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Zero-range potential model for the description of atomic and molecular systems in a laser field
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The method of zero-range potential is used to model negative atomic and quasimolecular ions in a cir-
cularly polarized laser field. The range of the laser-field parameters is extended in comparison with the
previous calculations of the complex quasienergies of an atomic particle. A closed-form expression that
defines the adiabatic electronic complex quasienergies of a two-state quasimolecular system is derived
and solved numerically. Both laser-induced widths and shifts of the terms are discussed for a wide re-

gion of the laser-field parameters and internuclear distances, using H2 and OH ions as examples. The
effect of suppression of the ionization rate of the excited state of a negative quasimolecular ion at small

internuclear distances due to the presence of a laser field, as well as deepening of the ground-term poten-
tial well, was found.

I. INTRODUCTION

In the analysis of atomic and molecular processes in a
strong laser field, various unperturbative methods have
limited bounds of validity, which are often difficult to
determine in terms of both the laser field parameters (ra-
diation intensity, frequency, polarization) and the atomic
(molecular) system parameters. Therefore, the models of
an atomic (molecular)system that enable an analytical
solution of the problem could provide both important in-
formation on applicability of the approximations and pre-
dictions of new effects. An electron in the presence of
one three-dimensional (3D) attractive zero-range poten-
tial (ZRP, a 5 function), embedded in a laser field, is so
far the only known exactly solvable three-dimensional
model for the description of the behavior of an atomic
system in a laser field [1-5].

The problem of one ZRP in an elliptically polarized
laser field cannot be solved exactly. However, if the field
is circularly polarized, transformation to the referent sys-
tem which rotates with the radiation-field frequency co

simplifies the problem to an exactly solvable time-
independent one [1-5]. On the other hand, a model of
two (or more) ZRP's in the absence of the laser field has
been successfully applied to a negative molecular ion sys-
tem to describe the processes occurring in negative-
ion —atom ( —molecule) collisions and in the electron-
molecule scattering [6-8]. Furthermore, one can con-
struct a class of 3D, exactly solvable models which de-
scribe a particle that interacts with a few centers [9].
ZRP and the 3D Kronig-Penny model [10] are two well-
known examples of this class. A one-dimensional model
of a negative molecular ion in the presence of a laser field,
defined by two 5 functions has been treated earlier [11].

In this paper we present a nearly exactly soluble 3D where

2Niy2
(l. la)

model of a negative diatomic molecular ion in a laser
field. The eigenvalue Floquet-type problem is solved in
the closed form for the two ZRP embedded in a circular-
ly polarized laser field of arbitrary intensity (Sec. II). The
standard semiclassical approach of internuclear motion is
adopted [12] resulting in a time-dependent Schrodinger
equation for the electron motion, where the internuclear
distance R is a known function of time. Assuming R
fixed, the problem in a circularly polarized laser field can
be reduced to a time-independent one. The real parts of
the obtained complex quasienergies at different R then
represent adiabatic quasimolecular terms, while the imag-
inary parts correspond to their widths due to the decay of
the system into the quasimolecular continuum. The H2
and OH molecular systems are treated in detail. The
generalization of the procedure to an analogous model
for three and more atom molecules is straightforward and
will not be pursued here. In order to present the em-
ployed method in a clearer fashion, as well as to extract
those laser-field effects which are at least qualitatively in-
dependent on the quasimolecular nature of the system,
the eigenvalue problem of one ZRP in a laser field is also
discussed (Sec. II). The range of the laser-field parame-
ters is extended in comparison with the previous calcula-
tions [1-5]of the complex quasienergies.

The quantum electrodynamics (QED) formalism of the
radiation field and the "laser approximation" are used,
which give results equivalent to those obtained with the
classical radiation field. The vector potential of an ellipti-
cally polarized laser field of frequency co, wave vector
k=cuk, and polarization angle ~ are defined by
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g ~+~ =ae'~ +a ~e
1

lE=c +6+Neo ——I0 2
(1.4b)

A, =e,cos(i(.),
A2=e)sin(~) .

(1.1b)

Ap is the classical amplitude of the vector potential with
Xphotons in the quantization volume.

The state vector l%(t)) satisfies the time-dependent
Schrodinger equation for an electron in the presence of
both the laser field and potential V (r),

l~(t) ) =Hl~(t) ),a
(1.2)at

where H =HL + V and HL is the Hamiltonian of an elec-
tron in the laser field, defined in Appendix A. It was
shown by Shakeshaft [13] that, in the wave-packet repre-
sentation, if the condition

In Eq. (1.3), tu, o is the minimum number of photon to ion-
ize from a bound state with energy cp and
U~ =e 3o/(4m) is the laser-field ponderomotive poten-
tial. The initial energy of the system, op+Neo, is shifted
by b, and has the lifetime 1/I (i.e., the width I ). E„ is the
energy of the electron after absorbing p photons in the
bound state.

According to Eqs. (1.2) and (1.4a), l(IiE(r) ) satisfies the
stationary Schrodinger equation with complex energy E,
Hl(l'z(r)) =El (I'E(r) ), which can be written in the in-
tegral form as

I+E(r)) =fdr'Gl (E;r,r')V(r')lqi (r')-), (1.5a)

where GL is the Volkov Green's operator, defined by
r « Fp

=Ep Up +6+Ppco & co
pp (1.3) (E HL }GI—(E;r, r') =5(r —r') (1.5b)

is fulfilled,
l
(Ii(t) ) is given by

l(Ii(t) ) =exp( iEt)l%'z—(r) ),
where

(1.4a)

with outgoing-wave boundary conditions (Appendix A).
l%z(r)) are the vectors in the photon space. In the
phase representation, and within the laser approximation,
Eq. (1.5a) can be written in the form

, exp[ik, (E )
l
r —r' —f(r, 8;r', 8')

l ]hei@(r, o;r , 8 )y'ei'(N —v)(8 —t)') ' ' '
V(r&)@ (r g)

(2ir) 0 lr —r' —f(r, 8;r', 8')
l

or, equivalently, as
3/2

(1.6a)

)IiE(r, 8}=——' fdr' I dx
CO 0 2&ix

ix(,E —U )/co
e

X exp i @(r,8;r', 8 —x)+ [r—r' —f(r, 8-, r', 8—x)]
X

V(r')VE(r', 8—x), (1.6b)

where P, k, and f are defined in Appendix A.
The integral equations in the "photon representation"

can be obtained from Eqs. (1.6) with the use of

%z (r)=(N —ml%'z(r})

m)~@I (r y) (1 7))i/2

Imposing the boundary conditions of the zero-range po-
tentials, a closed-form expression for the complex ener-
gies E will be obtained from Eqs. (1.6) in Sec. II. It
should be mentioned that Eqs. (1.5)—(1.7) are more gen-
eral than the corresponding Berson's result [2] because
Eqs. (1.5)—(1.7) can be applied to both an elliptically po-
larized laser field and to an arbitrary potential V(r)
(which defines an atomic or a molecular system).

