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Microwave spectroscopy of the high-L H2 Rydberg states (v=0, R = 1) tt = 10 G, ~, I, and g
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Ten fine-structure intervals separating n =10, I =4, 5, 6, and 7 Rydberg states of H2, all with (v=0,
R =1) H2+ cores, have been measured using fast-beam microwave-optical techniques, determining the

relative positions of all these states to a precision of about +0.3 MHz. These experimental results are

compared with predictions of the expected structure, which use the polarization model to relate the

Rydberg fine structure to properties of the H2 ion, yielding experimental determinations of certain elec-

tric properties of the (0,1) state of H2+. quadrupole moment, Q = 1.64295(30)eao, and dipole polariza-

bilities, 0.& =3.1770(34)ao, nT =4.015(36)ao.

I. INTRODUCTION

The high-L, Rydberg states of H2 are characterized by
one excited electron in a nonpenetrating, nearly hydro-
genic orbit, bound by the net charge of the nearly free
H2+ ion core. Because the coupling between the two
parts of the system is so weak, and because both parts of
the system can be described precisely in isolation, it is
possible to calculate the properties of these states to
much higher precision than would be possible in an arbi-
trary state of the H2 molecule. This provides a special
motivation for studying the spectroscopy of these states
with high experimental precision.

Since the zeroth-order picture of these states in terms
of a free H2+ ion and a hydrogenic electron is so nearly
exact, many properties of the H2+ ion, such as dipole po-
larizabilities, electric quadrupole moment, and hyperfine
constants, are reAected in the fine structure of high-L
Rydberg states. Indeed, in many ways the Rydberg elec-
tron is an ideal probe to explore these properties. The
Hz+ ion, the simplest molecule, plays a fundamental role
in molecular science, and many of its properties have
been carefully calculated. There are, however, rather few
precise experimental measurements with which these cal-
culations can be compared [1]. The available precise
measurements fall into three classes. The earliest were
the determination of hyperfine-structure constants of
H2+ in vibrationally excited states (v=4, 5, 6, 7, 8), which
were carried out by Jefferts using an ion-trap technique
[2]. These measurements were partially motivated by the
(so far unsuccessful) hope of detecting interstellar H2+ by
observing the characteristic radio-frequency emissions
from its ground-state hyperfine structure. A number of
theoretical calculations have predicted (or explained) the
observed hyperfine constants with a fair degree of suc-
cess, although a systematic discrepancy of about one part

in 10 in the dominant dipole hyperfine constant has only
recently been explained [3]. A second line of precise mea-
surements is the study by infrared laser spectroscopy of
rotational-vibrational transitions in HD, initially car-
ried out by Wing and collaborators in low vibrational
states [4], and later extended to much higher vibrational
states by Carrington, Mcnab, and Montgomerie [5].
These measurements have stimulated considerable im-
provements in theoretical predictions of the rotational-
vibrational structure of HD+ and H2+, which are now
close to the level of experimental precision [6,7]. A third
independent line of precision measurement is the recent
measurement of the g value of the H2+ ground electronic
state using an ion-trap technique [8], which gives a result
in agreement with theoretical predictions [9]. These ex-
isting measurements by no means exhaust the list of
measurable properties of the H2+ ground electronic state.
Indirect measurements of such properties, obtained by
study of the spectroscopy of high-L H2 Rydberg levels,
could lead to substantial new information about this fun-
damental system.

The theoretical description of the high-L H2 states in
terms of properties of the free H2+ ion has been obtained
using a polarization model formulation [10,11], quite
similar to that used by Drachman [12] to describe high-L
states of the helium atom. This is an approach to calcu-
lating the eigenvalues of the Coulomb Hamiltonian sub-
ject to the two basic assumptions (1) the two electrons are
treated as distinguishable particles, and (2) penetration of
the core by the Rydberg electron is neglected. This for-
mulation expresses the interactions between the Rydberg
electron and the ion core (beyond the dominant Coulomb
interaction) in terms of an efFective potential, the "polar-
ization potential" V &, which includes the effects of both
permanent and induced multipole moments of the core.
The lowest few terms of a systematic multipole expansion
of this effective potential are
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where r is the radial coordinate of the Rydberg electron
and 0 is the polar angle of that electron's position with
respect to the internuclear axis. The coefficients that
occur in V~, &

are Q, the electric quadrupole moment; az
and o;T, the scalar and tensor adiabatic dipole polarizabil-
ities; P, the electric hexadecapole moment; Co, Ci, and

C2, the scalar and tensor adiabatic quadrupole polariza-
bilities; Ps and PT, the scalar and tensor nonadiabatic di-

pole polarizabilities; and E„and E2, the tensor adiabatic
dipole-octupole polarizabilities. These coefficients are all
properties of the free H2+ ion, which in general depend
on the internuclear separation p, and hence will have a
different average for each rotational-vibrational state.
All of these constants have been calculated [13].

The zeroth-order basis appropriate to the high-L Ryd-
berg states is a set of vector-coupled product states
characterized by (v, R ), the vibrational and rotational
quantum numbers of the H2+ core; (n, L ), the principal
quantum number and orbital angular momentum of the
Rydberg electron; and N =R+L, the vector sum of core
angular momentum R and Rydberg electron angular
momentum L. We refer to such states using the notation
(v, R )nL~, and the energy of this zeroth-order state as
E( )((v, R )nL~). The expectation value of V „for such
a basis state accounts for the major part of the nonhydro-
genic structure,

(2)

We refer to E„,& as a state's "first-order polarization ener-

gy.
" It can also be shown that V, &

can approximately
account for the mixing of different Rydberg basis func-
tions by long-range interactions with the H2+ core [11].
This produces a contribution to the energy of each Ryd-
berg level that is formally identical to the expression for
the "second-order polarization energy" in a simple per-
turbation scheme,

~ol I p.i lpga
(3)

where y. is any other Rydberg state. The total energy of
any particular Rydberg level may be estimated as the sum
of its zeroth-order energy and the fine-structure energy,
which is the sum of Eqs. (2) and (3). We call this fine
structure electric fine structure (EFS), since it is due only
to electric interactions, neglecting all spins. Clearly,
since such a calculation depends parametrically on the
H2 properties listed above, which occur as coefFicients
in the polarization potential V &, its accuracy is limited

by the precision with which these coefFicients are known.
However, quite independently, its accuracy may also be
limited by the truncation of the perturbation theory
which the polarization model represents. For example,
the polarization potential [Eq. (1)] omits terms propor-
tional to higher inverse powers of r than r, and this
would certainly be expected to limit the accuracy of the
results at some level. In the closely analogous calculation
of helium fine structure by Drachman [12], this trunca-
tion is the primary source of uncertainty in the calcula-
tion, since in that case the necessary core properties can
be calculated exactly. Drachman suggested that the con-
vergence of the asymptotic series represented by the suc-
cessively higher inverse powers of r in V„& could be used
to estimate the truncation error in the calculation. That
is, the size of the smallest calculated term may be used to
estimate the possible size of remaining uncalculated
terms. This approach gives an estimate of the "conver-
gence error" in the polarization-model calculations that
has recently been confirmed, in the case of helium, by
high-precision variational calculations [14]. Very similar
procedures can be used to estimate the convergence er-
rors in the Hz EFS calculations. These will be discussed
in Sec. II, along with additional details of the application
of the polarization model to the states studied here.

