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Statistical analysis of the (3d +4s) 4p spectrum of Cr I
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Statistical properties of the energy levels derived from the {3d+4s)'4p spectrum of Cr I have been in-

vestigated. The hypothesis that the density distribution of the energy levels is of the Gram-Charlier type
has been rejected by a y test. On the other hand, in sequences of the energy levels corresponding to
fixed values of the total angular momentum J, the energy-level densities are shown to be Gaussian. En

the fixed-J sequences, spacings between neighboring levels are Poisson-like. The low-order energy mo-

ments have been used to approximate the {3d+4s) 4p energy-level spectrum. The secular behavior and

fluctuations of this spectrum are discussed.

I. INTRODUCTION

The complex nature of many-electron systems has
caused more than half a century of work on their satisfac-
tory theoretical description by many scientific groups. In
spite of considerable methodological progress and a large
increase in applications of quantum-mechanical calcula-
tions due to the computer revolution, many experimental
results remain out of reach for numerical methods of
modern theories of many-electron systems. For this
reason new methods are still needed. Among many pro-
cedures being developed now, the statistical methods for
the description of spectra of complex many-electron sys-
tems are of particular interest. These methods were first
proposed in the theory of the atomic nucleus in the thir-
ties. For reviews of this subject see French and Kota [1]
and Brody et al. [2] where further references may also be
found.

The reasons that one resorts to statistical concepts for
the study of many-particle microscopic systems are mani-
fold. First, detailed properties of the spectrum are fre-
quently not really open to calculations, e.g., the Hamil-
tonian is not known or its eigenvalues cannot be calculat-
ed accurately enough. Second, considerations essentially
different from the study of individual levels may reveal
new features of the system, which can be obscured by de-
tailed calculations of the energy levels. Third, statistical
concepts create a possibility of solving old problems using
new approaches as, for example, approximating real spec-
tra by the ones derived from the spectral-density-
distribution moments [2].

The first papers devoted to statistical properties of
atomic spectra were published 30 years ago by
Rosenzweig and Porter [3] and by Trees [4]. The authors
studied energy-level-spacing distributions. They showed
that the nearest-neighbor spacings in sequences of levels
corresponding to the same set of quantum numbers fol-
low the Wigner distribution, while in the case of mixed
sequences the spacing distribution is exponential. Empir-
ical studies on the nature of level density arising from a

definite configuration (partial level density) in several
atomic configurations by Parikh [5] and by Cowan [6]
showed that the level density behaves in a Gaussian-like
fashion. More detailed analysis by the present authors
[7] resulted in the conclusion that the distribution is near-
ly Gaussian, but only if levels with the same total-
angular-momentum quantum number J are considered.

The first step in the mathematical study of an unknown
statistical distribution is the calculation of its moments.
Compact formulas for the second-order moments (vari-
ances) in the study of the distribution of level and line en-
ergies were established for the most general electronic
configurations by Bauche-Arnoult, Bauche, and Klapish
[8] and Bauche and Bauche-Arnoult [9]. The same au-
thors implemented these formulas to interpret several
atomic spectra. The first two moments of the distribution
of the eigenvalues of a Hamiltonian in an X-electron
spin-adapted model space were derived by the present au-
thors [10]. The spectral distribution function derived
from the moments contains the statistical information
about the spectrum. This information may be used in a
way complementary to the way in which, in the conven-
tional spectroscopy, information is derived from diago-
nalization of the Hamiltonian matrix. Usually, in the sta-
tistical spectroscopy, one sets different problems than in
the conventional one. The statistical approach is best
suited to study general behavior of spectra, while the con-
ventional one is best suited to determine properties of in-
dividual energy levels. Nevertheless, one may apply the
statistical approach even to study structure details of
spectra. For example, the spectral distribution function
was successfully applied to approximate the real nuclear
[11], atomic [12], and model Hamiltonian [13] spectra.
The state of the art in the field of statistical theories of
atomic spectra has been recently reviewed by Bauche and
Bauche-Arnoult [14].

In this paper we study statistical properties of the Cr I
(3d+4s) 4p energy-level spectrum. The energy values
have been taken from a parametric least-squares fit to the
experimental spectrum [15]. We show that the distribu-
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tion of energy levels with the same total-angular-
momentum quantum number is nearly Gaussian. In fact,
it is a low-moment Gram-Charlier distribution with a
predominant gaussian component. We calculate the
values of the spectral moments from the real (fitted) spec-
trum. Finally, we compare the smoothed spectra, derived
from the low-moment distribution functions, with the
real ones, showing that differences between the smoothed
and the real spectra (fluctuations) behave similarly to nu-
clear [2] and to model-Hamiltonian [13] spectra. As an
additional result of the present calculations we obtain the
nearest-neighbor energy-level-spacings distribution for
the analyzed spectrum. Spacings of the nearest-neighbor
levels of the same total-angular-momentum quantum
number behave in a Poisson-like way, showing the ex-
istence of approximate constants of motion (the total spin
and the total orbital angular momentum).

