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Effect of nonspherical distorting potentials in a first-order distorted-wave calculation

D. H. Madison
Department of Physics, University of Missouri—-Rolla, Rolla, Missouri 65401

K. Bartschat
Department of Physics, Drake University, Des Moines, Iowa 50311

J. L. Peacher
Department of Physics, University of Missouri—Rolla, Rolla, Missouri 65401
(Received 14 February 1991)

The first-order distorted-wave approximation (DWB1) has proved to be one of the most successful ap-
proaches for the theoretical calculation of electron-atom scattering. It is now evident that one must per-
form multistate close-coupling calculations or second-order perturbation calculations to improve
significantly upon the DWBI, but these calculations require enormous computational efforts. Conse-
quently, it is of interest to investigate the possibility of improving the standard DWBI1. One such possi-
bility that has not been investigated for electron-atom scattering is the use of realistic nonspherical dis-
torting potentials. In this paper, the DWBI1 formalism is presented for nonspherical distorting poten-
tials, and the effects of such a potential are investigated for electron-impact excitation of the 2p state of

hydrogen.

I. INTRODUCTION

One of the current dilemmas in atomic physics is that
the most sophisticated theoretical calculations are not in
satisfactory agreement with experimental measurements
of differential cross sections and angular-correlation pa-
rameters for electron scattering from even the most ele-
mentary atoms. This is particularly remarkable when
one considers the present state of the art for theoretical
calculations. For the close-coupling approach, for exam-
ple, van Wyngaarden and Walters [1] have performed a
21-state calculation, where three of these states were ex-
act and 18 were pseudostates. More recently, Scholz
et al. [2] reported an improved “intermediate-energy R-
matrix (IERM) calculation” in which the wave function
in the inner region is expanded in terms of bound-bound,
bound-continuum, and continuum-continuum orbital
products. For the perturbation-series approach, Madison
and Winters [3] and Madison, Winters, and Downing [4]
have performed distorted-wave calculations exact to
second order that included distortion not only in the
wave function of the projectile electron, but also in the
Green’s function describing the second-order interaction.
More recently, Madison, Bray, and McCarthy [5] report-
ed a second-order calculation for hydrogen including
second-order exchange that for the first time exhibited
good agreement at all scattering angles for those experi-
mental measurements that depended only on the magni-
tude of the scattering amplitude. Interestingly, this same
calculation was not in agreement at large scattering an-
gles with the measurements that depend on both the mag-
nitude and the phase of the scattering amplitude.

One of the interesting observations resulting from these
theoretical works is that the elementary first-order dis-
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torted wave (DWBI1) results are typically in reasonable
qualitative agreement with the experimental data, and it
appears that an enormous computational effort is re-
quired to significantly improve on the DWBI1 results.
Consequently, in the interest of calculational simplicity,
it has become important to consider the possibility of im-
proving upon the standard DWB1 method. The DWBI1
approximation can be derived from a two-state close-
coupling calculation [6]. In the standard DWB1 method,
two approximations are made: (1) the coupling between
the two states is assumed to be weak enough that it can
be neglected, and (2) the initial- and final-state distorting
potentials are assumed to be spherically symmetric. For
elastic scattering and processes involving s states, the dis-
torting potentials will automatically be zero. However, if
one is exciting a final p state, then the final-state distort-
ing potential is clearly nonspherical. Since the cases for
which the disagreement between the DWBI1 results and
experiment are largest involve non-s states, we have de-
cided to investigate the effect of assumption (2) by calcu-
lating DWBI1 results using proper nonspherical atomic
distorting potentials.

The concept of using nonspherical distorting potentials
in atomic scattering calculations is not new. Boardman,
Hill, and Sampanthar [7] derived the general theory of
elastic scattering for nonspherical potentials, and Lane
and Geltman [8] and Geltman [9] discussed the use of
nonspherical potentials for electron-molecule scattering.
Today, nonspherical potentials are routinely used for
molecular scattering, but to our knowledge the effects
have not been investigated for electron-atom scattering.

In this paper, we will analyze the effect of nonspherical
distorting potentials in a DWBI1 calculation for electron-
atom scattering. Section II contains the theoretical for-
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mulation of the DWBI for nonspherical distorting poten-
tials, while results for electron impact excitation of the
1s —2p transition in hydrogen are given in Sec. III. The
conclusions are drawn in Sec. IV.

