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We derive level-to-conflguration sum rules for dielectronic capture and for collisional excitation and

ionization. These sum rules give the total transition rate from a detailed atomic level to an atomic

configuration. For each process, we show that it is possible to factor out the dependence on continuum-

electron wave functions. The remaining explicit level dependence of each rate is then obtained from the

matrix element of an effective operator acting on the bound orbitals only. In a large class of cases, the

effective operator reduces to a one-electron monopole whose matrix element is proportional to the sta-

tistical weight of the level. We show that even in these cases, nonstatistical level dependence enters

through the dependence of radial integrals on continuum orbitals. For each process, explicit analytic ex-

pressions for the level-to-configuration sum rules are given for all possible cases. Together with the
well-known J-file sum rule for radiative rates [E. U. Condon and G. H. Shortley, The Theory of Atomic

Spectra 1University Press, Cambridge, 1935)], the sum rules off'er a systematic and efficient procedure for
collapsing high-multiplicity configurations into "effective" levels for the purpose of modeling the popula-
tion kinetics of ionized heavy atoms in plasma.

I. INTRODUCTION

The experimental characterization of hot plasma relies
frequently on the interpretation of emission spectra. An
essential tool in this analysis is the collisional-radiative
model for the rate equations governing the populations
N; of atomic levels i

dX,
NgP, +g—N P; .

J J

Here I'; is the rate of population transfer from level j to
level i. Plasma emission depends on the populations, and
these depend, through the rates in Eq. (I), on the plasma
conditions.

To relate level populations reliably to plasma condi-
tions, the population transfer rates must be known with a
degree of accuracy that generally requires detailed rela-
tivistic quantum-mechanical calculations. But for heavy
ions in hot, dense plasma, the number of levels and tran-
sitions involved is potentially overwhelming. Recently,
techniques were developed to rapidly calculate large
numbers of level-to-level electron-impact excitation [1]
and autoionization [2] rates in ionized atoms using the
distorted-wave approximation. These techniques are
based on operator recouplings and factorization theorems
[1,3,4] that yield a large array of excitation cross sections
from a small number of radial integrals. The method has
been applied to the development of plasma diagnostics
[5], x-ray laser studies [6—8] and to the calculation of res-
onant excitation and excitation-autoionization in charged

ions [9,10]. Other workers have recently applied the
method to study Z scaling of An = 1 collisional excitation
rates in the neonlike isoelectronic sequence [11].

Further computational hardship is encountered as
collisional-radiative models are enlarged to include the
effects of high multiplicity autoionizing manifolds, high-
lying "Rydberg" configurations, and multiple charge
states. Though early applications of collisional-radiative
modeling was restricted to the treatment of low-lying ex-
cited states of a single ion, and to conditions of
collisional-radiative equilibrium, models have latterly
been applied to the analysis of recombining and other
nonequilibrium plasmas [5,7], and are used increasingly
in elaborate radiation transport and hydrodynamic simu-
lations [12]. In these time-dependent applications,
though interest might be focused on a sma11 subset of lev-
els, the effects of autoionizing and Rydb erg con-
figurations, and of a range of charge states, must be ac-
counted for.

At some point in the process of adding configurations
to a model, it becomes necessary to adopt a procedure for
treating them, and the fiux of population through them,
in a configuration-average approximation. A common
approach is to reduce the levels belonging to a pair of
configurations to a pair of "effective levels" by averaging
all rates connecting them over the initial configuration
and summing over the final configuration [13—15]. This
approach has the collateral advantage of yielding simple
analytic expressions for the average rates. The assump-
tion underlying this approximation is that the levels
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within the initial configuration are populated according
to their statistical weight. This configuration-con-
figuration averaging is a consistent method, so long as it
is used only to connect configuration-averaged effective
levels. Indeed, models in which all levels are hydrogeni-
cally or j-j configuration-averaged are commonly embed-
ded in hydrodynamic simulations, for estimating charge-
state distribution and radiative energy loss. This model is
obtained by summing Eq. (1) over levels i E C, where C is
a configuration manifold, and imposing a statistical dis-
tribution of population among levels within a con-
figuration by setting N; ~i~=Ac ~c-~(g,. ~1~lgc ~c ~), where

g, ~ ~
and gc ~c.

~
are the multiplicities of level i (j) and

configuration C (C"), respectively:

dX; c
dt g;P;, ~gc

C"i 6 C,j6C"

+pic, y g,P,, ygc„
C" i EC,jEC"

cXPcc +XXc Pc c„.
Cll C l I

For spectroscopic applications and x-ray laser calcula-
tions, though, it is necessary to retain the detailed struc-
ture of some subset of atomic levels. A common ap-
proach to treating the population Row between these lev-
els and a set of configuration-average efFective levels is to
distribute the transition rates that have been averaged
over both initial and final configurations statistically
among the detailed levels. This is a dicey approximation,
since when local thermodynamic equilibrium does not ob-
tain, it is unlikely that low-lying levels are statistically
populated (i.e., populated in proportion to their statistical
weight). It also neglects the variation in transition rates
among the detailed levels, including the efFects of selec-
tion rules. Evidently, a better approach would be to
avoid, in the first place, averaging over configurations for
which detailed level structure is to be retained. This
could certainly be accomplished by the brute-force calcu-
lation of the relevant level-to-level transition rates, fol-
lowed by an explicit summation over the configuration
being treated as an effective level.