The finest level of structure in the high-L states is asso-
ciated with the electron and proton spins. This has been
treated on an ad hoc basis using a spin Hamiltonian that
includes the effects of hyperfine interactions in the Hz+
core, added to magnetic interactions with the Rydberg
electron [15]. The magnetic fine structure (MFS) that re-
sults is discussed in more detail in Sec. II. We take the
point of view that, to the extent that this model accounts
satisfactorily for the observed MFS of the Rydberg levels,
it can be used to extract from the experimental spectra
information about the "pure EFS" structure. These re-
sults can then be compared directly with calculations
based on the (spinless) polarization model.

An experimental method that makes possible high-
resolution microwave spectroscopy of high-L H2 Ryd-
berg levels has been developed recently, and its use for
the systematic study of the n =10 Rydberg levels under
consideration here has been briefly described [16]. In this
paper, these measurements are described more complete-
ly, and an improved analysis is described in detail. Sec-
tion II considers aspects of the theory of the Rydberg
structure necessary for the interpretation of the measure-
ments. Section III describes the experimental technique
and the microwave measurements. Section IV compares
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the experimental observations with the theoretical pre-
dictions.

II. THE(DRY QF RYDBKRG FINE STRUCTURE

The "polarization model" can be derived from first
principles, using a perturbative expansion of the nonrela-
tivistic Coulomb Hamiltonian, as has been discussed else-
where [10,11]. It is our purpose here to clarify the
manner in which the model is used to predict the EFS of
the (0,1)101.& Rydberg levels studied in this experiment.
Because of the increasingly precise comparison with ex-
periment, several points require special clarification.

A. Reduced mass corrections to V~ &

polarization model was formulated in a similar set of
Jacobi coordinates. As was the case of the helium atom,
no mass-polarization operators occur with this choice. In
addition to slightly altering the zeroth-order Rydberg en-
ergies because of the revised reduced mass, this coordi-
nate choice causes the correction terms proportional to e
which are exhibited in Eq. (7b) of Ref. [11]. The effect of
these small terms on the polarization potential, neglected
in Ref. [11], is particularly significant in the two dom-
inant terms of V,&

expressed in Eq. (1), the static quadru-
pole moment and the adiabatic dipole polarization terms.
It becomes clear when the perturbing Hamiltonian V of
Eq. (7b) in Ref. [11] is expanded in a multipole series.
Retaining only the two lowest nonvanishing multipoles
and only terms linear in e, the result is

The calculated EFS is inAuenced in two ways by the
finite ratio of electron to proton mass m, /m . The
simpler effect is the change in radial scale of the Rydberg
electron wave function caused by the finite proton mass.
The correct wave function is obtained from the elementa-
ry infinite-nuclear-mass wave function by the substitution

2
r& r&V—=(1+e) P, (cosO, z)+ (1—2e) P2(cos8, z)

r2

—2 P2(cosoz ) .(p/2)'
r2

(5)

ap —nap(1+ e), (4)

where e=m, /(2m +m, ). This scaling factor is quite
significant in evaluating the expectation values of the
various inverse powers of the radial coordinate that ap-
pear in Eq. (1).

A second source of corrections of relative order
m, /m is more subtle, but follows the line of reasoning
laid out by Drachman in studies of high-L helium Ryd-
berg states [17,18]. If, as in Ref. [10], the relative coordi-
nate of the Rydberg electron is defined with respect to
the midpoint between the two protons in Hz+, that is, the
nuclear center of mass, the transformation of the kinetic-
energy terms in the Hamiltonian contains "mass-
polarization" terms that are normally neglected. In the
closely analogous case of helium Rydberg states, it has
been shown by Drachman that the effect of these terms is
twofold: they produce a small "second-order mass-
polarization" energy shift that is common to all Rydberg
states of the same n [18], and in addition they introduce
small corrections to the polarization potential of order
m, /m [17,12]. As shown for helium by Drachman, a
far simpler procedure than directly evaluating the effects
of the mass-polarization operators, which gives
equivalent results, is to use a different set of coordinates,
"Jacobi coordinates, " in which the coordinate of the
Rydberg electron is defined with respect to the center of
mass of the ion core. When this is done, the mass-
polarization operators do not occur in the transformed
kinetic energy. Instead, the energy shifts previously asso-
ciated with the mass-polarization operators appear in a
different manner. The shift common to all helium Ryd-
berg levels of the same n comes from a change in the
effective Rydberg constant due to a revised reduced mass.
The corrections to the polarization potential of order
m, /m are found, with far less effort, by evaluating the
effects of small corrections, proportional to m, /m,
which occur in the perturbing Harniltonian from which
the polarization potential is derived. In Ref. [11],the Hz

When this expression for V is substituted into the deriva-
tion of the polarization potential, its effect is twofold.
First, the prefactor (1+e) attached to the dipole term
multiples the dipole polarization terms by the factor
(1+e) =1.000544. Secondly, the prefactor in the elec-
tronic quadrupole term modifies the static quadrupole
potential. As discussed in Ref. [10], the quadrupole mo-
ment contains both nuclear and electronic contributions,
Q(p)=2(p/2) —Q, (p), where Q, (p) is defined by Eq.
(13) of Ref. [10]. When the terms proportional to e are
included in its derivation, the nuclear contributions to Q
are unaltered, while the electronic contribution is multi-
plied by the factor 1 —2e. The net effect is a small in-
crease in the quadrupole potential