Before we start to apply the above consideration to the
ionization of an atomic and molecular negative-ion sys-
tem, it is useful to brieAy discuss the model of the zero-
range potential and its relation to a real system [6-8,14].
An electron in one ZRP is a prominent example of a
model of an atomic negative ion, with the valence elec-

d Kp
(r~p) ' (r(I)) „=—a, s =— (1.8)

The wave function of the only bound state is then
K T

1/2 ep(r) =B (ao/2m. )'~

where B is the normalization factor which is equal to 1

tron in an s state [8,14]. The binding energy leal of the
outer electron is significantly smaller than those of the
other bound electrons in the ion. Therefore, the wave
function of that electron occupies a much larger domain
in space than the range where the binding potential is
significant (i.e., the outer electron spends most of the time
outside the potential well). In the ZRP model, the elec-
tron is considered as being free with the inhuence of the
potential on its motion taken into account through a
boundary condition on its wave function at the coordi-
nate origin. The problem is thus reduced to the solution
of the Schrodinger equation for a free s-state electron,
subjected to the boundary condition
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within the model. It can be also found from the varia-
tional calculations in order to fit the real system of finite
efI'ective range.

A negative diatomic molecular ion in the s state can be
described by a model in which an electron at r moves in
the field of two ZRP's, positioned at R, and Rz, respec-
tively [6-8]. Assuming that the motion of the nuclei is
defined by a given function of time, R =R (t) =

~ R2 —R& ~,

and that this motion is adiabatically slow, the
Schrodinger equation of the problem is reduced to

[F.(R ) —H, )(r, R) ]4=0, (1.10)

If R ~R =(~,s2) '~, this equation has two real solu-
tions for E(R)—the bound states with E2&e, &0 if
co& & co&. If R & R, c.z stays negative, with
lim~ o (ez) = —~. The singularity of E2 at R ~0 is con-
nected with the fact that, in this limit, the potentials are
not independent and their mutual interaction has to be
defined, as is done in Appendix B for a more general case
(in the presence of the laser field). When R &R, the

where E(R) defines the adiabatic terms of the molecule,
and R appears in Eq. (1.10) as a parameter. Similarly, as
in the case of an atomic ion, the wave function of the
outer electron in a molecular ion can be defined in the
whole space (except at R, and R2) as the one of the free
particle with two boundary conditions of the form (1.8) at
r =R, and r =R2. So, at r =R, the boundary conditions
similar to (1.8) are applied, with 1~0~~, Eo~eo, where

co is the electron energy in the jth potential when the
two ZRP's are at infinite distance. Then, the wave func-
tion of the electron can be represented as a linear com-
bination of the solutions y& and y2 of the type (1.9}, i.e.,
P(r) =c,y, +c2y2, and applying the above boundary con-
ditions, the equation for the eigenenergies follows in the
form [6-8]

exp( —2~R )
(~—~, )(~—~2) =

2m 1
V(r) = —5(r) rI v Br

(1.12)

and, in the case of a molecular ion, the outer electron
moves in the system of two such potentials.

The numerical solutions for the complex quasienergies
of an electron in one and two ZRP's in a circularly polar-
ized laser field will be discussed in Sec. III. In Sec. IV,
we give our concluding remarks. The system of units
with fi=c= 1 is used through out the text.

eigenenergy c., of the excited state is complex
(e, =ReE, —iI z /2), which corresponds to a quasistation-
ary eigenstate of width I z [15]. Therefore, even in the
absence of a laser field, the decay of the higher state of
the quasimolecular negative ion is possible for a certain
region of R.

The connection of the above-described model with a
real molecular negative ion can be discussed, for instance,
on the example of the H2 ion. The binding energy of
the H ion is 0.7542 eV. The solutions of Eq. (1.11) yield
adiabatic electronic terms of the H2 molecule as func-
tions of R (Fig. 1), with Rg=4.246az. On the other
hand, the molecular terms of H2 have also been calcu-
lated by diIterent methods —for example, by the varia-
tional method, or by the method of resonant states with
complex local potentials, etc. [14]. The results of these
methods can be used to identify the states, the energies of
which are determined by the numerical solution of Eq.
(1.11). The comparison as well as the symmetry con-
siderations show that c, and c2 correspond to terms of
Xs and X„symmetry [6], respectively, while the X„

term of the Hz molecule represents the referent energy
level (horizontal axis at Fig. 1) of the terms of H2 . The
two-ZRP model has led to excellent results for a detach-
ment probability and the detached electron spectrum in
ion-atom collision problems [14].

We note that the boundary condition (1.8) is equivalent
to the choice of the local potential V (r) in form

E(eV)
)0

tR

R tunits of oB)

FIG. 1. Electronic terms of molecular ion H&, obtained in the model of two ZRP's with co, =Eo2= —0.7542 eV. Interaction be-

tween two potential centers is not included (Appendix 8).
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II. BASIC THEORY

The closed-form expression for the electron complex
quasienergies of the ZRP model of a diatomic molecular
negative ion is derived in this section. As a special case,
the ZRP model of a negative atomic ion is also treated.

As was discussed in the Introduction, the eigenvalue
problem is defined (at a fixed interpotential distance) by
the time-independent Schrodinger equation

(E HL —) Ig~(r, R) )

Then, from Eq. (1.5), it follows that
2

I)I(E(r,R)) = — g Gl (E;r,R )IB. . ) .
j=1

(2.3)

tc)b(&+ g F„„(E)b(„+g S (E;R(,R2)b2 =0, (2.4a)

Applying the boundary conditions (2.2) to QE(r, R), and
assuming an elliptically polarized laser field in the dipole
approximation, two infinite systems of coupled linear
equations for the coefficients b „, j = 1,2,
p=O, +1,+2, . . . are obtained

5(r ) r Ig~(r, R)),I
1 Kj BPJ

(2.1)

g S„(E;R2,R, )b, +a2b2„+ Q F„,(E)b2 =0, (2.4b)
where r =r —RJ, r~

= Ir I, j=1,2. The boundary condi-
tions of the type of (1.8) yield

where

lim ~&I)IiE(r, R)) = —)1 IB ), j=1,2a
r.-o Br,. '
J

or, equivalently,

lim I%'z(r, R)) = ——~ +O(r ) IB ),1
E

J

(2.2a)

(2.2b)

(E)= d8e
2~ 0

X da F(E;a,a )e'~
2K 0

(2.5a)