In this paper, we propose an efticient solution based on
analytic level-to-configuration sum rules derived below.
These sum rules give exactly the total transition rate,

selection rules, are retained. This work extends to pro-
cesses involving continuum electrons, and to general
mixed configuration states, techniques developed by Ra-
cah and Stein [16] in their analysis of "effective interac-
tions" in configurations of the form 1". (Similar tech-
niques, based on the second quantization formalism, were
applied by Bauche, Bauche-Arnoult, and Klapisch [17] to
study unresolved transition arrays. )

By recoupling the interaction operator, we will show
that it is possible for dielectronic capture, collisional exci-
tation, and collisional ionization to factor out the depen-
dence on continuum electron wave functions of the level-
to-configuration rates. After summing the transition
probability over jE C", as in Eq. (3), explicit dependence
on the bound-state wave functions is reduced by an appli-
cation of the closure theorem to the expectation value of
an effective operator in the state i. Because of the contin-
uum factorization, the expectation value can be evaluated
in terms of angular recoupling coefficients and reduced
matrix elements of standard n-body operators with n ~ 3.
In a large class of cases, the operator reduces to a one-
body monopole whose expectation value is proportional
to the statistical weight 2J+1, of i, and a radial factor.
This simple result, however, does not imply state in-
dependence of the rates, nor justify the configuration-
configuration model, since mixing coefficients and, owing
to the presence of continuum electrons, the radial in-
tegrals remain level dependent. Moreover, in many cases
the results are not proportional to statistical weight. For
these other cases we will obtain the explicit level-to-
configuration sum rules as well.

The level-to-configuration radiative transition attracted
interest since the early days of atomic spectroscopy when
the J-file sum rule was discovered [18]. The sum rules
can be considered as an extension of the latter to col-
lisional transitions where the interaction is two body and
involves continuum orbitals. Like the J-file sum rule our
results are exact for the rate at which a level is depleted,
but give an average value for the population rate.

In Sec. II we present background results and notation.
In Sec. III we derive the level-to-configuration sum rules
for autoionization and dielectronic capture, and, in Sec.
IV, we present the level-to-configuration sum rules for
collisional excitation and ionization. In Sec. V we sum-
marize and discuss our results.

Pc-= g P
jEC"

(3)
II. BACKGROUND AND DEFINITIONS

from a detailed atomic level i to an atomic configuration
C", with the sole approximation that variation in the
transition energy can be neglected. Our results are simi-
lar in intention and utility to, though generally more ela-
borate than, the formulas obtained by averaging over
both initial and final configurations. Since, after detailed
balancing, the sum rules yield the reverse, configuration-
to-level, transition rates Pc„,=g ~ c„g P;, ave. raged
over C", for population Aow in this direction they still
embody the assumption of a statistical distribution of
population in the configuration, though not for the levels
that remain detailed. Furthermore, the effects of varia-
tion in transition rates among detailed levels, including

The radial and angular dependences of the electrostatic
operator may be completely factorized, giving [1,3, 19]

+ 1/r; = g g@'(aP, y5)g(ZI"(ay). Z'"(P5)),
I ~PI I r&I l,J

(4)

where the outside sum is over distinguishable sets
{apI = {paI and {y5]= {5yI of orbital quantum num-
bers a =—{n 1 j J =j, etc. and the sum g; J. ~;~J~ is over
electronic coordinates. Following Racah and Stein [16]
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we define the j-j unit t-rank tensors Z';"(ap) by their
one-particle reduced matrix elements:

(a'IIZ';"(aP)IIP') =5 5ptt . (5)

The notation (Z'".Z'") indicates scalar product. Note
that there is no parity restriction on the rank t in Eq. (4).
The radial factors include both direct and exchange con-
tributions:

4&'(a/3, y5) =s&X'(ap, y5)

n 5 k
+s g( —1)" '[t] ' 'X"(ap, 5y),

q E. A and q' EB obey the relation

q
—5 —5 p=q' —5 —5 q,

or, symbolically, A —[a,p] =B—[y,5]. We will refer to
the orbital sets [a,p] and [ y, 5] as "active" orbitals with
respect to 3 and 8.

The transition rate between two atomic levels gE A
and i/" EB (where A and B in general contain continuum
electrons) is proportional to the squared matrix element
I & i/'I Vg, g I

g" ) I, and the total level-to-configuration rate
is related to

(13)

(6)

where C' ' is the usual one-body tensor operator of rank
k [20], R "(ap, y5) is the Slater integral, [t]=2t + 1, and

s, =l —5 Prs/2, s2=(1—5 &)(1—5&s) .

Note that if the Slater integrals involve continuum orbit-
als, they will depend on the continuum electron energies
and thus, by conservation of energy, on the correspond-
ing bound-bound transition energy. But for this indirect
dependence, the X"(ap,5y) are independent of detailed
level structure.

An electronic configuration C is.defined by a set of
electron occupation numbers [q ] for the bound orbitals

j of the o. shell:

C=+(j )

and has statistical weight

2j +1
(10)

By restricting the orbital summation in Eq. (4) to
[ap] E A and [y5] EB, we obtain the projection of the
electrostatic operator onto specific electron configura-
tions 3 and B:

V„~= g gN'(aP, y5)
IaPI e a, I y6I e8 r

gefr, ,
l,Ji&j (12)

R qB & 0 I VA, B VB, A I P ) (14)

In this result, all details of the structure of configuration
B have been eliminated, while the structure of A remains
resolved. Besides the obvious dependence of P, the ex-
pectation value depends only on electron orbital quantum
numbers.

The preceding development can be demonstrated using
the electric dipole operator rather that the more compli-
cated electrostatic interaction:

D = g P(aP) QZI "(aP)—= g P(aP)Z"'(aP),
I a/3I l a

(15)

where P(aP) is the dipole radial integral times
(all C'"I IP), and Z,.'"(aP) is defined in Eq. (5). The sum-
mations here match those in Eq. (4), though with the
simplification to a one-body interaction. D is projected
onto configurations A and B connected by the one-
electron transition a"—p", by restricting the sum in
(15) to the single term a =a", P=/3".

The radiative transition matrix element from i/ K A to
g'PB is given by d& &. —= I(/ID„~ lg') I and the level-
to-configuration transition rate is obtained through appli-
cation of the closure theorem [16]

As noted above, the radial part of the operator V„~ may
depend weakly on i/" through continuum electron ener-
gies. In the present treatment, we will neglect the
difference between AE~~- =Eg —Eg- and ~Ega=E&—Ez, consistent with the goal of replacing
configuration B with a single effective level. To leading
order, Ez can be taken as the configuration-average ener-
gy. However, it is possible, if necessary, to improve upon
this approximation by adapting the concept of emissive
zones, " introduced for radiative transition arrays by
Bauche, Buache-Arnoult, and Klapisch [17], and by con-
sidering higher moments of the electrostatic operator.
Now, using Eq. (12), the summation in (13) can be ex-
tended to include a complete set of states and the closure
theorem applied [16] to obtain

0 otherwise .