Q =2(p/2) —Q, —+2(p/2) —(1—2e)Q,

=Q( 1+2eQ, /Q ) = 1.000 172Q,

where the value of Q, /Q was taken from explicit evalua-
tions [19]. Since both of these kinematic corrections alter
the coefficients in V„,& by multiplicative factors near uni-
ty, it might be reasonable to consider adsorbing them into
the definitions of the quantities Q, as, and az. We con-
sider this undesirable, however, since the standard
definitions of these quantities are widely accepted. In-
stead, maintaining the standard definitions, we explicitly
include the small essentially kinematic corrections to the
effective potential seen by the Rydberg electron, modify-
ing the first two terms of Eq. (1) to read

V~, i
= —1.000 172

3
P2(cos0)

e (p)
r2

e' as(p)—1.000 544 + Pz(cosO)
r2

+ 0 ~ ~

Similar corrections to higher-order terms are negligible
for present purposes.
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B. Core parameters and Arst-order polarization energies

The coeKcients that occur in the polarization potential
represent electric properties of the free H2+ ion. Each is
defined with respect to a fictitious Hz ion with station-
ary protons, and is therefore a function of the internu-
clear separation p. The permanent electric multipole mo-
ments (that is, the quadrupole moment, the hexadecapole
moment, etc. ) can be evaluated knowing only the
ground-state electronic wave function, while the adiabat-
ic polarizabilities (dipole polarizability, quadrupole polar-
izability, etc.) involve, in principle, the spectrum of excit-
ed states as well. The most complete evaluations of all of
these parameters, both static moments and adiabatic po-
larizabilities, have been carried out by Bishop and Lam
[13]. The nonadiabatic dipole polarizability P has been
shown to be equivalent to the "second-moment" function
in the presence of an electric field, which has also been
evaluated by Bishop [10].

While the definitions of the permanent core moments
in the molecule fixed frame are unambiguous, application
to a particular Rydberg series also requires that they be
averaged over the rotational-vibrational wave function
appropriate to a particular core state. The rotational-
vibrational wave function can be evaluated in various ap-
proximations. The Born-Oppenheimer approximation,
which is the simplest, neglects the effect of nuclear kinet-
ic energy on the internuclear potential. An improved ap-
proximation, the "adiabatic approximation, " treats these
nuclear kinetic-energy terms, which in principle mix vari-
ous electronic states, in what amounts to first-order per-
turbation theory, and assumes, as does the simpler Born-
Oppenheimer approximation, that the Hz+ wave function
contains a single electronic wave function as a factor.
The exact wave function, however, actually contains a
small component that admixes excited electronic states.
Calculations that account for this and therefore do not
make the "adiabatic wave-function" approximation are
referred to as "nonadiabatic. " Since the order of magni-
tude of the excited-state amplitude is approximately
m, /m, these details may be significant at the level of
1/1000. Since, for most purposes, higher precision is not
required for the core properties, the only systematic eval-
uations of all the necessary moments use adiabatic wave
functions. Bearing in mind that nonadiabatic wave-
function corrections may be required, at least for the
leading terms, we nevertheless adopt the following esti-
mates of the core moments taken from these adiabatic
wave-function averages for the ( v =0, R = 1) state of H2+
[13]:

( Q )0 I
= 1.642 57ea o

(P)o I=2.0192eao

with

Dx z(p)=—e ffx(rI', p)r, C' z(rI)f z(rI;p)d rI

It can be shown that the scalar and tensor dipole polari-
zabilities that occur in V„,& can be written without ap-
proximation in terms of these branch polarizabilities [20].
For instance, in the particular case of the R = 1 states of
H2+, such as those studied here, it is found that

as(v, R =1)=—,'a„(1,2)+ —,'a„(1,0)

+ —,
' a,(1,2) + —,

' a,(1,1), (8a)

and

'2)+ 6 II(1,0)

+ —,'al(1, 2) ——,'al(1, 1) . (8b)

Notice that if the dependence of the branch polarizabili-
ties on R ' were neglected, these would reduce to the stan-
dard forms

+2
a&—

Since the branch polarizabilities of H2+ have never been
calculated, it is fortunate that their dependence on R ' is
expected to be slight. The standard approximation for
the dipole polarizabilities can be recovered by setting

E (XvR ) E(aAv'R ') =—Ex(p) EA(p)—
in the denominator of Eq. (7). The right-hand side of this
expression is the difference of potential curves for the
ground (X) and electronically excited (aA) states of H2+.
In this approximation, using the completeness of the
rotational-vibrational functions g ~ R, (p ), it is found
that

aII(R R')= f ~gx.R(—p)~ aII(p)dp,

fgx R(p)Dx, z(p)g x ', R'(p)d p
'

aII(R, R')—:—2 g E (XvR ) —E (aXv'R ')

(7a)

l f gX R(p)DX, aII(p)gallv'R (p)dpi'
al(R, R')—:—2 g E (XvR ) E(a—IIv'R')

(7b)

Evaluation of the core polarizabilities involves other
complications, which are illustrated by the case of the di-
pole polarizabilities. The quantities that occur in the
derivation of this part of the polarization potential [10]
are the "branch polarizabilities, "which are defined there
in terms of a sum over electronically excited states of
fixed rotational angular momentum R':

a"(R,R ') =—f Igx„(p) l
a (p)d p,

where

( ) 2~ ~ xaxP. Ex(p») E.x(p»)
'—
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iDx,.n(S» ~'

. Ex(S» —E.n(V)

are the usual "clamped-nucleus" forms of the dipole po-
larizabilities, evaluated as a function of internuclear sepa-
ration. Since all dependence of the branch polarizabili-
ties on R is lost in this approximation, the usual rela-
tionship to o,z and 0,'T is also recovered. The important
point to note is that the assumption that the polarizabili-
ties can be evaluated for clamped nuclei and subsequently
averaged over rotational-vibrational wave functions is al-
ready an approximation. The error that it introduces is
probably less than l%%uo, judging from discussions of relat-
ed problems [21], but is almost certainly greater than
0.1%. Similar considerations apply to all the other polar-
izabilities, but are probably insignificant for present pur-
poses except in the case of the dipole polarizabilities.