&&IB )=(2~)—(/2yb e
—i(N v)8—

J Jv

(2.2c)

where IB )is an a. rbitrary vector in the photon space with

eiN(8, 8')

f (8,8')
i(N —v)(e —

Ã)I ik (E)f(8,8') (2.5b)

(E;R„R2)=— J dg I d8'e ' "' Gl (E;R„6;R2,8')e'
711 0 27T 0

Gl is given by (A10) and (A 1 1) of Appendix A. For a circularly polarized laser field this yields

,
expIi I

k .(E)IR,—R2 —f(R„1)',Rz, 6')I]]
217 0 27T 0

(2.6)

(2.7a)

where

IR, —R2 —f(R(, 8;R2, 1)')
I

= h (1)—O', R)(1—g)'

1/2
x +k.R

h (x,R)= R +2a()sin

(2.7b)

(2.7c)

g=0 if RIIk. The approximation is better (i.e., it includes
a broader region of angles between k and R) if the inter-
potential distance is larger (or if the field is stronger).
The details of the approximation are discussed in Appen-
dix C. Then the equation for eigenenergies is obtained in
the form

2 ~ aosin(y )R n(i(o+)

R +2aosin (i(o )

I)()+F(e)][z~+F(E)]=S(E,R)S(E, —R),

(2.7d) where

F(E)= 2m. 1
dX g e ivxr e kV (Z)f (xj

o 2~f (x)

(2.8a)

(2.8b)

n(i(o) =e(cos((p)+ e2sin(&p),

2y+ =8+6' —k.(R(+R2) .
(2.7e)

S(s,R)= 1 —i vx +ik (R)h (x,R)
o 2vrh (x,R)

(2.8c)In order to diagonalize the system of equations (2.4), one
needs an additional approximation: g (&1. Note that and
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f (x)=2' ao~ sin(x/2) ~,

k „=2m (e —U~+vco),

e=c. . +6—i/2I, j =1 or 2 .

(2.8d)

K~', J=12,2m'
1/2

f(x,R)= 1+a sin ——b
X

2

(2.10a)

(2.10b)

Using the coordinate-phase representation and within the
approximation g «1, another form of the eigenvalue
equation can be derived which we present here without
any further details of its derivation:

CX0
a =2

R

2 4

=2 I 2& aa

I~ co R

2

(2.10c)

[~',(E)+G(e)][az+G(E)]=S(E,R)S(e, —R),
where

1/2

(2.9a) b =k.R
2

k (E)R =

S +F~ ~kR,
' 1/2

R
1/2

E —U
V+ (2.10d)

G(E)=
27Tl

dX X
—3/2 iZxX X
~

e
0

R 6)p~=
' 1/2

ag

(2.10e)

X exp i f (x) —1
2x

~'(c, ) =~—[ —2m (E —U„)]'

co@=c.—Up,

(2.9b)

(2.9c)

(2.9d)

where I~ =3.5X10' W/cm is the atomic unit of the
laser-field intensity and % is the Rydberg energy. Equa-
tion (2.8a) transforms into

[w i
' —z I(z,B)—][w 1

' —z I(z,B)]—
=J(E,R)J(E, —R), (2.11)

where
3

and

S(E,R)=

mcus

27Tl

1/2

f "dx x-'"
0

U= —B B=CO

p 4

U —c.Z'= ' ' —X'&'+ lX'J',ZJ 1 l

(2.12a)

Introducing the notation

Xexp ibex+i h (x, R)
2x

(2.9e)

and

x'J'=
1 7

CO

x,'&' = I
2cc7

(2.12b)

00 —3/2 —iz 2xI(z,B)=(4~i) dx x e "" 1 —exp Bsin (x/2)—
0 X

1 2~ 1J (E,R) = f dx g exp[ ivx +ik,—(Y)Rf (x,R)]
p 0 2m x R)

(2.13a)

=(4mi) '~ f dx x ~ exp iz x+ ——f (—x, R)
0 X a

(2.13b)

l7 =c.+A. ——I j =1 2
2

(2.14)

where c in the eigenenergy in absence of the laser field.
The right-hand side of Eq. (2.13a) can be expanded in

series of powers of B:

Boundary conditions, applied to the asymptotics of the
electron wave function with the complex quasienergy,
discussed in Sec. III [Eq. (3.2)], yield the choice of a prop-
er sheet of the Riemann surface. Then, Eq. (2.11) has
only two physical solutions

I(z,B)= g I„(z,B),
p — oo

where

I„(z,B)= ( —1)"(z'—p)'"

[B(z —iu)]"

,„ii ~„~i
(2n +1)(n —

)tu!(n +p, )!

(2.15a)

(2.15b)



P. S. KRSTIC, D. B. MILQSEVIC, AND R. K. JANEV

while the integral J(E,R) =J(z, a,p b) is expanded as

p„J(z,a,p, b)=exp( —p z)

+ g ( —1)"(2n —1)!!2 "a"
n=1

where

S„(Z,J3,b)

XS„(z,p, b), (2.16a)

with

n
( 1)n i2mb

%'„(p (z +m)' )„(n —m! n+m! (2.16b)

%„(z)=
' 1/2

2
Z En + 1/2(z) (2.16c)

and K (z) are McDonald's functions [16]. Note that
%'„(z) can be calculated using the recurrence relations

%'„+,(z) =Z%'„,(z)+(2n +1)%„(z),

and the properties

ZA, (z) =NO(z) =e

lim%'„(z) = 1,
z~O

lim A„(z)=0 .

n =0, 1,2, . . . (2.17a)

(2.17b)

The expansions (2.15) and (2.16) are used to solve Eq.
(2.11) numerically and these need to be discussed in de-
tail. According to (2.17), J(e,R)~0 as R —+ &m, i.e., the
two ZRP's become independent, and Eq. (2.11) splits into
two independent equations which define eigenenergies for
the electron which move in the vicinity of one ZRP. One
of these is

w, ' —z I(Z,B)=0, — (2.18)

which can be shown to agree with the eigenvalue equa-
tion derived by Manakov [1] and Berson [2]. Since g~0
for R ~ ao, there is no longer any condition to be
satisfied, and Eq. (2.18) is exact. The pth term in the sum
for I(Z, B), Eq. (2.15a), corresponds to the p-photon ion-
ization (popo). The sum in Eq. (2.15b) runs over the
powers of the laser intensity [contains B"=(I/Iz )",
n ~

~ p ~ ]. By standard methods [17], it can be shown that
the series in n converges absolutely for all B and u,
within the intervals of I defined by the zeros of z —p.
The points of nonanalyticity of the functions
(z —p)"+', i.e., the branching points of I(Z, B), are at
z —p=0. The channel for a p-photon ionization closes
when the intensity I reaches some limiting value, defined
by Re(z —p ) =0. The closing happens due to an in-
crease of the ionization potential

~ eo —U +b, ~. From the
general theory [13] it follows that the total width I can
be written as a sum of partial widths I „. At low laser in-
tensities, all p & po photon processes contribute to the

width I, i.e., I = g„o I „. When I increases, Re(z co)~ —~p
increases too. This induces closing of all channels
po~p~p„and therefore I = g„&„ I „. On the otherP+P(
hand, the integral J (Y,R) is expanded in a series over the
parameter a =8/(J3 /2) Therefore, the expansion for
1(Z,B) and J(s,R) are both expansions in the field in-
tensity. By the change of the order of summation in
(2.16), it follows that the pth term in series (2.16) corre-
sponds to the pth photon process, and the sum over n is
absolutely convergent. The branching points are again
those where (z —p)'~ =0. Note that, with the two
ZRP's at distance R &R, the eigenenergy c.