II. THEORY

A. Form of the nonspherical distorting potential

In this paper, we shall restrict our considerations to
quasi-one-electron atoms. If a one-electron atom is in the
state ¥, with nlm representing the principal quantum
number, orbital angular momentum, and magnetic quan-
tum number, respectively, the interaction between an in-
cident electron and the charge distribution ¥, ¥, is
given by (in Rydberg energy units)

m — 2Z 1l’:;lm(ll)lﬁnlm (R)
an(r)‘— , +2f IR—r‘

where Z is the charge of the nucleus, r is the position of
the incident electron, and R is the position of the bound
atomic electron. Next we express the atomic wave func-
tion as

d°R , (1)

R, (R) A
¢nlm(R):TYlm(R) ’ (2)

where R designates the spherical angles (6,¢) describing
the direction of the vector R. If a multipole expansion
for the distance between the two electrons is made, Eq.
(1) may be expressed as

,;7(r)=_—%+2 S Uk (PNY50) 3)
A even
where
4 1/2
A = ™ .
Unim (1) A+ C(IAl;mOm)

A
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r
X C(IA1;000) [ RA(R)—
r>

dR . (4)

Here C(l,1,15;m m,m5) is a Clebsch-Gordan coefficient
and r _ . is the lesser (greater) of (r,R). The spherically
symmetric distorting potential W, (r) that is normally
used in DWBI calculations consists of the nuclear term
plus the monopole term of the summation in Eq. (3), i.e.,

Wn,(r)=——272—+U,?10(r)/\/7—7'. (5)
Consequently, we have
VI e) =W, (r)+2 S Uk, (r)Y1) . (6)
)L)Le:ve2n

For atomic s states there is no contribution from the sum-
mation in Eq. (6) and the distorting potential is spherical-
ly symmetric. For p states and higher-angular-
momentum states, the summation in Eq. (6) will be
nonzero, but these terms are ignored in the standard
DWBI approach. For the case of exciting the 2p state of

hydrogen, which will be considered in the next section,
only the A=2 term in the summation contributes, and
this term is given by

U%I,m(r)=\/167r/125(—l)m(lmI +1)7!
2
X [R3,(R)=—dR . (7)
rs
This quadrupole term falls off asymptotically as » ~3 and
is the leading term with nonspherical symmetry, since the
atom does not have a permanent dipole moment. The in-
coming projectile will induce a dipole moment in the
atom, but the potential from the induced dipole moment
falls off asymptotically as » ~*. Potentials decreasing like
r~* have often been investigated since the pioneering
work of O’Malley, Spruch, and Rosenberg [10]. Stewart
and Madison [11] investigated the effect of including the
induced dipole potential in a DWBI calculation, and they
found almost no effect from this potential even in the ex-
treme adiabatic approximation.

B. Partial-wave expansion for distorted waves

In the DWBI approach, partial-wave expansions are
made for the initial and final projectile electron wave
function. In this section we will examine these expan-
sions for the case of nonspherical distorting potentials.
For the case of the incident electron, we assume that the
atom is initially in an s state such that the distorting po-
tential is naturally spherically symmetric. The standard
expansion may then be made for the initial-state distorted
wave:

172
X ()= 2

1
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k;r

X 310, k)Y, KDYy @) ®)
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which is normalized to 8(k —k’). Here k; is the magni-
tude of the momentum of the incident electron moving in
the direction k;. The radial function x; is a solution of

d2
dr?

L, +1)
L4 WP —E |x, (n=0, O)
r 1

where W, is the initial-state distorting potential. Asymp-
totically, the radial function behaves as
lim x,i(r)=jll_(k,-r)+ T,,_[n,’v(kir)-l-ij,i(kir)] , (10)
where j, and n; are the regular and irregular Riccati-
Bessel functions, respectively and
8,
T1.=e 'sin81. N (11)

where §,; is the phase shift.

For the case of the final-state distorted wave that is
scattering from a nonspherical distorting potential, the
radial function will depend upon the magnetic state of
the atom. Hence, a separate partial-wave expansion must
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be made for each magnetic quantum number m. Conse-
quently, the partial-wave expansion for the final-state dis-
torted wave is given by
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T

X i f¢1
lf,m

m(—)¥* — L
(Df (r) kfr

(12)

The differential equation for the radial function ¢};mf is

now coupled to other I, values [see Eq. (14) below] and
the set of coupled equations that one must solve depends
on the choice of coordinate axes. The coordinate choice
that produces the most elementary set of coupled equa-
tions is to pick the z axis along kf and the y axis perpen-
dicular to the scattering plane. With this choice, the only
nonzero contributions to the m + sum occur for m r=0;
thus, it is convenient to set

¢If=¢;;,mf=0‘ (13)