Note that, owing to the definition (5), nonvanishing
contributions to Eq. (11) correspond to sets of orbitals
[a,/3] and [y, 5] for which the shell occupation numbers where

g'eh

=P'(ap) & pl z' "(ap).z' "(pa)
I q), (16)
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(Z'"(aP) Z'"(Pa)) = g(Z'"(aP) Z,'"(Pa))
E,J

CWJ

+ y(ZI"(ap) z,'"(pa)) . (17)

The second term in this result is the monopole operator
( —l)7 +7~+'(2j +1) '~ Z' '(a, a). The expectation
value in (16) is the standard one obtained in evaluating
the electrostatic interaction of the ordinary atomic Ham-
iltonian.

The result of this exercise is just a reformulation of the
well-known J-file sum rule first derived by Condon and
Shortley [18] in the case that the two-body contribution
is absent. The general case was treated only recently by
Bauche, Bauche-Arnoult, and Klapisch [17]. It is useful

I

to bear in mind that the sum rules obtained below for col-
lisional processes mediated by the electrostatic interac-
tion are analogous to the J-file result for electric dipole
transitions. It should also be noted that, when p is a con-
tinuum orbital, Eq. (16) provides the configuration-to-
level radiative-recombination rate. Furthermore, since P
never appears as an occupied orbital of 1/), only the mono-
pole term survives for this process.

III. SUM RULES FOR AUGER CAPTURE
AND AUTOIONIZATION

A. Definitions and sum over autoionizing states

We begin with the autoionization rate [20] from a statef" to a level @:

2
A ("= x x (tl'(Y, J'

L Jr Mr x'(e lrJ ) g"()'",Jr', Mr' )

JTMT l,J
(18)

(We will denote atomic levels with a tilde, 7/7, i/)', i/7", etc.,
and its quantum states by the corresponding undecorated
symbol. ) Note that, since the operator is a scalar, by con-
servation of angular momentum only one term contrib-
utes to the sum over J7., M7 in Eq. (18). The continuum
electron is denoted by&', representing the quantum num-
bers l,j and the energy c., which, since the total energy is
conserved, depends on 7/7" and g. The configuration-to-
level autoionization rate from all the states i/)" of the
configuration C" is

A~ =(1/gc ) g A~&
f"e C"

(19)

Using detailed balance we can write the total radiation-
less capture rate from an initial target state i/ (belonging
to level 1T) to all states 7/7" of the level 7/j

":

D~~=(1/g)f g A ~& (20)
M,-

'
where the statistical weight of g is g =2J+ 1 = [J], A ~ is
the autoionization rate from state 7/" to level i/7, as given
in Eq. (18), and

f=
—,'n, (h /27rm, kT, )

~ exp[ (E&- E&)/kT—,]—

D'- =(gc-/g)f A' (22)

Equation (22) is the exact total capture rate from initial
level i/) into the configuration C". On the other hand, the
autoionization rate represented by Eq. (19) is only an
average that assumes population is distributed amongst
the levels of C" according to their relative statistical
weights.

Although we have treated the autoionizing states i/)" as
pure-configuration states, this covers the more general
mixed-configuration case as well, since the sum over f"
can always be replaced by a sum over pure-configuration
states that span the same space. On the other hand, since
there is no configuration sum over capturing states i/),

their mixing must be explicitly treated. (Since we assume
throughout the distorted-wave approximation, we do not
consider mixing of continuum channels. ) Thus, in gen-
eral,

&= X Zap, tc
c

where the i/)c are pure configuration basis states. In the
general case, Eq. (19) becomes

is the free-electron distribution function at temperature
T„density n„and electron energy E&- —E&. Finally,
the level-to-configuration dielectronic capture rate is

A~ = g g a~ a~ A (fc, i/7c ),
C C

with the partial rate given by

(23)

A'(Wc, lc)=(1/gc-) QJrg g [&Pc(y,J~~JTMTIV; c l0"(y" JT" MT"»
JT g p EC"

X ~i/("(y", JT,MT )~ V, lac(y J)zJTMT ~)— (24)

where C =C+&' and C'= C'+&' and we have replaced the electrostatic operator with its projections. Using the closure
theorem, the configuration-to-1evel autoionization rate becomes

Ac (1/)c, i/)c. )=(l/gc ) y[JT] y(1/c(y, J))/JTM7 ~

v- „v „-,~7/)c. (y', J)~'JTMT) .
JT

(25)
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Here Vc c„Vc„c,is a four body operator acting in the
7 7

product space of the capturing level and the continuum
electron; all explicit reference to the autoionizing states
has been eliminated. Of course, A (gc, fc ) still de-
pends on the autoionizing configuration through the
operator Vc C„VC„C,. Using Eq. (11), we can write

(J J J J Jb Jb~')

(Z ( j,j, ) Z'"(&', jb ) )
i,j,k, l

JWJ, kWl

x(z'„' '(j',~').zI' '(j,', j')) . (29)

and

V- ..= g g g(Z,"'(j,j.) 2" (Z jb))
33 3b t iJ

lXJ

X C '(j,& j'j b )

V, —,= g g g(z(„"(jb,&) Z',"(j,', j'))
~ 7 ~ t' k l""b k~I

XC'(Jb~J, ~~~J ) ~

(26)

Vcc- Vc-c = yq tt'Ztt'
' tt'»3a3b3 3a j

(27)

IC'"(j j' j.j.' jb Jb /)=C"(J Z j. Jb)c"(J'b J.'/ J')

(28)

and the angular operator is

where j„jb,j,', j&CC", jEC, and j'&C'. The radial fac-
tor (which still depends on the energies of g and )ttc. ) is

