too-short laser pulse.

Model (2) does not incorporate the escape phase of the
MPI process, and thus does not imply any predictions re-
garding the observed photoelectron energy E. Instead,
this model predicts that the drift energy Ed, lft is give~ by
Eq. (39). This is often taken as an explanation for
the suppression of the lowest-order above-threshold-
ionization (ATI) peaked, because in Eq. (39) a large b.
value prohibits the existence of j;„, and possibly, of
higher j values [31]. Model (2) is often used, in conjunc-
tion with the ad hoc hypothesis that the observed photo-
electron energy is given by Eq. (40) rather than Eq. (39).
In this form, the model is only applicable to the long-
pulse regime [28].
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B. Strong-Aeld multiphoton rates with application
to electron detachment of I

In this subsection, we use both models (I) and (2) to
simulate the behavior of ATI for ~,~=0 and v,~= ~ in
the case of a short-range potential U. By setting U =0 in
Eq. (28), it follows that the strong-field transition matrix
element is

(44)

where gf is the scattering wave function (29). It follows
from the third expression in Eq. (30) that the correspond-
ing transition matrix element in model (2) is given by

(45)

(I) thus predicts that a photoionization peak observed at
energy E2 when produced by a slowly decaying pulse will
be shifted to E]=E2 4 when produced by a rapidly de-
caying pulse.

The photoelectron angular distributions predicted by
Eqs. (46) or (47) depend-on the polarization angle g. We
express

P = (P sin8 cosP, P sin8 sing, P cos0)

in a coordinate system in which the unit vectors e, e,
and e, are as defined in Sec. II. Substitution of m —P for
P changes P& to rr P&, a—ccording to Eq. (22a). Since we
have

where gi, is the Volkov wave function. The amplitudes
(44) and (45) are related by Eq. (43), as are the exact am-
plitudes. These amplitudes do not, however, provide a
good description of MPI if the potential is long range.

The differential transition-rate formulas that corre-
spond to Eqs. (44) and (45) have previously been worked
out for the general case of elliptical polarization [6,7,32].
We have

(46)

where 8& is the generalized Bessel function (23) for in-
teger Z =b. /co, and where we have

dw"'
=(2m,'~')'"(2~) 'le';(P —jk+Zk) l'

X(j —Z)'(j —Z —E I )' '~d, (g, r1, $&)~'.

(47)

the distributions predicted by Eqs. (46) and (47) are
symmetrical in the (e, e ) plane, provided that the atoms
are not aligned. Then we can sum over magnetic quan-
turn numbers in the Fourier transforms of the initial-state
wave functions, and the rates become proportional to the
absolute square of

4&;(~P'~)= f r dr R„i(r)j&(~P—jk+Zk~r), (48)

where jI is the spherical Bessel function of the first kind
and R„&(r) is the radial wave function for principal quan-
turn number n and angular momentum quantum number
I. For elliptical polarization, the symmetry with respect
to P is broken if the second amplitude in Eq. (28) or the
corresponding amplitude in the third expression of Eq.
(30) is included [27]. In the case of a long-range poten-
tial, the efFect is pronounced [29].

Here, @;(P—jk+Zk) is the Fourier transform of the
initial-state wave function, corresponding to the binding
energy EIi. The transition rates (46) and (47) pertain to a
situation in which the electron is emitted into the solid
angle d 0 with momentum P and kinetic energy
E=P /2m, . The number of photons that are absorbed
inside the electromagnetic field is denoted by j; it is con-
strained by Eq. (39) to be larger than or equal to
(b, +Eii)leo. Even though the differential MPI rate (46)
exists only for integer Z, an obvious and possible general-
ization is to allow for noninteger Z values as well. This
would mimic a monomode electromagnetic field of finite
extent or a multimode field [7]. According to Sec. IV A,
the rate (46) is only applicable to a situation in which the
laser pulse is switched off swiftly; if applied to MPI by
short pulses, there is the question of whether the condi-
tion of adiabatic switch-on is fulfilled. Nevertheless, a
numerical simulation for I shows that interference
effects induced by the overlap factor

~ 8z ~
are so dramat-

ic that they may be observable in MPI of negative ions by
short pulses.