For a distorting potential of the form of Eq. (6), the cou-
pled differential equations for the radial function ¢g are

given by
+ 3 B (r)¢)iksr)=0, (14)
1=0 /
where
172
o 2/.41 =1
Blml’(r)z 2 f M ir
oLy = 21f+1 47
A even
X C (1}AL;30002U 2, (r) - (15)

Here W, is the spherically symmetric final-state distort-
ing potential. For the case of a final 2p state, the only
nonzero term in the summation in Eq. (15) occurs for
A=2 with Ume given by Eq. (7). From the above results,
it is clear that the primary complication created by the
nonspherical potentials is that one must solve a set of
coupled radial differential equations, Eq. (14), for the
final-state distorted wave, instead of an uncoupled set,
such as that given by Eq. (9).

An equation equivalent to Eq. (14) was obtained by
Boardman, Hill, and Sampanthar [7], and by Geltman [9]
for the partial-wave treatment of elastic scattering. Nu-
merical techniques for solving the set of coupled equa-
tions have been discussed, for example, by Lane and Gelt-
man [8], Lester and Bernstein [12], Smith [13], and Burke
and Seaton [14].

We have applied the generalized Numerov method de-
scribed by Lane and Geltman [8]. In this method
(L ax T 1) independent solutions {5’,7 of Eq. (14) for

partial-wave I, values from O to L, for a given m are
determined. A linear combination of these independent

solutions must then be constructed to satisfy the correct
asymptotic boundary conditions. To achieve this, the
(Lphax +1) independent solutions ¢ ;' are arranged as

columns in a matrix F ;; i
the row index. The second subscript /; of the matrix
Fm e is used to distinguish between the (L, +1) in-
dependent solutions for a given I, value. By matching
both the radial function and its derivative at large r, the

matrix F m ;. can be transformed to the solution matrix
lply

with the /, values designating

F T that satisfies the asymptotic boundary condition

lim F

r—

=8,y i k) =R my (k) (16)

The matrix R l'"l, is similar to the ‘“‘reactance” matrix in

the standard close-coupling scattering problem. Note,
however, that this matrix is not symmetric, since the cou-
pling matrix B 1 m Eq. (14) is not symmetric either. In-

stead, the symmetry requirement is such that
20,41
L1 Agr Ry, -
£ 20+

(17)

While only the R matrix is needed in the close-
coupling approach, an actual wave function is required to
evaluate the radial integrals in the inelastic 7" matrix [see
Egs. (21) and (23) below]. This wave function [denoted by
¢me in Eq. (12)] was taken to be the “diagonal” term

F,’j’?,f of the solution matrix. Recall that m,=0 for our

choice of coordinate system.
It was found that the off-diagonal (/,7I;) coupling
terms B, in Eq. (14) had very little effect on the final re-
I

sults. In fact, the coupled equations could be solved with
L .., =10, and the solutions joined smoothly to the solu-
tions from the much simpler uncoupled equations for
;> 10 for all energies of interest, provided that the diag-
onal quadrupole coupling term B,’f",f was retained in the

uncoupled equations.

C. DWBI1 T matrix

In the DWBI, the T matrix for excitation of a single-
particle atom is given by

T,;~<<1>m<* (00 (1)]| =2

[1+(—1)Py, ]¢,»(1)X,—‘+>(0)>,
To1

(18)

where ¢; and ¢, are the initial and final wave functions
for the atom. The projectile electron is arbitrarily labeled
as 0 and the atomic electron as 1, ry, is the distance be-
tween the two electrons, and Py, is the operator which in-
terchanges particles O and 1. The first term in Eq. (18) is
the direct term and the second term is the exchange term,
while s =0 corresponds to singlet scattering and s =1
corresponds to triplet scattering, respectively.

Using the standard multipole expansion for the
Coulomb interaction and the partial-wave expansions,
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Eqgs. (8) and (12), for the initial- and final-state distorted
waves, the DWB1 amplitude for excitation from an initial
s state can be expressed as

T, =3 (D}, +(—E[ ]

I,

X C (Il I;;mOm)Y}, (6,7) (19)

where the D and E are the partial-wave amplitudes for
the direct and exchange terms, while / is the angular
momentum and m is the magnetic quantum number for
the final atomic state. Recall that the z axis has been
chosen parallel to kf, while the y axis is parallel to
k xk 7> hence, the quantization axis for m is parallel to
the direction of the outgoing electron instead of the in-
cident electron, as is normally assumed. The angles (8,7)
represent the direction of the incoming beam relative to
the outgoing beam in this coordinate system.