B. Active electrons and the factorization of the continuum

In autoionization from configuration C" to C, an elec-
tron in orbital jb E.C" is ejected into the continuum,
while an electron in j, E C" makes a radiationless transi-
tion to orbital jE C. With this in mind, the set of active
electrons (or orbitals) with respect to C and C" is j„jb,
and j. When mixing between configurations C and C' is
accounted for, the set is doubled to include j,', j'b and j'.
Except in very rare cases the set of active electrons
j,j„jb,j,j,'jb is unique and, owing to Eq. (5), when its
expectation value is taken, the sum over orbitals in

Vcc"Vc"c' reduces to a single term.
A couple of examples can help clarify the identification

of active electrons. (To simplify notation, the orbital j
quantum numbers are omitted in the examples that fol-
low. ) For an autoionizing configuration C"=3d 4p4f,
and final states that are a mixture of C =3d ' and
C' =3d 4d, the only active electrons are

j,=j,'=4p, j„=j'b =4f, j=3d, j'=4d

and

&q, lv,—,„v,, ,-„ly,, &=
e C, 3a'3b'3a'3b E, C",3'E C'

I

Jb)C' (jb j

x g &q, l(z,'"(j,j.) z'"(~., jb))(z'„''(j'b,~) z')"(j.', j'))lq, , )i', k&1

= g@'(3d,&', 4p, 4f )@'(4f,4p,&', 4d )

X g&tttcl(Z;'"(3d, 4p) Zk"(~', 4f ))(Z'k' '(4f ~') Z' '(4p, 4d))lac ) .
i, k

(30)

An instance where j,Aj,' and jbWjb is C=3d' 4s4d, C'=3d' 4p4f, and C"=3d 4s4p4d4f, then, necessarily,
j,j., j, =3d, 4p, 4f and j',j.',j,'=3d, 4s, 4d.

In Appendix A, it is shown that Z" factorizes into operators that act independently on the bound and continuum
electrons:

jbZtt'
( 1) b & y ( 1)x+x'+T[ T][ i]i/2

X7X 7T

X Jb ~ X .[ytt'(x, x', T) X Z(T)( . .)](0)
X jb T t' (31)

' is a combination of one-, two-, and three-body operators (see Appendix A) acting only on bound electrons,
and given in terms of irreducible tensor operators as

( x T ) g [[Z( t )
( J J ) X Z x

( J J ) ] x X Z t
( J J ) ]( T) p p p [j ]

1 /2 g [Z ( t )( J J ) X Z ( t )
( J J ) ]

( T)

i,j,k i, k

The electronic indices i,j,k in Eq. (32) run independently over all bound electrons, and

Z'"(j„j2)=Qz', "(j(,j2) .

(32)

(33)

To evaluate the configuration-to-level autoionization rate of Eq. (25), we use (27) and (31), and the standard reduction
for the scalar product of two operators acting on different systems [20,21]. The summation over JT yields a 5T0 factor
and (see Appendix A)
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~'(Wc Pc)=(1«c ) & & X(—1)' ' IJ]'"&(—1) Ix]&fc()' J)IIY""'"ll@c(r'J)&
~ ~.~b ),),gb

«
( ~

jbXg'
X jb (34)

Note that the remaining reduced matrix element is in-
dependent of the continuum orbita1.

Evaluation of the operator Y" ' ' ' ', and further reduc-
tion of A (gc, gc. ), depends on whether or not the ac-
tive orbitals j„jb (j„jb) with respect to C" and C (C')
are equivalent to electrons in C' (C). The several possible
cases are treated separately in Sec. III C.

C. "New" orbitals and reduction
of the level-to-configuration rates

To evaluate F"' ' ' ' we generalize the concept of
"new" electrons, introduced by Racah and Stein [16], to
the general mixed-configuration case. An occupied orbit-
al of C" will be called "new" if it is active with respect to
C and does not appear in C' or if it is active with respect

I

to C' and does not appear in C.
Case 1:Both active electrons of C" occupy "new" or-

bitals. An example is autoionization from the doubly ex-
cited sodiumlike configuration C"=2p n 'sn "p into a
neonlike state g, which is a mixture of C=2p and
C' =2p n 'p. The active orbitals n 's and n "p do not ap-
pear in C' and are thus "new" orbitals. The final orbitals
of the radiationless transition are j=2p and j' =n 'p for C
and C', respectively.

In this case, owing to Eq. (5), the matrix element of Y
vanishes except for contributions when the electronic in-
dices i,j,k are all equal and jb=j„j,'=jb. Only the
one-body part of Y contributes and the configuration-to-
level partial autoionization rate reduces to the following
monopole interaction (see Appendix A):

(Pc 4c )=(1~gc )([J-]~IJ])'"o,,, ~i, i &Wc(7' J)llz"'(J j')ll@ c()" J) &

j, t'
X g g 5;; ( —1)' ' ' . . '+5, , [t] ' 4'(J ~,~J„Jb)C'(J',~ , Jg, J'b)'.

E, E

(35)

where we have used the identities following from Eq. (6)

+'(jb j.'~, j')=( —I)'C" (J'~ j.' jb»
witll I ja ~+Jb J &

aiid

@"=( —1)~ pc'(j,~,j., jb)@'(I',~",j.', jb) .

(36)

(37)

(Pc, fc ) =( 1 igc )q; ( fJ]l[j ])

X& &(t] 'le (J,~"j, Jb)1 (39)

Note that the sole angular dependence in this result is the
statistical weight [J ]=2J + l.

This strikingly simple result is superficially reminiscent
of the J-file sum rule [17,18], which also yields a simple
statistical level dependence for the configuration-to-level
rate. It might also be cited as justification, at least for
this fairly broad class of transitions, for the practice of
assuming a statistical distribution of transition strength

Note that the Kronecker 5 functions restrict con-
figuration mixing in this case to contributions with
nAn', l =l', j =j'.

For C=C', Z' '(j, j) is just the number operator for
shell In, l,j I:

&0c()' J)IIZ"'(j, j')llfc()' J) &=q;(I J]~(jl)'",
and

when using configuration-to-configuration rates in level-
to-level models.