The clamped-nucleus polarizabilities, both dipole and
higher order, have been systematically evaluated by
Bishop and collaborators using variational techniques.
As in the case of the permanent moments, the choice of
the rotational-vibrational wave function for the averaging
of these polarizabilities involves further approximations.
The best available numbers for the (0, 1) state of Hz+ are
obtained by averaging over the adiabatic rotational-
vibrational wave function and are given by

( as &o, =3.180 88ao,

( a &,=4.027 31a

( Co & o, =24. 066a o,
Ci &o, i 5 118ao

( C~ & o, =0.420a o,
E, &o,

——26.77a,',
&E2 &o, i =14.6a,',
(Ps & o, i

=6.84a o /e

and

( f3T & o, = 12.49a o /e

These values are all taken from calculations by Bishop
[13],and are similar to those cited in Ref. [11]except that
a sign error in the value of the Cartesian component of
the E tensor, E „„,cited in Ref. [10]has been corrected.
The correct value is

(E„„„&o1=—1.130ao .

This alters the derived spherical components E, and E2
as indicated in Eq. (38) of Ref. [10]. As discussed in Ref.
[11],the values of the quadrupole polarizabilities C differ
from those cited in Ref. [10] since only the electronic
contributions to the quadrupole polarizabilities are ap-
propriate to include here. The values of f3s and /3T are
obtained from the S 3 moment function calculations by
Bishop [22].

The first-order polarization energies for the (0, 1)10L~
states studied here are of the form

E „=A (ovR, nL)+ A2(v, R, n, L)

X (R,L;K ~P2(cos0) ~R, L;%&,
(10)

since terms in V „proportional to P4(cos0) give zero ex-
pectation value in the R =1 core state. The scalar (Ao)
and tensor ( 22 ) structure factors can be evaluated from
the expectation value of the appropriate terms in V,&.

An estimate of the error incurred by neglecting higher-
order terms in the expansion is found from the size of the
smallest calculated term. Following Drachman [12], we
group together all terms proportional to r ' and denote
their total contribution V, . Then we estimate the param-
eters Ao and A2 by

3 = V3 + V4 + V6+ ( ,' V6+—,' —V6), —

where the last term is an estimate of the contribution of
uncalculated higher-order terms. The values of Ao and
3 z predicted in this way for the states under study, using

TABLE I. Polarization-model predictions of the scalar (Ao) and tensor (A2) structure factors of (0, 1)10L states of H2 with
4 ~ L (7. Numbers in parenthesis are one-standard-deviation error estimates, based on the estimate of uncalculated higher terms as
( —2+ 2 ) times the total calculated r " contribution. All units are MHz.

6
6

& 6 (estimate)
A, (total):

3
4
6
6
6)6 (estimate)

A, (total):

Coescient

Ag

Ps
Co

Q
CXy

PT
Cl
El

10G

—8451.6
488.0

—114.4
—186.8( 1868)

—8265(187)

—120005.2
—7133.7

297.0
—34.8

—182.0
—40. 1(401 )—127099(40)

10H

—2925.5
63.0

—14.8
—24. 1(241)
—2901(24)

—65 457.4
—2469.4

38.4
—4.4

—23.4
—5.3(53)

—67922(5)

10I
—1198.5

11.4
—2.6

—4.4(44)
—1193.7(44)

—39 562.2
—1011.3

6.8
—0.8
—4.2

0.9(0)
—40 572.6(9)

10K

—549.9
2.4

—0.6
0.9(9)

—549.0(9)

—25 715.4
—464. 1

1.6
—0.2
—1.0

—0.2(2)
—26 179.3(2)
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the radial expectation values given by Bockasten [23]
corrected for finite core mass, and with the above choice
of core parameters, are shown in Table I. These differ
from the values shown in Table III of Ref. [16]because of
(a) the inclusion of the finite nuclear mass corrections to
the a and Q terms, discussed above and shown in Eq. (6),
and (b) the use of difFerent values of the C and E tensor
coefficients.

C. Second-order polarization energies

where

v', R', n', L'

I &(v, Z )nL„I V...I(v'Z')n'L~ & I'
AE

(12)

bE:—E (0()( vR )nL&)+E(, ((v, R )nL&)

—E( ){(v',R')n'L~) —E(',)i((v', R')n'L~) . (13)

This use of the polarization potential is discussed in Ref.
[11]. The choice of energy denominator is designed to
correct for the first-order polarization energies in com-
puting mixing to nearly degenerate levels, as discussed
there. The sum over n' includes both discrete and con-
tinuum levels of given L and N. The matrix elements of
Vp ] between Rydberg states in different series, required
for these computations, involve matrix elements of the
various core parameters between different rotational-
vibrational states of H2+. We estimated these from tables
of matrix elements off' diagonal in v only [24], using the
expression

The second-order polarization energies, defined in Eq.
(3), for each of the states studied here, were computed
from the expression

Ep(, )i [(v,R )nL~]

& v&
If(p) I

v'& '
&

—=
I & v& If(p) lv'& && v&'lf(p) lv'&'& I'" (14)

E ( ) —= ( V6+ V7+ Vs + V9 )+—,
' V9, (15)

where V6, etc., is the total contribution from all terms
proportional to r, etc. , summed over all intermediate
states. The contributions from discrete and continuum
intermediate states were evaluated separately. The shifts
due to discrete levels were estimated by explicit1y evaluat-
ing the contributions of all discrete levels with n'(45,
and extrapolating to account for the contributions of all
remaining discrete levels. The contribution from contin-
uum levels was estimated by calculating the contributions
of a number of representative continuum levels in the en-
ergy range 0—0.6 a.u. At the highest energy, the contri-
butions were found to decrease smoothly, and were fit to
a power law to estimate the integrated contribution from
all continuum states. The resulting values of the second-
order polarization energies for the states under study are
shown in Table II. These are in satisfactory agreement
with the values given in Ref. [16], and are somewhat
more precise because of our inclusion of mixing terms up
to r, compared to only r in that work.

For the most significant matrix elements, those with
v=v', this approximation is expected to be accurate to
0.1%. It may be less accurate for vWv', but these matrix
elements are far less significant. A typical breakdown of
second-order polarization energies by perturbing series is
given in Table VI of Ref. [10]. An estimate of the pre-
cision of the calculation of E by this prescription may
be obtained by grouping terms in the numerator product
according to the total inverse power of r, which ranges
from r for the QQ mixing term to r for the aP mix-
ing term. Terms with total power r ', like PP, are
dropped, since other terms of potentially the same magni-
tude are omitted when V„,& is truncated after r . The
total energy shift is estimated from

TABLE II. Second-order polarization energies of (0, 1)10L& states of H2, calculated from Eq. (12) in
the text. The total contribution by other bound, discrete states is labeled E~ & d, while E~„, is the total
contribution by the various continua. The sum of these two is listed in the last column, E,&. All units
are MHz. The numbers in parenthesis are one-standard-deviation estimates, obtained from Eq. (15).