The partial-wave expression for the direct scattering
amplitude is given by

172
21,+1
m o —n_=3/21 1 1 S —1y
Dli]f 2 (klkf) 2 +1 ] ( 1)
C ;000" 1y (20)
with

!
,
= Lok
>

))(,,_(k,.,r)dR dr . (21)

XR (R

Here nl are the quantum numbers of the final atomic
state with the initial state assumed to be the 1s state. For
the exchange case, the partial-wave expression for the
amplitude is given by

Efy =2m2 k)™= 1) CU;1,13000)

1L.—1

Xi! fG,’_'}f, (22)
with
rlﬁ
G” ff¢1 (kf’ R) 1f+1
>
XR,(r)x; (k;,R)dR dr . (23)

Once more, we point out the m dependence of the present
radial matrix elements, which does not exist in the stan-
dard DWBI1 approach.

To compare with experimental A and R parameters, it
is necessary to transform to a quantization axis parallel to
the incident-beam direction. This can be accomplished as
follows. For the above coordinate system, the atomic
wave function after the collision can be written as

P=T5 Y (R)+T5 Yio(R)+T5, ¥, (R), (24

where the s superscript designates either singlet or triplet
scattering and the angles R are measured relative to the

k s direction. If we make a rotation through an angle 6
about the y axis, Eq. (24) becomes

P=b5 Y (R)+b5 Y)o(R)+b5 ¥,_(R"), (25
with

b3 =(cos®)T3 —[(sing) /V2]T} (26a)

and

b§=1""2(sin6)T% +(cos6)T . (26b)

The quantization axis is parallel to the ﬁ,- direction, and
the angles defining R’ are measured relative to this direc-
tion. The above b;, amplitudes can be used to calculate
the standard A and R parameters, which can then be
compared with experiment.

III. RESULTS

We have written a computer code to solve the coupled
equations given by Eq. (14), and have modified standard
DWBI codes to calculate the direct and exchange ampli-
tudes given by Egs. (20) and (22) and finally the b, ampli-
tudes given by Egs. (26a) and (26b). These amplitudes
were then used to evaluate cross sections as well as A and
R parameters for electron-impact excitation of the 2p
state of hydrogen. Most of the experiments for this pro-
cess have been performed for 54.4-eV incident electrons.
At this energy, cross-section results calculated with the
nonspherical distorting potential (DWBINS) or with the
standard DWB1 method would be indistinguishable on a
journal figure.

One can expect, however, that the effect of the non-
spherical distorting potential would be larger for the A
and R parameters, since these quantities are sensitive to
the final magnetic state of the atom and the nonspherical
potential is dependent on the final m state. Results for
these parameters are shown in Figs. 1 and 2. Although

1.0 T — T T =
I y _F
AR
/'l } - o7 -
0.8 7 g §
/ -l td
s ~ _ /;:’/ {
Y -
~< o6} K 4
i }
b {
g
o4t | ,1’/’ 4
\ /i
'/
02| \§§ ’/ 4
l 1 1 1 1
o 60 120 180
Angle (deg)
FIG. 1. A parameter for 54.4-eV electron-impact excitation

of the 2p state of atomic hydrogen. The experimental data are
taken from Williams (@) (Ref. [15]) and Weigold, Frost, and
Nygaard (X) (Ref. [16]). The theoretical calculations are
——, EP; - --, EP-NS; —-—, MM; and — — —, MM-NS.
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FIG. 2. R parameter for 54.4-eV electron-impact excitation
of the 2p state of atomic hydrogen. The theoretical calculations
are , EP; - - -, EP-NS; —-—, MM; and — — —, MM-NS.
The experimental data are taken from Williams (@), (Ref. [15]);
and Weigold, Frost, and Nygaard (A) (Ref. [16]).

the nonspherical potential does have a somewhat larger
influence on the results than it did for the cross section,
the effect is still quite small for this energy.

Figures 1 and 2 contain two sets of nonspherical calcu-
lations that are each compared with equivalent standard
DWBI results. In the traditional distorted-wave method
discussed by Mott and Massey (MM) the incoming elec-
tron is distorted by the spherically symmetric ground-
state potential, and the outgoing electron is distorted by
the spherically symmetric final-state potential. For the
case labeled MM-NS, the incoming electron is distorted
by the spherically symmetric ground state of the hydro-
gen atom, while the outgoing electron is distorted by the
nonspherical potential of the excited 2p state. The curve
labeled EP is a distorted-wave model for which both the
incoming and outgoing electrons are distorted by the
spherically symmetric excited-state potential. In this
model, the excitation process happens early in the col-
lision and the projectile is primarily influenced by the ex-
cited state of the atom. The EP model has given the best
overall agreement with experiment for excitation of many
different states of many different atoms. The nonspheri-
cal equivalent of the EP model would correspond to both
the incoming and outgoing electrons being distorted by
the nonspherical excited-state potential. However, we
were not able to perform that calculation, since the cou-
pled equations, Eq. (14), are valid only for the z axis
parallel to either the incident-beam direction or the scat-
tered particle’s direction. Consequently, the present for-
malism can only be applied to the incoming electron or
outgoing electron, but not both. For the results labeled
EP-NS, the incoming electron is distorted by the spheri-
cally symmetric excited-state potential, and the outgoing
electron is distorted by the nonspherically symmetric
excited-state potential.