However, in contrast with the bound-bound radiative
case covered by the J-file rule, the radial factor in (39),
through the continuum orbital, retains a dependence on
the energy of each level, in addition to the explicit depen-
dence on 2J+ 1. This dependence is not negligible,
though it is smooth, and an interpolation scheme can be
applied in analogy to that of Bar-Shalom, Klapisch, and
Oreg [1]. Moreover, when configuration mixing is ac-
counted for, the mixing coefficients are level dependent,
and introduce a nontrivial departure from the simple sta-
tistical dependence suggested by Eq. (39).

Case 2: One active orbital in C" is "new, " one is not.
An example of this case is autoionization from the highly
excited state of the zinclike ion C"= (3d ) (4d ) n "l" to a
final copperlike state consisting of C=(3d)' 4d mixed
with C'=(3d ) 4d . The orbitals that are active between
C" and Care clearly j, =4d, jb=n "I",and j=3d. Since
the 4d orbital is occupied also C', it is not "new, " while
n "I" is. The active orbitals with respect to C' are not
unique, since the internal transition of either a 4d or 3d
electron contributes to the matrix element of Vcc„VC„&,
in Eq. (27), and j'=4d or 3d.

In this case contributions to Z" vanish unless the elec-
tron indices j and l in Eq. (32) are equal. When i =k as
well, we again obtain a monopole contribution to

(gc, fc.). The total rate (including i &a) is
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~' «&c 4c&=&&&»'c &&~&'" X X&» '(Wc&&'»&
~ ~ ) ~ ~ il tJ) J ) J~) J~

( —1) ' y(Z';"(j, j, ) ZJ"(j,', j'))
l)J

lXJ

+5, o5, [j] ' Z' '(j, j') &&c&&" &&)

The two-body term that augments the monopole here is proportional to the standard matrix element of the electrostatic
interaction, calculable by standard computer routines [22].

Case 3: No new orbitals in C". This last case is the most general, but rarely occurs. An example is C=(2p) n'p',
C'=(2p) (n'p'), and C"=(2p) (n'p') . The active orbitals of C" with respect to C and C', respectively, are
j,=jb =n'p' Sinc. e they appear in both C and C', neither orbital is new. None of the contributions to (32) vanish iden-
tically in this case and the results include three-, two-, and one-body contributions,

(fc gc )=(1/gc-) X XX+"&fc(1' J)ll&" IIWc(r' J)&
~ ) ~ I ~

J J, Jq J J, Jb &

(41)

where g" = 3+8+1 . 3, 8, and I', the one-, two-, and
three-body contribution, respectively, are defined in Ap-
pendix A, Eqs. (A29) —(A32).

IV. SUM RULES FOR COLLISIONAL TRANSITIONS

In the collisional-radiative model, the population of au-
toionizing states and high-lying Rydberg levels is con-
troHed by dielectronic capture, autoionization, radiative
decay, collisional excitation, and collisional ionization.
We have covered the first two processes in the preceding
sections, deriving sum rules for "level-to-configuration"
averaging that permit the detailed states of an autoioniz-
ing configuration to be collapsed into a single, effective
level. The third process, radiative decay, as well as radia-

I

tive recombination, is covered by the J-file sum rule. To
complete this work, we derive below analogous sum rules
for collisional excitation and ionization. Of course, as
with the J-file result, these will be applicable not just to
transitions from singly excited to autoionizing levels, but
for any level-to-configuration transition array.

A. Collisional excitation

The collision al excitation sum rule is especially
straightforward since, in a previous work, the factoriza-
tion of the continuum electron was obtained for the
level-to-level cross section, and the collision strength re-
duced to a one-body operator [1]. We begin with the
definition of the collision strength:

Aoi =8+Aoi(~'~' )
,)

0 (/'/')= y yo(ro Jo)/ J7MT y'(1Ir ') qi(l i &i )/'JT~r)
J~,M~ l) Ji(j

(42)

where &',&' designate partial waves of the incident and
outgoing continuum electron. It is shown by Bar-
Shalom, Klapisch, and Oreg [1] that

&o =8& g & &g, llz'"(j„j, ) lg, &

Jp' J 1 JP) J l

x &q, llz'"(j,', j', )Ilq, &

X Q (jo ji'jo ji) . (43)

Here i))o and P, are the mixed-configuration initial and
final levels of the transition and jo, ji and jo, j', are the ac-
tive orbitals involved. In the pure configuration case
jo=jo and ji=ji, and, for transitions between different
configurations, only one term contributes to the sum over
jo, j, in Eq. (43). The radial factor Q' is a sum over con-
tinuum partial waves, includes both the direct and ex-
change parts of the cross section, and depends implicitly
on the transition energy. It is defined and discussed in

a~a~A '(g, i))'),
Co Co fG Co P E Cp

where g and f' are pure configuration states of go, and

& '(4 0')=g g g &Q'(jo ji'jo j'»q&b
JO Jl j', j',

and

(44)

detail in Ref. [1].
We will obtain the level-to-configuration collision

strength by summing over states gi belonging to
configuration Ci. In so doing, we shall again assume that
the average energy of C, can be used to evaluate the radi-
al factor accurately enough for our purpose, and factor it
out. As before, we can sum over pure configuration
states without loss of generality. Allowing for
configuration mixing in the remaining detailed level )))o,

we obtain



SUM RULES FOR COLLISIONAL PROCESSES 317

I

X & &llz'"( jo A ) II &c, & & Oc, llz'"( jI jo) I I
g' &

&C ~Cl
1

I I

'[Jo]'"&Ill(z'"(jo,ji) Z'"(jl 3o))ll@'& . (45)

Using Eq. (33), the two-body operator in Eq. (50) can be
rewritten as

(Z' "(jo, j, ).Z' "(j', , j,') )

= &(Z';"(jo ji) Z,'"(j'i jo))
l, J

lWJ

+5,( —1)"+""[J,]-'"Z"'(3,, 3,') . (46)
&p &&

Thus, the t= 1 contribution to Eq. (43) is identical in
form to the J-file sum rule for the level-to-configuration
radiative rate. Indeed, as shown by Bar-Shalom, Klap-
isch, and Oreg [1] collisional excitation can be represent-
ed by a one-electron multipole transition operator multi-
plied by a radial factor varying smoothly with the transi-
tion energy.