In model (2) there is no constraint on Z. Equation (47)
is applicable when the electron is ejected with kinetic en-
ergy E =j ni Eii in accordance —with Eq. (40), which is
valid only for slow switch-off. We adopt this additional
assumption in comparing the rates (46) and (47). Model
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FIG. 2. ATI spectra of I ionized by 1.064-pm 88-TWcm
linearly polarized (/=0'} electromagnetic radiation: (a) r,~= co,
(b) ~,~=0. The rates were obtained by integrating over the solid
angle in Eqs. (46) and (47).
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FIG. 3. ATI spectra of I ionized by 1.064-pm 88-TW cm
elliptically polarized (g'=50') electromagnetic radiation: (a)
7 g

—(x), (b) ~,z=0. The rates were calculated by integrating
over the solid angle in Eqs. (46) and (47).

num garnet wavelength of A, =1.064 pm and intensity
I=88 TWcm were chosen. Then we have 6=—8Acu,

with Ace=1. 16 eV. The calculations were carried out for
different polarization states by changing g in steps of 10
from /=0 (linear polarization) to /=90' (circular polar-
ization). In Figs. 2—4, the results for /=0', 50, and 90
are presented.

The total intensities are generally lower by a factor of
10 for model (1) in comparison with model (2). The in-
terference effects induced in the ATI spectra by the over-
lap factor ~8~~ are very large. The higher-order photo-
electron peaks are almost wiped out by this factor if the
light is linearly polarized (Fig. 2). The trend continues up
to /=30'. With increasing g, the maximum of the ATI
photoelectron distribution is pushed towards higher ener-
gies, and the overall shape of the distributions becomes
somewhat more similar for the two models. As Fig. 3
shows, however, model (1) predicts a narrower and more
asymmetric shape. As circular polarization is ap-
proached, the differences again become dramatic (Fig. 4):
the model-(1) spectrum exhibits several minima, in con-
trast to the almost Gaussian shape of the model-(2) spec-
trum. It remains to be seen whether any of these effects
can be observed in real experiments with pulsed high-
powered lasers.
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FIG. 4. ATI spectra of I ionized by 1.064-pm 88-TW cm
circularly polarized (/=90') electromagnetic radiation: (a)
7 ff

= (x), (b) ~,&=0. The rates were calculated by integrating
over the solid angle in Eqs. (46) and (47).

We have carried out computations of MPI rates for I
by means of a specially designed code for the calculation
of the generalized Bessel functions (23) [33]. In the
Fourier transform (48) we used the measured I electron
affinity [34] of 3.06 eV as the binding energy, and the 5p
Hartree-Fock wave function. The Nd —yttrium alumi-

V. CONCLUSIONS

With the aid of the many-photon correspondence prin-
ciple we have shown, for an electron that interacts with a
monochromatic plane-wave electromagnetic field, that in
the large-photon-number limit formal scattering theory
leads to exactly the same results as semiclassical time-
dependent scattering theory. This conclusion holds re-
gardless of whether the electromagnetic field has infinite
extent or is spatially limited. In the semiclassical theory
we have assumed that the field is switched on adiabatical-
ly; the treatment of more complex time behavior of the
vector potential may require the use of time-dependent
scattering theory. An alternative may be to combine for-
mal scattering theory with the density-matrix technique;
this approach has yet to be explored.

We have shown that, depending on the final-state
boundary conditions, three different transition matrix ele-
ments exist for multiphoton ionization. These matrix ele-
ments correspond to entirely different interpretations of
multiphoton ionization. Only the breakup case, in which
it is assumed that both the atomic and electromagnetic
interactions cease to have any effect at the end of the re-
action, admits a consistent approach with regard to
final-state interactions, as demonstrated by deriving the
perturbation expansion with respect to the photon-
electron interaction.

We have examined the Anal-state scattering wave func-
tion for the case in which both interactions are switched
off at the end. It was possible to show explicitly that the
semiclassical off-field scattering wave function exhibits
the same behavior as the corresponding quantum-
mechanical wave function in the high-photon-number
limit. This proof confirms the curious fact that the final-
state scattering wave function exists only if the pondero-
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motive potential energy is an integer multiple of the pho-
ton energy. This strange feature can be traced to the
somewhat unrealistic assumption that the electromagnet-
ic Geld is monochromatic and of infinite extent, yet it
leads to a simple physical interpretation of the final-state
interaction between the electron and the Geld, as follows.
The Gnal-state wave function in this case is seen to corre-
spond to an instantaneous switch-off of the field. When
this takes place, the photoelectron opposes the decrease
in photon number by converting its ponderomotive po-
tential energy into free photons. Consequently, the
above-threshold-ionization spectrum is red shifted with
respect to the slow-switch-off spectrum, and it exhibits
interference effects. Calculations of the above-threshold-
ionization spectrum of I explicitly illustrate this pre-
dicted behavior. It appears that the differences between
the slow- and fast-switch-of spectra may have observable
consequences.
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(A3)