State

G3
G4
G5
H4
Hq
0,
I5
I6
I7
x,
K7
K8

[2]Ep.i, d

24.6(12)
—726.6(12)
—533.4(8)
—28.78(2)

—218.59(4)
—155.00(2)
—17.07
—76.82
—52.51
—10.65
—29.21
—21.55

—454.4(34)
—277.0(39)
—413.9(19)
—82.46(14)
—56.35(17)
—78.50(9)
—20.12(1)
—13.21(1)
—19.80(1)
—5.50
—3.21
—5.60

—429.8(36)
—1003.6(41)
—947.3(21)
—111.24(15)
—274.94(17)
—233.50(10)
—37.18(1)—90.03(1)—72.31(1)
—16.15
—32.42
—27.15
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D. Magnetic fine structure

where

H h„= b(I. S, ) +c(I.p)(p. S, ) +d( R S,), (17)

[L.Sz —2L Si+2S2 [S,—3r(r.S,)]], (18)

H„=—V„(—,'+2S, S~) .

The constants in Eq. (17), b, c, and d, are the calculated
hyperfine constants for the free H2+ ion in the appropri-
ate rotational-vibrational state (v, R ), for which we take
the values b =880.551, c =128.432, and 0 =42.399 [25].
The unit vector along the internuclear axis is denoted p, I
is the total nuclear spin, S, is the spin of the core elec-
tron, and 82 is the spin of the Rydberg electron. Also, cx

is the fine-structure constant, and % is the Rydberg con-
stant. The parameter V represents the exchange energy,
which if all other spin interactions were negligible, would
be half the difference in energy between two-electron spa-
tial wave functions of even and odd exchange symmetry.
Since the other interactions dominate the observed struc-
ture, the exchange energy plays a very minor role in the
magnetic fine structure of the states studied here. A
corrected analysis of data from a previous study [15] indi-
cates that

The MFS Hamiltonian was discussed in Ref. [15],and,
in more detail, in Ref. [11]. It was developed in an ad hoc
fashion by including what are expected to be the most
significant spin interactions, and can be expressed as

(16)

V„(10G)—=0.30(10) MHz .

Since V„ is expected to decrease rapidly for, higher-L
states, we take V =0.00 MHz for all n = 10 Rydberg lev-
els with L )4.

One may contrast the ad hoc status of the MFS Hamil-
tonian to the EFS Hamiltonian [Eq. (1)], which was de-
rived in a rigorous manner from the nonrelativistic Ham-
iltonian. %'e have no theoretical estimate of the MFS er-
rors, nor of the limits of applicability of the MFS model.
The degree of agreement between the model and the
many spectroscopically measured transitions provides
our only estimate of error. Previous measurements indi-
cate that the model agrees with observations at about the
l%%uo level [11,15], and we find similar results below.

In order to evaluate Eqs. (16)—(19), we note that, when
the EFS is much larger than the MFS, the MFS Hamil-
tonian is approximately diagonal in a basis characterized
by (v, R )nL~, the EFS state; I=I,+I2, the total proton
spin, required by symmetry to be 1 (odd R) or 0 (even R);I'= I:+SI, the total core spin; J,=N+F, an intermediate
angular momentum; and J=J][+S2, the total angular
momentum. We denote these basis states
(»R, F)nL&(J„J). The notation (v, R,F) anticipates
the observation that the difference in energy between
F= 1.5 and F=0.5 is most naturally considered part of
the H2+ core energy.

In Ref. [11] it was shown that when n )25 and the
electric fine structure is comparable to the MFS energy, it
was necessary to treat H " as an effective Hamiltonian
and diagonalize it within a subspace of Rydberg levels of
a given core state (v, R ) and a fixed nL Because .the elec-
tric fine structure is so much larger in this study, the di-
agonalization is not necessary, and the small perturba-
tions caused by nearby states can be treated by second-
order perturbation theory. That is,

Egs =~(»R F)nL~(Ji J)IH""l(v,R,F)«~(Ji,J) & (20)

~((v, R,F)nL~(J„J)~H " l(v, R,F')«~(Ji, J))I

E„,i[(v, R )nL~ ]-
—EIijs[(v,R,F')nL~ (J', ,J)],

and the total energy of the state is

(22)

(23)

where Epp] is the sum of first- and second-order polariza-
tion energies [Eqs. (2) and (3)]. Explicit representations

where

(EE)*=E „[(v,R )«~)+Eppes[(»R, F)«~(Ji,J)]
of the MFS matrix elements between any two states, for
each term in Eqs. (16)—(19), are listed in Appendix A.
Also listed in the Appendix are the selection rules of each
operator, along with a sample table giving explicit calcu-
lations for one Rydberg state, the (0, 1)10H state.

A particular fine-structure transition, such as
(0, 1)10G5-(0,1)10H6, is actually a superposition of tran-
sitions between specific MFS levels, with those transitions
having the strongest electric dipole matrix elements dom-
inating the pattern at low microwave power. An explicit
representation of the dipole matrix elements in our basis
set is given in the Appendix. The matrix elements (be-
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tween basis states) satisfy the rigorous selection rule
b.I=O and b,F=O, and b,J=O, +1. The approximate
selection rule hJ =AJ& =AN is also found to hold. The
largest dipole matrix elements are between the states that
satisfy AN=AI. . The MFS of these states is quite simi-
lar, so that the resultant 12 transitions have very similar
frequencies. Given the resolution of this experiment,
these transitions appear as a single peak. Slightly weaker
transitions occur when bX =0, such as (0, 1)10H6-
(0, 1)10I6. These states do not have a similar magnetic
fine structure, however, and the resultant transitions ap-
pear as several partially resolved peaks. Since AF=O
remains a good selection rule, the dipole hyperfine struc-
ture, the first term in Eq. (17), does not contribute to the
splittings, and the peaks are spread out over frequencies
comparable to the remaining MFS, typically 50—100
MHz.