Note that for transitions between di6'erent
configurations, i.e., when j, (j', ) is "new" [does not occur
in Co (Co)], the first term in Eq. (46) vanishes, and the
level-to-configuration collision strength is given by the
simple one-body monopole operator, Z' ' alone. Follow-
ing the same line of argument as in Sec. III we can con-
clude that, for this class of transitions, as long as the level
dependence of the radial factor in (44) can be neglected,
collisional transition rates from a configuration into a lev-
el depend only on the statistical weight [J].

B. Collisional ionization and three-body
recombination

The rates for collisional ionization and for its inverse,
three-body recombination, derive from the co11isional
ionization strength [20].

2

I&r =—8 Z Z (Io(I',J )&8J M Z(llr, , ) I,(8', J, )&'2,J, ,&',JrMrI
~o~i~z JT ~T J. l,Ji(j

(47)

where Po and gi are, respectively, the target (initial) and ionized (final) mixed configuration bound states, &'o stands for
the continuum orbital of the incident free electron, and~'2&', represent the outgoing electron orbitals. The continuum
electrons can be factorized as in the previous processes. The steps are presented in Appendix B with the result [ cf. Eq.
(B5)]

I...=8&&@olla,'ll@i&&@oll~l ll@i&Q(j j') (48)

Q( j 3 )= g g [ t ] N (3r/'OrrI'2r~'i )@(3,/'O&8I»8I i )

PP / &I/2

(49)

As for other processes, this radial factor depends on transition energy. Assuming that the average energy of Co can
be used, the following results for the level-to-configuration recombination and ionization strengths are obtained:

and

Ic ~
=— g I, =8+ g ([J,]/[j ])'~ 5 5, ,

t j,j'CCp

&&[&;,;([J ]Ii])'"—&0 Ilz'"(j j')ll@ &]Q(j j) (50)

X I...;=8 X X ([Jo]/[J])'"t', , ~i. l &@ollz"'(j j')llano&]Q(j, j') .
j,j'E C&

(51)

In Eqs. (50) and (51) fo and P', are pure configuration
states, but Po and g, are in general mixed. But, since the
result is a monopole operator, which connects con-
figurations di6'ering only in principal quantum number, it
is a good approximation to neglect all configuration in-
teraction. Then the results simplify to the highly intui-
tive expressions

and

Ic,q, =8([Ji]/[J])(2J+1—e ' )Q(j, j') (52)

Iq c =8([Jo]/[J])V Q(3, 3'), (53)

where in Eqs. (52) and (53), j denotes the active orbital in
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(Co) .
Co, and q

' is the occupation number of that orbital.
Again, the level-to-configuration rates are distributed

statistically among levels. For ionization also the varia-
tion of the radial factor Q( j,j ) with energy is smooth but
not necessarily small; factors of 2 can be expected. How-
ever, if this variation is neglected, the statistical distribu-
tion of level-to-configuration collisional ionization is not
restricted to a class of common cases, but is rather a gen-
eral rule.

V. SUMMARY AND DISCUSSIQN

We have presented in this paper level-to-configuration
sum rules for autoionization, dielectronic capture, col-
lisional excitation, and collisional ionization and recom-
bination. These sum rules express the total transition
rate from a specific multiconfigurational atomic level into
a configuration in terms of the expectation value of an
effective operator in that level. Our results follow from
factorizing from each cross section the dependence on
free-electron wave functions. The expectation value mul-
tiplies radial integrals that include all explicit dependence
on the continuum orbitals, and that usually depend on
transition energy.

The sum rules derived here are natural extensions of
the J-file sum rule for level-to-configuration radiative
transitions, and of the work of Racah and Stein [16] for
"effective interactions, " to processes involving continuum
electrons. In many cases, our results further suggest the
J-file rule by reducing to the matrix element of a one-
body, monopole operator, yielding an apparently statisti-
cal distribution of configuration-to-configuration transi-
tion strength among levels. But because continuum or-
bitals enter the radial factors, a residual dependence on
transition energy spoils the simple statistical outcome.
Thus our results do not justify the practice of assuming
statistical distributions of transition strength, but rather
isolate the source of deviations from this rule, the better
to evaluate its accuracy.

We also found that, when equivalent electrons are in-
volved in transitions, or configuration mixing occurs, sta-
tistical dependence (i.e. , state independence) does not ob-
tain, even neglecting variations in transition energy. In
these cases, where the "active" electrons are not "new, "
our results involve one-, two-, and three-body multipole
operators. With the exception of the three-body opera-
tors that can be encountered in dielectronic capture from
excited states, the matrix elements we have obtained can
be calculated by standard computer routines [23] based
on the method of Fano [24]. An extension of the Fano
method to three-body operators will be presented else-
where.

Aside from their mathematical interest and their bear-
ing on the assumption of state-independent atomic transi-
tion rates, the sum rules have important practical appli-
cations in collisional-radiative modeling. These applica-
tions will be systematically explored in further reports:
here we will only summarize the potential utility of the
present results.

In the Introduction, we partially motivated this work
by describing several generic problems encountered in

collisional-radiative modeling, related to the proliferation
of atomic levels, and the averaging of atomic
configurations and population flux. The sum rules, in-
cluding the J-file rule, provide a consistent and computa-
tionally efficient procedure for collapsing configurations
into effective levels, and describing the flux of population
through them. This procedure shares the computational
simplicity of using configuration-average rates (i.e., those
averaged over initial and final configurations), but avoids
the assumption of state independence when connecting a
configuration and a level. As we have seen, this assump-
tion breaks down when configuration mixing is taken into
account, or equivalent electrons are involved in a transi-
tion. In the context of collisional-radiative modeling, the
application of configuration-average rates to level-to-
configuration transitions also assumes that the levels are
statistically populated. The level-to-configuration sum
rules are distinctly preferable in applications where it is
necessary to retain the detailed structure of a subset of
atomic levels, while including the effects of a large num-
ber of surrounding configurations. The sole approxima-
tion involved is the assumption of a statistical population
distribution in the averaged configuration. Note, in par-
ticular, that the sum rules are exact when describing the
flux of population from an individual level into a
configuration.