&
is complex,

c, &=Rem.
&

—iI z/2, even if the laser field is not present.
One can write

Ep
—E Up +6+pcs

q„=[2m ( E„—i I /2) ]

l «c, &co .
Pp

(2.19a)

(2.19b)

(2.19c)

If R )R, or if the ionization originates from the ground
term E2, e in Eq. (2.19a) stands for c, , or e2, while I in
Eqs. (2.19b) and (2.19c) should be replaced by I, or I 2,
with po) 0, c„)0, and A~A& or 52. But, when R & Rz,
E, becomes complex and the relation (2.19) applies with
a~Res&, I ~l ~+I &, and 6—+6&, with po&0. Since
Res, )0, the absorption of photons from the field is not a
necessary condition for ionization. Furthermore, it can
be that p &0, i.e., photons are emitted during the process
of ionization. The total ionization rate I ~+I, is then
smaller (Sec. III) than the ionization rate in the absence
of the laser field I ~. We note that contributions to l,
comes from all partial I &„with p ~ po, where po&0, i.e.,
I i= X„„,I i„.

III. DISCUSSION OF THE RESULTS

Equation (2.11) is solved numerically for complex
eigenenergies of an electron in presence of both ZRP's
and a circularly polarized laser field. To compare our re-
sults with possible experiments, the parameters were also
chosen to model the H2 (symmetric) and OH (asym-
metric) ions. In the case of the atomic ion H, the
quasienergy of which is obtained as a special case of our
procedure, Eq. (2.18), the range of the laser field parame-
ters is extended in comparison with the previous calcula-
tions [1-5,18].

A. Atomic case

Equation (2.18) was solved using the expansion (2.15).
The key parameters upon which the results depend are
the laser field intensity, the frequency, and the ionization
potential of the model atom (ion). Figure 2 shows b. /co
and l /2' as functions of parameter B, for different
values of w, w=0.5, 1, 2, 5, and 10. Jumps on the curves
correspond to the branching points of the function
(z —p)' . According to Fig. 2(b), the width increases
nearly linearly with the laser-field intensity if w ) 1.
%'hen Uz

—6 becomes large enough, the ionization may
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4 I 1 —4/(3w )[(1+w) —2+i(w —1) / ]] .

(3.1)

From Fig. 2 it is obvious that the maxima and positions
of the branching points are shifted toward larger B's and
are more pronounced if w is larger. The reason is that z
becomes smaller with the increase of w (U is smaller,
i.e., the ionization potential is smaller). Then larger
values of 8 are needed to close the p-photon ionization
channel. The shift of the ionization potential is 6—U .
It is important to note that, if the laser field is strong
enough, the principal contribution to this shift comes
from the ponderomotive potential, which exceeds the
laser-induced ac Stark shift by many orders of magni-
tude.

The choice of the sign of the square root (z —p)' in
calculations deserves some attention. The complex
momentum of the electron incurred by ionization is

q„=[2m (s„—iI /2)]'
= [2m ( E —U +b, +pcs i I /2 ) ]

'/—
= [—2m (z —p)n~]'/

The asymptotic limit of the electron wave function as
r ~ oo is of the form exp(iq„r)/r. Since this limit has to
give a divergent wave, and since c„)0 and Req„& 0, it
follows that

w=5 then AV2& = V2 —V, -=7. It is important to note
that, if V is larger than 15, I /2IEoI approaches 1 and
therefore I loses its meaning of the ionization rate.

Potvliege and Shakeshaft (Sec. III of Ref. [18]) have
also studied a short-range potential simulating a negative
atomic ion. Their Fig. 8 shows a similar behavior of I .
They follow the path (in the complex E plane versus
laser-field intensity I (8X10' W/cm ) of a resonance
pole (of the scattering amplitude) which starts as a bound
state (co—= —1.09 eV), in the presence of a linearly polar-
ized laser field of frequency co=2.33 eV. The resonance
pole is a dominant one if the laser-field intensity is below
the threshold (after which the channel for one-photon
ionization is closed). If the intensity increases further,
the resonance pole interchanges its role with a nearby
shadow pole (which lie on some of the additional unphys-
ical sheets of the Riemann surface, see Ref. [18] and
references therein). To compare our results with theirs,
in Figs. 4 and 5 we present the results for the H system
(so= —0.7542 eV). In the Fig. 4 the width I is presented
versus the laser-field intensity I (2.5 X 10' W/cm and
photon frequency co=2 eV. po is the minimum number
of photons needed to ionize. The results presented in Fig.
4 are qualitatively similar to the results of Ref. [18]. The
width I increases from zero when I increases, passes
through a local maximum for some I, and decreases.

& /IE() I

0.8—

if Re(z —p) (0 then Re(p —z )' )0 . (3.2a)
0.6—

It should be mentioned that, since I & 0, we have
Imq„&0 if Req„& 0, which is the usual condition for res-
onances [18,19].

Similarly, when the ionization channel is closed
(E„(0), the eigenfunction has to decrease exponentially
with r as exp( q„r), i.e., —

0,2—

0

—0.2 :
BER SON

(a)

if Re(z —p) )0 then Im(p —z )'/ )0 . (3.2b)

The choice of the sign of the square root is uniquely
determined by the conditions (3.2a) and (3.2b). Condition
(3.2a) is equivalent to Im(z —p)' (0, while (3.2b) gives
Re(z —p)' )0.