Vpp '(ti) g (qf(ri)II (ri)lgf(ri)) (A4)

can be calculated explicitly. We have

Vgp (ti)=('pf(t, )~ I (t, )~pf(ri))

where

=RJ(co, Z)cP/(g, ri, (b~)e

X5(Pf —P+jk —Zk)e (A5)

We let ~Pf(t) ) be a plane wave with momentum Pf and
energy Ef =Pf /2m„and assume that a vector potential
(15) with constant A is used in the wave equation (A 1).
Then the Volkov solutions %p(t) have the form (18) with
the coefficents (19) in the propagator (A2), and the matrix
elements
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and

R =R (co, Z)=co(Z —j)

EJ =P /2m, —Pf /2m, +R

(A6)

(A7)

APPENDIX: THE SEMICLASSICAL OFF-FIELD
SCATTERING WAVE FUNCTION

According to the many-photon correspondence princi-
ple, the semiclassical wave function that corresponds to
the scattering wave function (27) is

Qf (t)= lyf(t) ) + fdtiQv(t ti )V(rl )lpf(ti )) (Al)

where V(t, ) is the semiclassical photon-electron interac-
tion, and

Qi (t& ti ) = at (r]) r )

In the derivation of Eq. (A5) we have made use of the
identity [7]

—2i P( 2i P~

2
(8. i+PJ+, )+ri(oi 2e +8~+2e )+j cPJ. =0 .

(AS)

We also need the matrix elements (Q(t)~Pf(t)), which
can be shown to be related to the interaction matrix ele-
ment (A5) by

(A9)

=ie(t, —r) fdPly (r))(y (t )I

is the time-advanced propagator, such that

(A2) If we now expand ~Pf(t)) in terms of the Volkov solu-
tions Pp(t), we can combine the plane-wave and propaga-
tor parts in (Al) into a single expansion. The result is

+ oo R.
pf (t) = g f 1+i~5(E, )R, —P '

imp(t) ) (Q(t)~pf(t) )dP,
J= oo J

(A10)

where we have used

iE.t) iE.t
i fe(t, —t)e ''dt, = im5(E~) —P e

J
(Al 1)

me

the integration over dP reduces to a one-dimensional in-
tegral over P, =P. We distinguish between two cases.

(i) R~WO. The energy factor

PR R2
E = — — +R =R %0

2m,
Here, P means that one should take the principal part
when integrating over dP=dP dP dP, . Since the over-
lap integral ( Q(t) ~Pf (t) ) is proportional to

5(Pf —P+jk —Zk)

=5(Pf P)5(Pf P)5(Pf, P, —RJ—)—, —

is almost independent of P, since P « m, c and
co(Z —j)((m, c (in SI units). The first and third ap-
proximate terms in the large parentheses in Eq. (A10)
cancel and the second term vanishes. The scattering
wave function Pl (t) only exists up to the order of
P/m, c, and thus vanishes in the nonrelativistic limit.
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P
5(P —P )dPf o

P —Pf

(ii) We assume that there is an integer j' such that
Z=j'. Consequently, we have R'=0, and the second
and third terms in the large parentheses in Eq. (A10) van-
ish for j=j'. This can be seen, either from the fact that
E appears as a factor of the j-dependent time integral
(All) in P& (t), or one may argue that the corresponding
terms in the large parentheses of Eq. (A10) vanish. For
an explicit proof, we recognize that in the second term in
the large parentheses of Eq. (A10), R =0 plays the role
of a well-behaved function in the definition of
5(E~ )=5(P P& ), a—nd that in the third term, R, is multi-
plied by

This integral vanishes because (P P—&)
' is an odd

function of P, whence the principal-value interval
(P& e—, P&+E) does not contain P& for any e. We thus
have

PI (t) =I ( PP(t) ~ P&(t) )
~
Pp(t) )d P

(A12)

since the jAZ terms do not contribute to the wave func-
tion in the nonrelativistic limit according to paragraph
(i). The result (A12) is the semiclassical analog to P& in
Eq. (29), in accordance with the many-electron
correspondence principle.
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