In addition, we expect the sum rules to be useful in
evaluating rates for dielectronic recombination and simi-
lar multistep processes. These transitions involve sum-
ming over many pathways connecting one level to anoth-
er through transitions to and from intermediate
configurations. The product of rates for each intermedi-
ate transition and branching ratios that are the inverse of
the total depletion rate for each intermediate state, must
be summed over all intermediate states. The use of sum
rules can expedite this calculation in two ways. First,
they yield an exact, computationally simple expression
for the branching ratio into a specific configuration. Ex-
act, total branching ratios can thus be obtained by sums
over configurations, rather than levels. Second, if the lev-
els in an intermediate configuration are populated ac-
cording to their statistical weight (or assumed to be), then
the sum over intermediate states of a given configuration
is easily seen to reduce to a product of sum-rule transi-
tion rates, divided by the configuration-average branch-
ing ratio. Of course, the assumption of statistical popula-
tions is highly problematic, and the use of configuration
averages in evaluating dielectronic recombination,
though common [13—15,25] is known to be fraught with
danger [26], at least in the zero-density limit. Still, level-
to-configuration sum rules improve upon the usual
configuration-average treatments by retaining the struc-
ture of initial and final states. In addition, the preferred
approach to calculating rate coefficients for two-step pro-
cesses [9,10,26,27], which involves weighting intermedi-
ate states by fluorescent yield rather than multiplicity,
breaks down at high densities owing to the neglect of col-
lisional mixing. Thus we expect that, particularly for
high-lying autoionizing configurations that are near equi-
librium with the continuum, a density regime exists
where the sum rules can yield the most accurate transi-
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tion rates. In all events, since the method of weighting by
fIuorescence yield cannot be reduced to analytic expres-
sions, the sum rules provide a far simpler calculation,
while at the same time improving on the accuracy of ex-
isting configuration average treatments.

The results obtained here, and their possible utility,
suggest new applications and development directions for
the theory of atomic transition arrays. One is related to
the need to choose an "average" configuration energy to
evaluate a sum rule. We have already alluded to the pos-
sibility of improving upon this approximation by adapt-
ing the concept of "emissive zones, " introduced for radia-
tive transition arrays by Bauche, Bauche-Arnoult, and
Klapisch [17] to obtain a shift in the configuration-
average energy difference. In fact, by considering higher
moments of the transition arrays for processes treated
here, it ought to be possible to systematically correct for
the neglect of transition energy variation. Another direc-
tion is suggested by the recently expounded super-
transition-array (STA) theory [28], which considers tran-
sitions between groups of configurations (super
configurations). In the context of the STA paradigm,
sum rules can be expected to yield the means to reduce
superconfigurations to effective levels.
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APPENDIX A

Decoupling of the continuum for autoionization

The angular part of the effective operator for the
configuration-to-level autoionization rate is

z"'= y ( z("(j j.) z'"( . j ))
i,j,k, li', k&1

X(ZI,' '(j(„~').ZI' '(j,', j')) . (Al)

Terms with i =j or k = l vanish since the continuum or-
bital&' is orthogonal to all bound orbitals. Thus we can
extend the sum to obtain
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ment of Energy by Lawrence Livermore National Labo-
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g ( Z'
,"(j,j, ) 2". (&', j(, ) )( Zk' '( jI„&') Z", '( j,', j' ) )

i,j,k, l

1 )t+t'[t t t])/2[[Z(t)(j
~ ) X Z(t)( j ) ](0)X [Z(t')(g ) X Z(t )(g jI')](O)](0) (A2)

where the scalar product is related to the zero-rank tensor product by

(Z', "(j,j, ) Z'"(j,', j') ) = ( —1)'[t ]' [Z'"(j,j, ) XZ'"(j,', j') ]' ' .

In second quantized notation,

Z("(j,j')= Qz(')(j, j')= —[t] '/ {a&,a&. ]'", (A3)

where a& and a;. are tensorial creation and annihilation operators [1,29]. Substituting (A3) where the continuum elec-
tron appears in (A2) yields

Z" =( —1)'+' [[Z'"(j j, )X {at.,a. ]("]( )X[{at,a .]"'XZ" '(j' j')]' ']' ' .
Jb

(A4)

By recoupling the angular momenta, and using the anticommutation relation [29]

{a',a]'](t)=Q Q [j])/2+( 1)j+J +){at a']'"
we can rearrange the operators in the following order:

(A5)

{[(Z(t)(j j ) X {at a ](x))(x )XZ(t )(j j )](T)X {at a ](T)](0)
~b 3b

The recoupling coefficient in this case is [30]

((j,j )&, (~, j(, )i;0:(j,j.)&, (~', j(, )&;01(j,j )&, (j&,j(, )x;x'(j.', j'); &:(~',~'); &)

Jbt ~' X

X Jb

Jb'
4

T (A6)

The scalar part of the anticommutation relation contributes an additional three-body contribution when jb = jb ..
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5 tl 5 [j ]' [[{Z'"(jj )X Ia. a ]'x')( )XZ")(j' j')](T)X Iat. , a ](T))(0)
b' b'

j ]1/2[ [Z(t)(g, j ) X Z(t')(j j )](T)X [ala ](T)I(0) (A7)
b'

Combining these contributions, and factoring the common dependence on the continuum, we have

Jb'
Ztt'

( 1)~b & y ( 1)x+x'+T[X 7 ][X~]1/2
X,X, T

where

X Jb g X
.[Y(xx , t, ) 'X Z(T)( . .)](0)

X jb T t' (A8)

Y(xxbT)y[[Z(t)(jj)XZ(x)(jj)](x)XZ(t )(jj)](T)
i,j,k

t'. 0|). , ljb]'"&[Z,'"(j,j.) XZb"(j.', j')]'" .
i, k

The partial rate of Eq. (24) is

(4c (tc)=
~'~a'~b'~ ~a'~b

(A9)

(A 10)