Other combinations of parameters may be also used in
presenting I and h. One of these, originally introduced
by Berson [2], is defined as V =2IA/EoI (I/I„)', and
therefore B =2V /w . b, /IsoI and I /I2soI versus V, for
w=2, 5, and 10 are given in Fig. 3. Our numerical re-
sults agree with the Berson's in the range of parameter V
which was considered by him ( V(1.5 for b, and V( 1 for
I ). Furthermore, we are able to compute b, and I for a
much greater value of V ( V=50 in Fig. 3). The branch-
ing points are defined by

V„=2'/ w (pw —1+ 6 /IsoI )'

and the difference between two successive V„can be used
to define a local period of oscillations. For example, if

I /l26pl

1

10

10

—2
10

'IO

BER SON

15

Cb)

I

45

FIG. 3. {a) Shift 5 and {b) width I of the bound-state energy
Eo of an electron in one ZRP vs V=2 IR/eoI ~ (I/I„)'~, for
different values of the parameter w=2, 5, and 10. The interval
of V(1.5 was considered by Berson [2]. b. Vz&

= V2 —
V& is a

distance between successive branching points of the function
[z'( V) —p]'~, @=1.2.
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4, l (ey)

pg

I(10 IA)

—0.04

-0.08

FIG. 4. Shift 5 and width r of the ground state of H, calculated in the model of one ZRP, vs the laser-field intensity I, with the
photon frequency of co=2 eV. Up is the ponderomotive potential. po is the minimum number of photons needed to ionize.

After the first threshold (go=2), the conditions (3.2) are
fulfilled for the (p —z )' which correspond to a different
sheet of the Riemann surface, the shadow pole becomes
dominant and I increases again with increasing intensity
I. In Fig. 4 there are four thresholds presented at which
resonance and shadow poles interchange their roles.

If the frequency is low enough (Fig. 4), even for
I« I~, the width takes values of order of 1 eV and,
therefore, the condition I &(cp cQ Up+6+pQco(copo
is violated. On the other hand, the condition above is

also not fulfilled in the vicinity of branching points of
(z —p)'~ since z —p=O yields E„=O. In fact, the chan-
nel p closes and the energy of outgoing electron becomes
vanishingly small. A further increase of I opens a new
channel p where I &(c„. For example, in the case of the
H ion, with co=2 eV and I =9.3X10 Iz it follows
that pQ

= 1 6 ]=0.026 eV, and I =0.279 eV. But
I =9.7X10 I„yields pQ=2, F2=2 eV, and I =0.32 eV.

The values on the abscissa of Fig. 4 can be related to
other parameters of interest: I =x X10 Iz, B =2.52x,

4, f (ey)

FIG. 5. Shift 5 and width 1 of the ground state of H ion vs the laser field intensity I at the photon frequency of co=10 eV. po is
the minimum number of photons needed to ionize.
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U =1.26x eV, up=5. 85x' a~ and V=4. 84x' . Simi-
larly, in Fig. 5, one has I =xI&, B =20x, U =50x eV,
up=7. 4x' a~, and V =153x' . Therefore, the parame-
ter ao reaches values of 16a~ in Fig. 4, but the frequency
is not sufficiently high (co=2 eV) to make a comparison
with the standard high-frequency approximation [20].
On the other hand, in Fig. 5, the frequency is high
enough (co=10 eV) but the parameter ao reaches values
of 4.7a~, which is too low to be in the atomic dichotomy
regime [21]. Therefore, our results do not contradict to
the results of high-frequency —high-intensity approxima-
tion of Gavrila [21] where the width of a bound state de-
creases as a result of atomic dichotomy, in the limit
&o)) 1

B. Molecular case

Before we discuss the physical content of our numeri-
cal results, it is useful to derive an approximate solution
of Eq. (2.11), in the limit I« Iz. The parameter z, Eq.
(2.12b), can be written in the form

2 . '+0z =zo+ Az, zp = ——=xo+iy p
= roe (3.3)

(p —p, )(p —p, )=e (3.4a)

where zo is a solution of the eigenvalue equation (1.15) in
absence of the laser field. Equation (1.15) is rewritten in
the form

P= exp( —p„)[(1+p„)exp(—p„)

—
—,'cos(2b)F (z 0 )], (3.6b)

F(zo) =e'i' (—1 —ip )+exp( —p+ )(1+p+ ),
(3.6c)

( 1+z2 )
1/2

Note that 6 and I are given in terms of Az as

b, = AX& =
U~

—co Re[hz(2zo+ bz) ],
I =2coX2 =2' Im[bz(2zo+bz)] .

(3.7)

(3.8)

It should be noted that the parameters B and a are in-
versely proportional to the third and fourth power of the
field frequency, respectively. To have convergence of the
obtained expansions for I« Iz, the frequency should not
be too low in comparison with A. Since a is inversely
proportional to the square of the internuclear distance, R
is supposed to be not too small in comparison with a~.
For R &&a~, the c is real, and one obtains

Obviously, the width is not vanishingly small only if
zo & 1, i.e., l s l

& co. The applicability of the derived ap-
proximation depends upon parameters B and a, where

4 2 I coB=U ', a=2U 4r ', U=, r=
I~ Iw ZR

where

R
p =p zp=

ag

1/2

Bbz
I g )),~ = ——Yi (z 0 ),

B
X2 I z» ~

= zo'(1 —zo )

(3.9)

R &ogpj=
Qs

1/2

J =1,2
(3.4b)

Of the two complex conjugate solutions of (3.4), the one
with Im(zo ) = I z /(2') )0 is chosen. If, the terms of or-
der (I/I„) are neglected in Eq. (2.11) [i.e., the terms of
the order B'a (bz/zo)", l +rn +n )2] and the relation
(3.4) is used, it follows that

which is in agreement with the approximate solution for
one ZRP, Eq. (3.1).

The above analysis can be used to discuss the depen-
dence of 6 and I on R, when I« Iz. The approximate
results for the H2 ion, at co=3 eV, are presented in Fig.
6. These solutions coincide with the exact numerical
solutions if I & 10' W/cm . The limiting values 6 and
I are

b,z =(a —P)/y,

a =—(p, +p2 —2p„)Y, (zo ),B

(3.5a)

(3.5b)

lim h.
g ~ oo

[2e. —(1+e. ) ) ]

(3.10a)

(3.10a)

Y, (z) =z'"—
—,
' [(z +1)'"+(z—1)'"],

P= exp( —p„) g S,(zap~, vb),
phd &=+1

y=2 exp( —2p„)+2p„—p, —p2 .

(3.5c)

(3.5d)

(3.5e)

lim I —SU el/2(1 e )3/2
Jg

Kp~
e =, j=1,2.

CO

In this example e1 =e2 and

= 130 eV, I =484 eV .I I
g I

(3.10b)

(3.10c)

Y( ~)= 3 —
—,'(1+ 2)3/z —(1—z)3/ (3.6a)

The obtained result for Az is linear in the field intensity.
When c, is real, the solution simplifies since

Note that here 6 is of the same order of magnitude as U,
which is not true at higher laser intensities.