III. EXPERIMENT

The experimental apparatus is shown schematically in
Fig. 1. A fast beam of neutral H2 is prepared by charge
exchange from an 11.16(5) keV beam of Hz+, which is
produced by a conventional duoplasmatron ion source.
The mass-selected Hz+ beam is partially neutralized in a
gas cell containing a few millitorr of argon gas. The re-
sulting neutral beam contains many highly excited Ryd-
berg states, including the n =10 states studied here. Any
remaining positive ions and Rydberg states with n ~24
are removed from the beam with a strong deflection field
immediately following the charge exchange cell. Specific
Rydberg levels still present in the beam may be selective-
ly detected by resonant laser excitation to a very-weakly-
bound discrete level (e.g. , n =30), followed by Stark ion-
ization of the upper level and collection of the resulting

ion. This process is particularly convenient for n =10
Rydberg levels, where the laser excitation can be accom-
plished with a Doppler-tuned cw CO2 laser. For a beam
of this velocity [U/c —=0.003448(7)], a range of discretely
tunable CO& lines gives continuous frequency coverage
with Doppler tuning. The n = 10 excitation spectrum ob-
served in this way [26] shows well-resolved fine structure
due to the Rydberg fine structure of the n =10 levels, and
allows the selective excitation and detection of numerous
n = 10 Hz Rydberg levels with I. =3, 4, 5, and 6 bound to
H2+ in v =0, R =0, 1, 2, and 3 states. With the
Doppler-tuned laser frequency adjusted to excite one par-
ticular n = 10 Rydberg level, e.g., the (0, 1)10G5 level, the
resulting ion current after Stark ionization is a Ineasure
of the population of this particular level, and it can there-
fore be used to detect microwave-induced transitions be-
tween this level and any other n =10 Rydberg level. The
first use of this technique to detect the (0, 1)10G~-
(0, 1)10H6 transition has been described previously [15].
For this study, we have extended the technique to study
the ten different fine-structure transitions within the
(0, 1)10L system that are illustrated in Fig. 2. Table III
lists the transitions studied along with their approximate
frequencies. Also listed for each transition is the optical
transition used to detect it and an identification code for
the microwave interaction region in which the transition
was driven. For all of these signals, the naturally occur-
ring population differences between the various fine-
structure levels were sufhcient for observation of the sig-
nals, and therefore no steps were taken to artificially in-
duce a larger population difference.

Figure 3 illustrates the microwave interaction regions
that were used to drive these transitions. Four different
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FIG. 1. Schematic diagram of the fast-beam microwave-
optical apparatus. An accelerated beam of H2+ ions forms a
fast neutral-H2 beam by charge exchange. After the charge ex-
change cell, residual ions are swept out of the beam. Particular
n =10 fine-structure levels are excited by a Doppler-tuned CO2
laser to a very-highly-excited discrete state (typically n =30)
which is then immediately Stark ionized. The resulting ions,
detected by a channeltron, provide a measure of the population
of one n = 10 fine-structure level, and reveal population changes
induced by resonant microwave transitions to other fine-
structure levels.
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FIG. 2. Level diagram illustrating the electric fine structure
of the H2 Rydberg states studied in this experiment, the
(0, 1)10L& states with 4~L ~7. The arrows show the fine-
structure transitions that have been studied here. The MFS,
which is due to the electron and proton spins, is not shown.
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TABLE III ~ Fine-structure transitions observed in this study.
For each microwave transition is listed the frequency range of
the spectrum, the optical transition used for detection, and the
microwave interaction region used. The characteristics of each
region are de6ned in Table IV.

teractions with the fast beam is limited by the transit
time of the beam through the region, and is given approx-
imately by

Eve. = I/T= v/I. ,

Transition
Frequency

(MHZ)
Optical

transition
Microwave

region
where L is the length of the region, given in Table IV,
and U is the beam velocity. For the geometries listed in
Table IV and the beam speed used, Av~ ranges from 3 to
8 MHz. One of the significant properties of each region
is the reflection coefficient of its output port, since this
determines the extent to which the microwave field is a
pure traveling wave. Table IV lists approximate values
for these coefficients in the frequency range used.

Another significant characteristic of the microwave in-
teraction regions is the electric and magnetic field envi-
ronment within them. For most of the fine-structure res-
onances studied here, no e6'ort was made to eliminate the
earth s magnetic field within the interaction region. Con-
sequently, in most cases an approximately vertical mag-
netic field of magnitude 0.30 G was present throughout
each region, along with the associated motional electric
field, 0.31 V/cm. The exception was the coaxial region,
which incorporated magnetic shielding to reduce the am-
bient magnetic field to 0.06 G. Other electric fields
within the interaction regions, perhaps due to charge
buildup on their normally conducting surfaces, were as-
sumed to be smaller than the motional fields.

Figure 4 shows typical data for two of the transitions
studied, G4~H5 and I7 ~L7. Two other resonance line
shapes, H6 ~I7 and H6~I6, are illustrated in our earlier
report [16]. For all but one of the transitions studied,
I7 ~E7, the resonance line shape was measured for both
directions of propagation of the microwave traveling
wave, parallel and antiparallel to the molecular-beam ve-
locity. For the strongest transitions, those with 62V =EL
as in Fig. 4(a), the similar MFS of the two levels leads to
a predicted substructure that is rather closely spaced, as
illustrated by the stick diagram in Fig. 4(a), and which at
the resolution of this experiment (hvr =5.3 MHz for this
region) results in a composite line shape that appears as a
single resonance. These resonances were analyzed by
fitting them to a single Gaussian peak, varying position,
height, and width, along with a linear background. On
the other hand, the transitions with AX=0, as in Fig.
4(b), connect states of very different MFS, giving rise to a
composite line shape which at our instrumental resolu-
tion appears as four separate peaks. This data was ana-
lyzed by fitting it to a superposition of four Gaussians of
common width, varying the individual peak heights and
positions along with a constant background. The peak
positions resulting from all of these fits are shown in the
first column of Tables V and VI.

As a first step in the analysis of this data, the results
from the two directions of propagation were combined to
eliminate the Doppler shift and to determine the
equivalent resonance position for stationary molecules.
Inside a uniform section of waveguide, a beam propaga-
ting along the waveguide axis sees a Doppler-shifted mi-
crowave frequency given by

14 675—14 775
5 805—5 860
9 995—10070
5 640—5 690
3 575—3 605
3 820—3 855
1 765—1 795

16720—16 920
15 090—15 290
9 140—9 260

P band
6 band
X band
G band
G band
6 band
coaxial
P band
P band
X band

10G3 ~27H4
1064—+27H,
106s 27H
10H4~27Is
10Hs ~27I6
10H6 —+27I7
10I7~27E8
10Hs ~27I
10H6 ~27I7
10I7~27%8

106, 10H,
1064~ 10Hs
106s~ 10H
10H4 ~ 10Is
10Hs —+ 10I
10H6 —+10I7
10I7~ 10.K8
10Hs —+ 10Is
10H6 ~ 10I6
10I7~10E7