II. STATISTICAL DESCRIPTION
OF THE HAMILTONIAN SPECTRA

The density p(E) of the discrete spectrum
E, ,E2, . . . , ED is represented by the discrete normalized
frequency function

D

p(E) =D ' g 5(E E; ), —

FG(xk+ ) ) FG(xk )
—=D Ir, (10)

where FG(x) corresponds to the standard Gaussian fre-

0.6

lynomials, the coefficients are given by

+~
c =—f H (x)p(x)dx . (8)J jI J

+
Taking into account that MI, = x p(x)dx, cj may
be expressed as a linear combination of Mk with k ~ j.
The resulting equation is known as the Gram-Charlier
expansion [16]. If the series (7) is terminated after p
terms, then

f (E E) [p—(E) p(E)—]dE =0 (9)

for q =0, 1, . . . ,p. In such a case the continuous func-
tion p is referred to as the p-moment equivalent of p.

The y test is used as a measure of the quality of the p-
moment approximation to the frequency function. The
value of y is calculated in the following way. First, the
Hamiltonian spectrum is normalized to the distribution
with E=O (subtracting E from all energy levels) and
cr = 1 (dividing E; Eby cr—). Then the energy range is di-
vided into r intervals ( —~,x

& ), (x &, x2 ), . . . , (x„&,+ oo )

in such a way that

f p(E)dE =1, (2)
Crj J=3

and the corresponding average energy E and the mo-
ments M are

E = f Ep(E)dE, (3)

M = f (E E)~p(E)dE—. (4)

The normalized distribution function F(E) is obtained by
integrating the frequency function

F(E)=f p(E')dE' . (5)

If the distribution moments are known, the discrete fre-
quency function may be approximated by a continuous
frequency function p(E) chosen so that a given number of
the lowest moments calculated with either function are
the same.

Since eigenvalues of the ¹ lectron Hamiltonians in
finite-dimensional spaces tend to be distributed in a
Gaussian-like fashion [5—7, 13,14], we take the Gaussian
function as a starting point and then modify it in order to
consider the higher moments of the distribution. It is
convenient to construct the continuous frequency func-
tion p(E) in terms of the dimensionless variable

x =(E E)/cr, —
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where cT =M&~ is the width (dispersion) of the spectrum.
The frequency function may then be expanded in terms of
Hermite polynomials [16]

p(x) =(2') ' e " g cJH,.(x), (7)
J

where, by the orthogonality relationship for Hermite po-

FIG. 1. (a) The histogram of the exact density of
{3d+4s) 4p, I=3, spectrum of Crt compared to two- ( )

and seven-moment (—~ —.—~ —) Gram-Charlier expansions. The
two-moment Gram-Charlier expansion corresponds to the
Gaussian distribution. The energies are normalized according
to Eq. (6). (b) The level-to-level deviations between the real
spectrum and its Gaussian and seven-moment representations.
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quency function. If nk is the number of the Hamiltonian
eigenvalues within the interval (xk, xk+, ), and

nk F(xk+1) F(xk )

where

F(x)= I" p(x')dx',

scribed correctly, the fluctuations are small, energy in-
dependent, and insensitive to increasing the value ofp.

The final quantity being studied is the spacing between
adjacent eigenvalues. As is known [3,7, 18], the spacings
between eigenvalues belonging to the same symmetry
species are distributed according to the signer distribu-
tion law

then 8'(d)= —d exp( vrd /—4),
2

(15)

x rf (+k +k ) /nk
k=1

(13)

The value of y is then compared with a critical value

y„;, chosen to correspond to the 5% probability level
[17].

If F(x) is a continuous distribution function, the corre-
sponding smoothed spectrum can be defined as the set of
values x,. which satisfies

where d =s/s, s is the spacing and s is the mean value of
s. The eigenvalues of different symmetries are not corre-
lated and, in consequence, a superposition of several sets
of different symmetry eigenvalues leads to an exponential

F(x, )=(i ,')/D—— (14)

for i =1,2, . . . , D [11—13]. A comparison of the real
energy levels and those derived from the distribution
function according to Eq. (14) leads to the notions of the
secular eigenvalue density and of fluctuations [2]. The
secular density is defined by several moments. If it is de-
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FIG. 2. (a) The histogram of the exact density of
(3d +4s) 4p, J=5, spectrum of Cr r compared to two- ( )

and nine-moment (—~ —~ —~ —) Gram-Charlier expansions. (b)
The level-to-level deviations between the real spectrum and its
Gaussian and nine-moment representations.