Since s2(R) is always real and negative, b,z(R) and
I 2(R) behave regularly, without sudden jumps (this is not
true for higher laser intensities where branching points



ZERO-RANGE POTENTIAL MODEL FOR THE DESCRIPTION OF. . . 3099

6

I

units of aB)

FIG. 6. Scaled shifts (6) and widths (I ) of the electronic terms of the H2 ion vs internuclear distance R, at co=3 eV and in ap-
proximation I« I&. 6 and I coincide with the exact results if I &10' W/cm . A~ and I ~ are the limiting values when R~ ~. In-
dices 1 and 2 stand for the higher and lower terms of Fig. 1, respectively.

appear). The shift b, 2 starts from vanishingly small
values, decreases to negative values as R increases, and
has a minimum b2(R =2.2aii )= —132I/Iz eV. After
that it increases to 5~. This means that the effect of the
laser field is to increase the depth of the potential well of
a molecular electronic state. The width I z is significant
only if

~ E2~ (co=3 eV, i.e., if R ) 1.gait. It increases with
R, passes through a maximum

I 2,„=Iz(R =5.2aii)=621I/I~ eV

and tends to I as R —+ ~. The appearance of the max-
imum of I 2 is not a surprise in the molecular case. From
Eq. (3.1) for the atomic case, it follows that
I =

~ Eo ~

'~ (co —
~ Eo ~

) ~, and the maximum appears at
co= —co/4. In the case of two ZRP's, the dependence of
I 2 on s2(R) is more complex and the maximum appears
at a different value of E2(R) For example, if co=7 eV, the
maximum of I emerges at R =2.5aii [E(R ) = —2.04 eV].

The analysis of the excited term c& is a more complicat-
ed. There are two regions which have to be considered
separately: R ~ R and R & R . If R ~ Rz, c,

&
is real, the

shift 6& decreases and passes through a minimum
h, (R =7.3a~)=27.31I/I„eV and than increases to b, ,
while I

&
increases to I . More interesting is the region

R &R since c& is a complex number there which intro-
duces interesting effects. There are two critical points
R

&
=2.065az and Ro——-R~ =4.246az where cusp points

(discontinuities of the derivative) of the curves b, (R) and
I (R) are noticed (Fig. 6). The appearance of R, is a
consequence of the nonanalyticity of the function
(zo+1)' in Eq. (3.7). When one photon is emitted,
p= —1, it follows that

Re(zo —p)co = —Re(e, )+co=0

(Re[ei(R i)]=co=3 eV), and both U and 6i can be
neglected, since I« Iz. Therefore, as in the case of one

ZRP, the branching points of (z —p)'~ are the points
where the shift and width have jumps. The condition
z —p=0 is realized here by change of the internuclear
distance R. If the frequency is lower, a process with
p= —2 is also possible, and an additional point R 2 ap-
pears. It is also interesting to note that the total width
I &+I z can either be increased or lowered by the pres-
ence of the laser field. From Eq. (3.6) it follows that the
transition point for I, from a positive to a negative value
is defined by the condition

Re(bz)lm(zo )+Re(zo )Im(hz) -=0 .

The critical point Ro -——R is defined by c&=0 and there-
fore zo=0, i.e., R =R is the branching point of the func-
tion (zo)' . At this point, the channel for ionization
without absorption of photons is closed, and the one-
photon ionization becomes the dominant channel.

The discussed approximate and numeric solutions
agree completely if I & 10' W/cm and R )0.5az. This
conclusion is valid for any value of the angle between R
and k (within the range g ((1, see Appendix C). Figures
7 and 8 show the numerically calculated shifts and widths

62, I „and I 2, for the laser field of intensity
I =10 Iz. Here the approximate and exact solutions
agree to within l%%uo, except for small R, as was discussed
earlier in this section. Each of the results is given for
three values of the frequency co=1, 2, and 3 eV. The
maxima of the shifts and widths are largest for the lowest
frequency. This is a consequence of the inverse depen-
dence of parameters B and a on co. When co increases, the
position of the critical point R, [where Rem, ,(R, ) =co]
is shifted toward the smaller values of R, since
e,(R))E,(R') as R (R'. The position of the second crit-
ical point R =-R is independent of frequency. It can also
be noticed that the position of the minimum of 62 and
maximum of I 2 are shifted toward smaller R with the in-
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8

4

0

12

0
2

(a)

R(units of a~)

of as&

mately satisfies the equation

Re(bz)Im(zo)+Re(zo)Im(bz) -=0 .

Crossing of the term Res&+6& —U with the continuum
edge corresponds to the point of nonanalyticity of the
function (z )', i.e., to the closing of the ionization chan-
nel which takes place without any photon emission (ab-
sorption). This corresponds to the jump of I R+I, in
Fig. 11(b). Therefore, the presence of a laser can increase
the stability of a negative quasimolecular ion in the range
of internuclear distances R & R .

Finally, Figs. 12 and 13 represent the widths and shifts
of the molecular terms as functions of the laser intensity
at fixed R. As in the case of one ZRP, the critical points
that correspond to the closing of subsequent ionization
channels can be noticed. These points appear at intensi-
ties for 6& and I

&
which differ from those for Az and I 2.

In the case of higher frequencies, the branching points of
(z —1)'~ appear at higher intensities. The depths of 6
and I are better pronounced in the atomic case since the
term J (s,R ) on the right-hand side of Eq. (2.11) smooths
the curves. We note that the critical points for larger R
appear at higher intensities which is in agreement with
the condition

FIG. 7. (a) Scaled shift 6I and (b) width I
&

of the excited
electronic term of the H2 ion, calculated at the laser field of in-
tensity I= 10 I„,for different photon frequencies ~= 1, 2, and
3 eV.

62g = —31I/I, eV,

I 2g =382I/I~ eV .
(3.11)

As a consequence, there is a crossing of I
&

and I 2 at
large R and 62 tends to negative values.

Figure 11 shows the total width and the real part of
&

with and without the laser field versus R, in the vicin-
ity of R~, at co=3 eV and I =2X10 I&. The total
width of c, , is lowered by the presence of the field as a
consequence of the negative value of I &. This is true for
those R that are smaller than the value which approxi-

crease of the frequency. Since s2i decreases when R in-
creases, the condition

~ c2i =co is reached at smaller R if co

is higher (Fig. 8).
When I ) 10' W/cm, the numerical results are

significantly different from the approximate ones, which
means that the contribution of the multiphoton processes
becomes significant. Figure 9 shows the results for the
Hz system at I =10' W/cm and co=3 eV. The onset
of I z is at smaller values of R if the field is stronger than
the approximate result gives. Besides, the absolute values
of the extremes of I 2 and 52 are smaller and are shifted
towards larger R. Figure 10 shows the results for the
OH ion. The binding energies of the H and 0 ion
are 0.7542 and 1.462 eV, respectively, and

Rs (OH ) =3.6a~. The qualitative behavior of the
widths and the shifts for this system is approximately the
same as that for the H2 system (relative positions of the
maxima and minima and critical points are approximate-
ly the same). b,zg and I 2g for this case are

[ U —b,2+ ~
s2(R)

~

—co]' =0,
since E2(R')~ (is2(R)~ for R')R

IV. CONCLUSIONS

The analysis of the numerical solution of the eigenval-
ue equation (2.11) for the widths and ac Stark shifts of
the excited quasimolecular term ~1) and the ground-state
term i 2), in the presence of a circularly polarized laser
field, yields the following conclusions.