From Eq. (A9), Eq. (3.35) of Judd [21],and the identity y(x, x, O)

i,j,k
i =jWk

[J ~ ]1/2

we obtain

X[ JT]X{~c() & J~zJTMT lz" lac () .J~~'JTMT &

J~

(A 1 1) Y(x,x, O)

i,j,k
j =kWi

y(x, x, O)

i,j,k
i =kWj

and a one-body operator

(A17)

where

=&0 (r J)llk" lie (1" J)& Y(x,x,o)
i,j,k

i,j,k
i=j =k

(A18)

gtt'
( 1 )~b ~b

[J ]1/2

Jb,
Xg( —1)'[x] ' Y(x,x, O)

t X jb
(A13)

The second term in Eq. (A14) gives rise to a two-body
operator

84 = —& &., 0&t, , I:jb 1'"

and

y(x, x,0) ~ Y(x,x, O) g g g &; &1/2ij k j jb x0 t' t~~b~
i,j,k

X g[z,'"(j,j, )XZ'„"(j,', j')]' ',
i, k

(A14)

X g [Z(,"(j,j, ) X Z(k" (j,', j ) ]'0',
i, k

iWk

and a one-body operator

X y[Z t)() 3 )XZ(t)( ~ .~)](0)

(A19)

(A20)
Y(x,x,o) [[Z(.')(j j,OXZ(")(3', 3 )]' ) XZ(t )(j' j.)](o)

(A15)

The order of coupling here is arbitrary since the triple
product in (A15) is associative. The independent sum
over electronic indices i,j,k in (A14) gives rise to one
three-body operator

Thus

gtt' ( 1 )Jb tb [J]1/2

Jbt
X g( —1) [x] '

x

Y(x,x, O)
i,j,k

l, J~ k
iWj Wk

(A16) X(A, +2 +8, +8 +8 +8 +1 )

= A )+A2+B)+B2+B3 B4 I (A21)

three two-body operators By recoupling operators carrying the same electron in-
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dex, and using the relation

[Z(t)(~~ ) X Z(t')(p5) ](T)

a 5 [T]1/2 . .Z(T)(+5)j +j&+T t T t'

Ja Jp JS

(A22)

we obtain

~ )
t Jb

B 5 ( 1) jb &[J]1/2
3a3b Jb

B 5 ( 1)j+j +jb+jt +1[ ]1/2
JaJa

, jb P t t X t

J

X g(z(,"'(j,j').Z,'"'(jb, j„)),
l& J

lWJ

Jb3b

X g(Z('"(j, j, ).Z,'"(j'„j')),
l& J

lWJ

3b3a Ja3b

(A25)

(A26)

x g(Z," '(j jb)'Zk (j. j ))
i, k
iAk

Jb
B =5 ( —1)' ' " '[J]'"

JbJa Jb

X g(2(' '(j, j, ) Z," '(j„',j')),
l,Ji'

(A23)

(A24)

jb t'
x . . Z"'(J J),

Jb t J
. I

/12=5, 5,5„(—1)"
3b3b Ja3a

x [~/'j]' '[tl (A28)

Rearranging these expressions, we obtain the following
results.

(i) Three-body contribution:

. I t jb &' t'

X

X g [[Z';"(J,J, ) X(Zj("'(Jb, Jb)]'"'XZk' '(J,', J')]' ' .
l, J, ki' Wk

(ii) Two-body contribution:

(A29)

B,+B2+B3+B4=[J]'/ g g(5, 5;; 5, , 5„,P, +5,5;; 5, , P2+5, 5;, 5, , 5„,P,+5, 5; „5, , 5„,P4)
x a

x g(Z,('(j,j ) Z,"(j',j') ), (A30)

where (iii) One-body contribution:

. Jb

Jb

j +jt, +jb+j +j '+~'+t+t'+x
1

Ja

x6, , 5,6
Jb3a 3a Jb

+5,5,5„,[t]-' Z"'(J, J ) .

x
J

j —'+t+t Jb
B,=( —1)"

Jb

Jb

(A31)

(A32)

The symmetry j,~jb, j,'+ jb is hidden in these results
since, by our definition, we have chosen jb and jb as the
orbitals that are coupled to the continuum in the direct
contribution to Eq. (25).
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APPENDIX B

The collisional ionization strength is

2z z Ipo~ 0 o~wpr r x~ ~", ~ 4~ » iL'z ai r r
p,~1,~2 JTMT Ja l,j

(81)

We apply the representation in Eq. (4) and factorize the orbitals&'o, &'& using Eq. (3-38) of Ref. [21]. This step is identical
to the factorization of the continuum in the collisional excitation process [1],and leads to the result related to Eq. (44),

iy, q,
=g X X XQ'(jo~»jo~2)&0ollz'"(jo»2)llklyf2J &&Oollz'"(jo»'z)llliiA &

J&~»o ~o

Q'(jo~+2 j0»2) I. ] g c'(jo»0 j2»1)@(j0»0 j2»1
&0»1

Using Eq. (A6), and Eqs. (3-35) of Ref. 21, and the relation [29]

& olla, , II &2 &
=42]'"

we obtain

J, t Jo

(82)

(83)

(84)

(85)

Substituting Eq. (85) in (82) and summing over J, yields the fully factorized result

Ip, g,
=8X & Col—la,'III' & & Oolla,' Il@i &Q(3 3') (86)

where

Q(j, j') = g g[r] '@ (3»o»2»1)@ (3»o~/2»1) .

&o&&»2

The level-to-configuration result is obtained by using the relation [29]

and summing over the target states go in configuration Co in Eq. (86). The result is

Ic,q,
=—gg g (IJi)~IJ])'"&,,, &Pillta) a) ]'"III'&«j 3')

J,) 'E Cp

and, from (A3) and (A5),

(87)

(88)

(89)

Ia;,a; ]' '=5;.;([J,][3'])' —Z' '(3, 3') .

In the same way, summing over g& H C& in Eq. (86) yields

Iq,c, =8+ g ([Ji]l[J'])' '5, , &Po11
—Ia,",a; I' '11go&Q(j, j')

J, J CCi

=g 2 2 ([J,]/[J])'"&, , &AIIZ"'(j, j')lifo&Q(j, j') .
t j,j'EC&

(810)

(811)
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