FIG. 3. The ratio of the calculated to the critical (for the 5/o
probability level) values of y for testing the Gram-Charlier sec-
ular density hypothesis vs the highest moment m taken into ac-
count in the Gram-Charlier expansion. The solid lines
represent the cases of sequences of energy levels of the same J
and the dashed line represents the case of sequence of all
(3d +4s)'4p energy levels.
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These rules may be used to study approximate (or hidden)
symmetries ~3~. If b, beyond the symmetries considered ex-

p icitly, there exists another one th th
ution remains exponential or it is an intermediate be-

tween the Wigner and the exponential one.
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III. RESULTS AND DISCUSSION

A detailed sstudy has been performed for the
(3d+4s) 4p spectrum of Cri. Energy values are as-

metric least-squares fit to the experimental spectrum [15].
The (3d +4s) 4p configurations comprise 684
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ergy levels are shown in Fig. 1(a) (145 energy levels corre-
sponding to J =3) and in Fig. 2(a) (76 ener
spon ing to J =5). The level densities first increase to a
maximum somewhereere near the average energy and then
fall off to zero at the upper limit Th h'ese 1stograms were
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FIG. 4. The rF . . real (3d+4s) 4p, J=3, spectrum of Crt (E„)5
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FIG. 6. The real (3d+4s)'4p J=0 d J=an =7, spectra of
Crt (E, ) compared to their n-mom
(M

n-moment-generated counterparts
„).
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FICs. 7. The real (3d +4s)'4p, 'F2 and Po, spectra of
Cr I (E„) compared to their n-moment-generated counterparts
(M„).

compared to Gaussian and low-moment frequency func-
tions. Let us note that the energy intervals in the histo-
grams have been defined according to Eq. (10) and there-
fore their width varies with energy. Hypotheses concern-
ing the character of the energy-level density functions
have been tested using the y test. The ratios y /y„;, for
subsets of energy levels of the fixed total-angular-
momentum quantum number (J=0, 1,2, 3,4, 5, 6, 7) are
plotted versus the length of the Gram-Charlier expansion
in Fig. 3. In all cases the hypothesis that the distribution
is Gaussian is accepted. Taking beyond-Gaussian terms
reduces the y value. This reflects the fact that the exact
distribution of the energy levels is asymmetric. However,
making the expansions longer than a certain limit does
not improve the fitting. On the other hand, the density of
all the energy levels, disregarding their symmetry, is not
Gaussian. The resulting ratio y /g„;, is also plotted in
Fig. 3. These observations are consistent with our earlier
findings for atomic [7] and for a model Hamiltonian [13]
spectra. Density functions accepted by the g test as
Gaussian for sequences of fixed-J energy levels were plot-
ted in Fig. 4 to show the global shape of the spectrum
considered. The density functions for different fixed-J
values strongly overlap. As a result, there is a high cu-
mulative density of energy levels in the central region of
the spectrum. It reflects the very complicated structure
of the spectrum of complex atomic configurations.

In Figs. 5 —7, spectra derived from the n-moment dis-

1.0 +Cs} 4p
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0.0
0

FIG. 8. The exact distribution of the adjacent level spacings
derived from the (3d +4s)'4p spectrum of Cr i compared to the
Wigner ( 8') and to the Poisson (X) laws. In order to obtain the
exact distribution, separate histograms for each J were con-
structed and then combined.

tribution functions according to Eq. (14) are compared to
the real spectra. In Figs. 5 and 6 the real energy levels of
J =0, 3,7 and the corresponding energy levels generated
by the n-moment distribution functions are shown. The
overall structure of the smoothed (moment-generated)
spectra agrees well with that of the real spectra. The
moment-generated spectra reproduce the real spectra
especially well in their central parts. The discrepancies in
the areas of the lowest and highest eigenvalues are re-
duced if the number of moments taken into account in-
creases. Fluctuations, i.e., the deviations of the moment-
generated spectra from the real ones, decrease when the
lengths of the corresponding expansions increase [Figs.
1(b) and 2(b)]. The number of (3d +4s) 4p energy levels
is sum. ciently large to allow considering also the sets of
the energy levels with the same total, orbital, and spin an-
gular momentum quantum numbers as statistical ensem-
bles. The real F2 and Po energy levels as well as their
moment-generated counterparts are displayed in Fig. 7.

An analysis of the adjacent level-spacing distributions
confirms earlier results obtained for nuclear [2], atomic
[3,7], and model Hamiltonian [18] spectra. The histo-
gram of the spacings displayed in Fig. 8 is plotted for
fixed-J sequences of energy levels. The spacing distribu-
tion is clearly not of the Wigner type. In the considered
atom the orbital- and spin-angular-momentum operators
nearly commute with the Hamiltonian. Then, they de-
scribe approximate, but neglected in this analysis, sym-
metries. Energy levels belonging to a given J, but
differing by the L„and S quantum numbers are almost
noncorrelated in their positions. Therefore, each J se-
quence of the energy levels is a superposition of many un-
related sequences, giving rise to many very close spacings
and leading to an exponential-like distribution. The
departure from the Wigner distribution should be greater
the smaller the spin-orbit interaction.
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