(i) The closing of the channel for a p-photon ionization
of a quasimolecular term is determined by the condition
Re(z; —p) =0, i=1,2. In the atomic case (p=1,2, . . . ),
this condition was reached by changing the laser intensi-
ty. In the molecular case this is achieved by changing
both R and the intensity. In the considered examples, if
R &R then p= —1,0, 1, . . . , i.e., the ionization is also
possible with simultaneous emission of photons into the
field. Therefore, for a range of R, the total ionization
width I,+I z may be smaller than the original one (I „,
in absence of the field). Thus, the ionization rate of a
quasimolecular ion is suppressed by presence of a laser
field (for R (Rg). It is also noticed that the total shifts
of the excited term, induced by both U and ac Stark
shift, decreases the critical internuclear distance R at
which the excited term of negative quasimolecular ion
enter its ionization continuum. This further decreases
the collisional ionization rate of the quasimolecule.

(ii) 52 and I 2 have minima and maxima, respectively,
at certain values of R. The former shows the possibility
of increasing the depth of potential well in the ground
state of molecule by the presence of a laser field.

(iii) Shifts and widths of the terms are larger for lower
frequencies.

(iv) In the case of low laser intensities (I ( 10'
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h, , f (eY)

0.10—

0.05—

(units of a )

—0.05—

FIR. 10. Shifts 6 and widths I of the electronic terms of the OH ion, induced by the laser field of intensity I= ]0'
frequency of co =3 eV. The ponderomotive potential is U =0.16 eV.
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4.0 R (units of aB)

FIG. 11. Excited electronic term of (a) the OH ion and (b) its width in the absence (solid line) and in the presence of the laser
field (dashed line) of intensity I=2 X 10 I~ and frequency co =-3 eV, in the vicinity of the critical distance R~.
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FIG. 12. Shifts and widths of electronic term of the OH ion vs the laser-field intensity at fixed internuclear distance R =6a&,
co=3 eV.

W/cm ), one-photon processes are dominant (if energeti-
cally allowed), and significant decay of the ground state
occurs only when R is such that ~e2(R)~ (co. At higher
laser intensities, this condition is weakened by intense
multiphoton processes.

(v) As R~ao, b, and I (j=l,2) tend to the limiting
values which can be obtained as the solutions of the prob-
lem with one ZRP. In that limit the potentials become
independent.

(vi) The quantities b, and 1 1 as functions of the inten-
sity I increase linearly if I (&I&. With the further in-

crease of I, e6'ects similar to those in the case of one ZRP
appear: nonlinearity and closure of the channels for a p-
photon absorption.

(vii) When the internuclear distance tends to zero, the
model of two-ZRP treated here needs to be redefined, by
introduction of a parameter of the interaction between
the potentials. Then, in the limit R~0, the two-ZRP
tends to the one with equivalent strength given by Eq.
(B9), which corresponds to the united-atom limit of a real
quasimolecular system.

h, r (eV)

6

0
0.4 0.8

h2
I

h)

I

' I (o.lip, )

FICx. 13. Shifts and widths of electronic term of the OH ion vs the laser-field intensity at fixed internuclear distance R =6az,
co= 10 eV.
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APPENDIX A

In this appendix, the explicit expressions for the nonre-
lativistic Volkov Green's operator are derived. These are
used in Sec. II. The time-dependent retarded Green's
operator G~~+'(t, t') =GL(t, t') is defined by [22]

where lK& q& is the stationary Volkov solution of the
Schrodinger equation

(A3)

and where E =q /(2m) and U =e Ao/(4m) are kinet-
ic energy of the electron and the laser ponderomotive po-
tential, respectively. Using the generalized Bessel func-
tions [16] y„=y„(5'",5' ', i)), where the parameter i) and
6' ', j= 1,2 are defined by

cos(2')
p 7

i H—G (t, t') =15(t t')—
L L (A 1)

n(&) =~,~, .q,
ao=eAO/(me@),

(A4)

with the initial condition G (1t, t')=0 if t &t'.
the electron Hamiltonian in the laser field,
HL =era a+(p+e A) /(2m) in the momentum gauge.
In QED formalism, GL can be written in the form

GL(t, t') =
GL, (t —t')

= —iy(t —t') ydq K„„&&K

Xexp[ iz(t —t')], —

the Volkov solution can be written in the form

lK„,„&
= g y„lK+p v, q )M—k & . —

Introducing a complete set of vectors [ 8 & ], so that

&alv& =(2m) '"exp(ivy),

(A5)

(A6)
z =E~ ~

—iE

0+

=(& v)co+E +—U

(A2)

(the phase representation [23]), one obtains

K~ (r, 8)= &B,rlK~, q&

=(2vr) g y exp[i(q —pk) r+i(N —v+p)8]

=(2~) ' expIi [q r+(X —v)8+aoq (A, siny+A2cosy)+i) sin(2y)]], (A7)

where g=k. r —6. From Eq. (A2), the time-independent Green's operator GL(E) =(E HL +is) ', e—+0+ —is obtained
as

lK „&&KG~(E)= J dt GL(t)e' ' "=g Jdq
00 E +PE, E~

(A8)

1 exp[iq (r —r' —f)]
4 dq

(2w)4 E +i e —E~ „q
one obtains

G (EL; dr;r' 8')= &r»l GL(El)r', J'

Gl (E) satisfies the outgoing-wave boundary conditions. In the coordinate-phase representation, using Eq. (A7) and the
integral (which corresponds to the divergent waves)

exp[ik lr —r' —f
l ]

(A9)(2~)'

, ,
exp[ik lr —r' —fl](&— )(&—&') (A10)

where
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P =P(r, 8; r', 8') =g [sin(2y) —sin(2y') ], y' =k r' —g',
f= f(r, &;r', 8') =ao[ A& [sin(y') —sin(y) ]+Az[cos(y') —cos(y) ]],
k =2m [E—U —(& —v)~] .