I

PRESSURE
WlNDOWS

H~ BEAM
PATH

VACUUM
CHAMBER

TYPE-N
VACUUM
FEEDTHROUGH

H2 BEAM PATH

FIG. 3. Two types of microwave interaction regions used in
this experiment: (a) constructed from a conventional
waveguide, and (b) a specially constructed section of TEM
transmission line. The relevant physical dimensions of all the
regions are given in Table IV.

regions were used, whose characteristics are given in
Table IV. Three of the regions were waveguide transmis-
sion lines, similar to that shown in Fig. 3(a), while the
fourth, illustrated in Fig. 3(b), was a coaxial region simi-
lar to that used in studies of atomic helium Rydberg lev-
els [27,28]. In each case, the fast Hz passes through the
region along the axis of microwave propagation, either
parallel or antiparallel to the direction of microwave
propagation. The resonance linewidth expected in in-
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TABLE IV. Characteristics of the microwave interaction regions used in this experiment. The
geometries are illustrated in Fig. 3. For each region is listed the dimension of the largest side 8, the
length of the region L, the distance from the entrance aperture to the straight section of the region S,
and the radius of curvature of the ends R. I is the measured voltage reAection coefficient from one end
of the region.

Region

Coaxial
G band
X band
P band

a (cm)

7.214
4.755
2.286
1.580

L (cm)

29.5
19.4
13.1
17.1

S (cm)

8.52
4.58
1.83

R (cm)

7.29
8.64
4.76

=0.15
=0.30
=0.15
=0.10

where

(1+PA,O/1, ),
( 1 P2)1/2

A.o/A, =(1—(v, /v) )'

CA

JD

O

2

I—

(a)
I I I I

I
1 I I I

I
I I I I

(24)

(25)

vo= 2, [I+flip(AO/k )] .
( 1 P2)1/2

(26)

It follows that measurements of v—determine both vo and

fs according to

with p= v/c and v, =c/2B, where c is the speed of light
and B is the waveguide dimension tabulated in Table IV.
(For the TEM coaxial interaction region, v, =0.) In
practice, for interaction regions constructed as in Fig.
3(a), the Doppler shift is expected to be somewhat smaller
than this due to the inAuence of the bend regions, where
the microwave propagation direction turns gradually
away from the molecular-beam velocity. Corrections to
the Doppler shifts due to these bend regions can be in-
cluded by introducing a factor fz —= 1 into Eq. (24). As a
result, we expect the up- and down-shifted resonance fre-
quencies (v—

) to be given in terms of vo, the resonance
frequency for stationary atoms, by

5800
I I I I I 1 I I I 1 I I I 1

58 IO 5820
FREQUENCY ( MHz )

(b)

5830 and

vo= v[1+p ( ,' f )2+10(g—'—) ]

+f — [1 (v /v)2] —1/2

2

(27)

V)

D2-
JD

h

I—

z 0—
C9

CO

II IlII

II
I 1 I

II)(IIl II II

9 I 40 9I 80 9220
FREQUENCY (MHz)

9260

FIG. 4. Two examples of microwave resonance line shapes
observed in this experiment: (a) the G4~H5 transition, and (b)
the I7~K7 transition. Resonance (a) was obtained with fast-
beam and microwave traveling-wave counter propagating, while
resonance (b) was taken with copropagating directions. Reso-
nance (a) is an example of a AN=1 transition, for which the
substructure due to MFS is unresolved, as illustrated by the
stick diagram showing the predicted substructure. Resonance
(b) illustrates the case of a EN=0 transition, which shows par-
tially resolved MFS.

where

v++ vv=
2

Tables V and VI show the values of fbi and vo obtained
for each transition.

The values of fz may be compared with a simple cal-
culation based on the waveguide geometry. Following
the treatment used elsewhere [29], a local Doppler-shifted
frequency v'(s) is defined for all points along the beam
trajectory as determined by the local angle between the
beam velocity and the waveguide axis. The "average"
Doppler shifted frequency v'~ is then computed from

I iE(s)i v'(s)ds

f 1E(s) I
'ds

(29)

The electric field F(s) is approximated by the single TE,0
mode throughout the bend region. For the geometries of
Table IV, this calculation predicts
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0.977 (G band)

f~ = 0.987 (X band)
0.995 (P band) .

Of course, on this same basis, the coaxial region would be
expected to give

f~ =1.0 (coaxial) .

Comparison with the observed values of f~, shown in
Tables V and VI, shows good agreement for the P band,
but rather poor agreement for the other regions. In the
case of the G-band region, f~ shows a systematic depen-

dence on frequency, and appears to converge towards the
predicted value for v ))v, . The coaxial region also
shows a clear deviation from the prediction. In the case
of the waveguide regions, these observations are similar
to the results of other studies [29]. These discrepancies
may be due to the inhuence of nonpropagating elec-
tromagnetic modes in the bend or transition regions,
which are neglected in the simple model used to predict
fz. Fortunately, when computed according to Eq. (27),
vo is rather insensitive to the precise value of f~. In the
one case where resonances for both directions of mi-
crowave propagation were not measured (I7~Ks), f~
was estimated as 0.967(9) from the G5~H6 results, and

TABLE V. The experimentally measured EN=0 transitions. Each transition has four resolvable composite peaks (1)—(4) whose
fitted positions, for both directions of microwave propagation ( A, B ), are listed in the fourth column. From these two measured fre-
quencies, both the resonance position for stationary atoms (vo) and the Doppler-shift factor (f~ ) can be computed as described in the
text, and are shown for each transition in columns six and five, respectively. Column seven lists AvM„s, the calculated correction to
each resonance position due to magnetic fine structure to obtain vEFs, the pure electric fine structure interval. Columns eight and
nine show the systematic corrections and uncertainties due to Stark shifts and microwave rejections, respectively. The resulting
values of vE» are shown in column ten, with the associated statistical uncertainty. The average value of vE„s from the four indepen-
dent measurements of each interval is also shown in column ten, including an additional 0. 10-MHz uncertainty due to possible
inaccuracies in the MFS model, and including other systematic uncertainties. The numbers in parenthesis are one-standard-deviation
estimates. Except for fa, which is dimensionless, the units are MHz. Values denoted by an asterisk were estimated from the ob-
served G& ~H6 Doppler shift.