It is clear from Figs. 1 and 2 that the quadrupole po-
tential has a small effect on the DWBI results at 54 eV.

FIG. 3. A parameter for 13.87-eV electron-impact excitation
of the 2p state of atomic hydrogen. The theoretical curves are

——,EP;and - - -, EP-NS.

The EP model continues to be in significantly better
agreement with experiment than the MM model. For the
EP model, the nonspherical quadrupole distorting poten-
tial did slightly improve the agreement between experi-
ment and theory for scattering angles out to 60°, bringing
the EP-NS results even closer to experiment in this angu-
lar range for both the A and R parameters.

We also examined the effect of the nonspherical dis-
torting potential as a function of incident electron energy.
For energies greater than 54 eV, the effect decreased with
increasing energy, but was qualitatively similar to Figs. 1
and 2. The largest effect of the nonspherical quadrupole
potential was found for much lower incident electron en-
ergies. Figure 3 presents results for the A parameter at an
incident electron energy very near threshold in the EP
model. For this case the DWBINS and the standard
DWBI predict fairly different behavior near the 60°
scattering angle. However, this observation is primarily

N

Cross Section (units of a2/sr)

°
® © 0o 9 0o 0o 9 ° |
60 120 180

o

o

Angle (deg)

FIG. 4. Differential cross section in units of a3 /sr for 13.87-
eV electron-impact excitation of the 2s +2p states of atomic hy-
drogen. The theoretical curves are , EP; and - - -, EP-NS.
The experimental data are taken from Williams (@) (Ref. [17]).
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of academic interest, since it is the well known that the
standard DWBI1 is unreliable for energies this low. This
fact is demonstrated in Fig. 4, where experimental and
theoretical cross sections for 13.87-eV excitation of the
2s +2p states of hydrogen are compared with the EP
model. While there are no nonspherical contributions to
the 2s part of the sum shown in Fig. 4, this sum is dom-
inated by the 2p contribution. It is interesting to note
that the nonspherical distorting potential continues to
only have a small effect on the differential cross
sections—even for energies near threshold. While the
quadrupole potential is clearly important for the angular
correlation parameters for low-incident-energy electrons,
other effects not contained in the DWB1 are certainly im-
portant too. Hence, we would not expect the DWBINS
A parameters of Fig. 3 to be highly reliable.

IV. CONCLUSIONS

In this paper we have investigated the effect of includ-
ing a nonspherical distorting potential in a DWBI calcu-
lation. For our test case of electron-impact excitation of
the 2p state of atomic hydrogen, the quadrupole distor-
tion produced changes in the differential cross section
that were generally the same size or smaller than the ex-
perimental error. Hence, this effect can be ignored for all
practical purposes if one is interested only in cross sec-
tions. For angular-correlation parameters, the nonspher-
ical potential tended to slightly improve the agreement
between experiment and theory for the higher incident

electron energies (where the DWBI is expected to be val-
id). However, the changes were fairly small, so it is ques-
tionable whether the additional effort required to solve
the coupled differential equations is justifiable. For lower
incident-electron energies, the nonspherical potentials are
important for the angular correlation parameters and
should certainly be included in an accurate calculation.
However, additional physical effects neglected in the
DWBI1 are also important for these energies, so a
DWBINS calculation alone is not expected to agree well
with experiment.

In conclusion, then, for energies where the DWBI1 ap-
proximation is expected to be valid, the nonspherical dis-
torting potentials produce a small effect, which, for prac-
tical purposes, can be neglected without producing too
great an error. For lower energies where the DWBI is
not expected to be valid, the neglect of the nonspherical
distorting potentials is part of the problem, but is by no
means the entire problem. We therefore conclude that
the standard practice of using spherically symmetric dis-
torting potentials in the DWBI is justifiable at the higher
energies but not at the lower energies, where one will
have to do something more than simply adding a quadru-
pole distorting potential to fix the problem.
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