Starting from Eqs. (A2) and (A3), with the addition of the poisson summation formula [24]

g f «g(x)e ' =2' g g(2vrv)

(Al 1)

(A12)

and the integral

2

dqexp iq (r —r' —f) i — (8—6')
2m'

27Tm co

i (8 —8')

' 3/2

exp i, (r —r' —f)26 (A13)

GL can also be obtained in the form

GI (E;r,8;r', I')')= ——g 6(~ )
l m

co 2&le~

3/2

exp i r (E —U )+P+ (r —r' —f)V P 2v
(A14)

where co~ =0—0'+2mv.
Finally, we state one more useful formula which is also used in Sec. II, in connection with the 3D delta-function po-

tentials. This is

lim GL (E;r,8;0,6') = — ', g exp[i (X —v)(6 —8')]exp[ik,f (8,8')]—1]
m exp[i/(8, 8')]

(2'�)

where

m 6(8—6')
2nrlr+aokk r[A&cos(6)+A&sin(6)]l

(A15)

P(8, 8') = —2g sin(8 —8')cos(8+ 8'),

f (B,6') =2ao sin
6+8' . 2 . 2 8+6'

cos (K)cos
2

+sin (K)sin
2

1/2

(A16a)

(A16b)

AppKNDIx 8

lim S„(E;R„Rz)=0,g~ oo

K bj„+ Q F„(E)b. =0, j=1,2
V

(81)

It is easy to show that the problem of two ZRP's in a
laser field is correctly defined in the case when the inter-
potential distance increases to infinity. When R ~~, it
follows that

shall follow another, more physical, approach based on
the idea of connecting the strength of the "united" ZRP
with those of the separated ZRP's. Indeed, when R ~0,
the two ZRP's are not independent any more and one
needs to define their interaction (correlation). The
boundary conditions (2.2) with r, —+0 when R ~0 mean
that simultaneously r2~0 and vice versa. That means
that the term with 5(r&) in (2.1) should be somehow con-
nected with 6(rz), but in the same time that these are
decoupled when RWO. Having that in mind, the poten-
tial Vof the two ZRP's is redefined as

and so the problem transforms into two independent
problems for each of the ZRP in the system. But, when
R ~0, the two ZRP*s overlap and the problem of the
divergence of S„(E;R„Rz) appears. This problem
occurs even in the absence of the laser field. In that case,
the energy equation is of the form (1.15), and the term on
the right-hand side of that equation is singular as R —+0.
For example, if K) K2 then K =K, +exp( —KR ) /R and
the quasienergy c, = —1/R —+ —~ a R ~0. The prob-
lem is usually treated [g] by assuming that the ZRP depth
depends upon R and that K (R ) =a (R )

—1/R, where
a (R) is a limited function of R, for all R's. Here we

V(r, R)
I g o

=
m K)K2 )f~

[K3;5(r;)+f;5(r3; )] r,
a

;=& 2
' ' ' '

Br;

(82)

introducing auxiliary functions f; which define the in-

teraction of the two ZRP's when R ~0. Boundary con-
ditions (2.2) can be now written in the form
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lim
r. ~Q

(i.e. , r3 .~O, R ~O)

I'Il —(r, R) &

A p
Rn

I&; &+D(P;R;,R3; )I83; &, (83)
1

where D is an operator in photon space defined as

(84)

0.1-

P is the parameter of the transition between the ZRP. If
R ~ R„Eqs. (83) and (84) are equivalent to the equations
without the correction. On the other hand, if R (R„ the
functions f, (i.e., th.e operator D) should be chosen to
avoid the singularity of the eigenenergy equation when
R=O. The singularity comes from the terms S„.Gen-
erally, D can be defined so that the equation preserves the
same form, and with k (E) replaced with an interaction
parameter P . If fj„=P for each v, than
D„=(&—pIDIN —v & can be written in the form

2m
D = I d8 exp[i (p —v)8]

2~ o

0

FIG. 14 Parameter z =R n vs y =R /ao at fixed
xo=sin(y )=0.7. Surfaces below a curve defines the range of
validity of approximation g ~ go.

exp(i P PI R,——R2 —f
I )

(85a)
tend to the one with equivalent strength

and 2n Irl+&2 2p

m sc,~2 —P
2m 1 (89)

D „ I ((,=5 +(P,R),

p )
exp[ —Ph (0 R)] 1,

h (O, R) 1 1

K) K2
(810)

where h (O, R) is given by (2.7c). Using (2.2c), (84), and

(85b), one gets f; =exp( Ph ) /h —and limz 0f;
= I/h —P. In Eqs. (2.4) and (2.8a) for the quasienergy,
the required correction is S„—+S„—D„, i.e.,
S~S—D. As a consequence, there is no more singulari-

ty as R ~0 but, for R ~R„ the results are unchanged.
For Eq. (2.11), the correction is of the form J~J—d,
where

In the absence of the laser field singularity R ~0, in Eq.
(1.11) can be avoided similarly as in (82), introducing the
interaction functions f ( R ) =exp( —PR )/R, for R & R, .
Then, instead of (1.11),one gets

(K K) )(v —az) =
[ [exp( —~R ) —exp( —PR ) ] /R I

(85b)
When the interaction parameter P—&0, it follows that

d (E,R) =exp[ —f3Rf (O, R)]/f (O, R),
f (O, R)= 1+a sin b .

(85c)

and when R ~0 this yields Eqs. (89) and (810).

APPENDIX C
Equation (2.8a), with the correction included, becomes

[~(+F(E) ][~2+F(s) ]

= [S(E,R) —D(p, R)][S(E,—R)—D (p, —R)] . (86)

Using the formula

Here we consider the approximation g (&1, where g is
defined by Eq. (2.7d). The function g can be written in
the form

XJZ
g =g(x,y, z)=2

2 z
y +2x

lim [S(E,R)—D(P, R)]=F(e)+P,
R~0

(87) where

K ylC2 p +F(c)=0,
K(+Kg 2

(88)

which corresponds to the equation for one ZRP in a laser
field, ~+F(c,)=0. Therefore, when R ~0, the two-ZRP

where F (e) is given by (2.8b), Eq. (86), in the limit R —+0
takes the form

x =sin(q& ) E( —1,1),

y= e(0, ~),R
ceo

z =R nE( —1, 1) .

This function has the following properties: (a) g=O if
kIIR, i.e., R e&=O=R.e2, (b) g (&1 if ao(&R, (c) if
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ao—=R or ao»R, it follows that k.(R&+Rz) « I and

y+ =—(8+8')/2 (if kao « I), and (d) g (x,y, z)
= —g ( —x,y, z) = —g (x, —y, z) = —g (x,y, —z). From the
last property, it follows that it is sufficient to consider the
first octant in the xyz system.

Figure 14 represents curves

go p +2xo
z(y)=

25/2 x y
(C2)

for go=0.01, 0.02, and 0.03 and xo=0.7. The surfaces
below the curves define the range of applicability of ap-
proximation g (& 1.
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