Transition Peak Direction

H5 ~I~
Vfit

16 839.92(20)
0.997(4) 16792.22(15) 26.39 —0.08(0) 0.00(0)

UEFS

16 818.53(15)

H5 ~I5

H5 ~I5

H5 ~I5

(2)

(3)

(4)

B
A

16 744.71(21)
16 860.65(29)

16 764.37(29)
16 873.59(23)

16 778.63(22)
16905.32(27)

1.006(5) 16 812.41(21)

0.991(4) 16 826.01(16)

5.89 —0.08(0)

—7.57 —0.08(0)

0.00(0)

0.00(0)

16 818.22(21)

16 818.36(16)

16 810.32{28)
0.989(5) 16 857.72{20) —39.09 —0.08(0) 0.00(0) 16 818.55(20)

Average vE».. 16 818.42(14)

H, ~I,

H, ~I,

H, I,

H, ~I,

(2)

(3)

(4)

A

B
A

B
A

15 187.24(22)

15 106.41(18)
15 214.18(23)

15 132.57{22)
15 228.44(9)

15 146.91(10)
15 277.66(21)

0.993(4) 15 146.74(14)

0.999(4) 15 173.29{16)

0.997(4) 15 187.59(7)

35.72 —0.09(0)

8.62 —0.09(0)

—5.57 —0.09(0)

0.00(0)

0.00(0)

0.00(0)

15 182.37(14)

15 181.82(16)

15 181.93(7)

15 195.82(16)
0.995(4) 15 236.65(13) —54.36 —0.09(0) 0.00(0) 15 182.20(13)

Average vEFs: 15 182.08(16)

I7 ~K7
I7 ~K7
I7 ~K7
I7 —+K7

(1)
(2)
(3)
(4)

9 155.27(33)
9 179.05(53)
9 195.69(20)
9 243.29(59)

0.967(9)
0.967(9)*

0.967(9)*
0.967(9)*

9 134.02(33)
9 157.69(53)
9 174.25(20)
9 221.62(59)

35.20
9.50

—5.52
—53.44

—0.09(0)
—0.09(0)
—0.09(0)
—0.09(0)

0.00(15)
0.00{15)
0.00(15)
0.00{15)

Average vEFs.

9 169.13(33)
9 167.10(53)
9 168.64(20)
9 168.09{59)
9 168.24(51)
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TABLE VI. Measured AX=1 electric-fine-structure transitions. For each transition there is only one composite peak, measured
in two different propagation directions: copropagating (A), and counterpropagating (B). The results of the single-Gaussian fit are
listed for each direction, from which the Doppler factor fs and the Doppler-free line center vo are tabulated as in Table V. To this
are applied systematic corrections due to magnetic fine structure (AvMFS), Stark shift (Av~), and rejected wave (Av„). The final
electric-fine-structure interval estimate is listed in the last column. Units are MHz. The numbers in parenthesis are one-standard-
deviation estimates. The result for the G, +H6 —transition is in satisfactory agreement with a previous measurement of Ref. [15]
[10031.24(10) MHZ].

Transition

63~H4

64~H5

65~II

H4~I5

H6 ~I7

I7—+X8

Direction

B
A

B
A

14 765.04(3)

14 687.58(3)
5 845.13(4)

S 812.47(4)
10056.91(10)

10006.27(6)
5 678.80(8)

5 647.29(7)
3 596.32(6)

3 585.09(5)
3 844.35(3)

3 829.99(3)
1 786.46(5)

1 774.57(7)

0.997(1)

0.966(2)

0.967(3)

0.971(4)

0.947(7)

0.952(3)

0.968(8)

Vp

14 726.22(2)

5 828.77(3)

10031.54(6)

5 663.02(5)

3 S90.69(4)

3 8.37.15(2)

1 780.51(3)

~+MFS

0.60(5)

0.14(5)

—0.46(5)

0.66(5)

—0.02(5)

—0.35(5)

—0.04(5)

0.02

0.04

0.02

0.01

0.00

0.00(1)

0.00(2)

0.00(5)

0.00(2)

0.00(7)

0.00(5)

0.00(1)

+EFS

14 726.84(6)

5 828.95(6)

10031.10(9)

5 663.69(8)

3 590.67(9)

3 836.82(7)

1 780.47(6)

vo was computed from Eq. (26).
The "pure EFS" interval is defined as the single inter-

val at which transitions would be observed in the absence
of magnetic fine structure. It has been estimated from
the measured composite resonances by relying on calcula-
tions of the frequency o6'sets of the individual MFS com-
ponents from the "pure EFS" interval. Since all the MFS
operators except H have zero trace, an equivalent way
of formally defining the *'pure" EFS position for a partic-
ular EFS state is as the statistically weighted average po-
sition of the 12 MFS levels belonging to that state,
corrected for the exchange energy,

E[(v,R )nL~]

F,Jl,J

(2J+ 1 )E [(v,R,F)nL~(Jt, J ) ] +V /2.(2J+1)

(30)

Since the four-peaked 6%=0 resonances show partial-
ly resolved MFS, the extraction of the EFS interval from
these resonances presents an opportunity to check the re-
liability of the MFS calculations. Using some assnmed
value for the relevant EFS interval, and calculated MFS
energies for each state involved in the transition, a simu-
lated line shape was prepared that consisted of a superpo-

sition of the 12 strongest transitions (b,F=O,
6J& = b,J= b,N =0) using Gaussian resonances whose po-
sitions relative to the EFS interval were taken from calcu-
lations of the MFS, and whose strengths were taken to be
proportional to 2J+1. These simulations showed excel-
lent qualitative agreement with the observed resonance
shapes in all cases [30]. A more quantitative comparison
can be obtained by fitting the simulated line shapes to the
same four-Gaussian function used to fit the experimental
data, and determining the ofFset AvMFs of the fitted posi-
tion of each of the four component peaks from the as-
sumed EFS interval. Subtracting these values from the
fitted component peak positions in the experimental data
leads to the four redundant determinations of the EFS in-
terval for each transition that are shown in the last
column of Table V. These results tend to agree with each
other to within a few tenths of megahertz, but the scatter
is somewhat larger than would be expected from statisti-
cal variation alone; the standard deviation expected from
statistical errors of the fits are 0.18, 0.12, and 0.44 MHz
for the H5 ~I5, H6 I6, and I7 —+%7 transitions, respec-
tively, but the scatter of the sets of four independent mea-
surements give 0.16, 0.24, and 0.87 MHz, respectively,
for estimates of the standard deviation. The excess
scatter in the four independent estimates of vE„s can be
viewed as a test of the reliability of the calculated MFS.
For instance, the four determinations of the II'6~I6 EFS
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bv""=Re(I )(1/4T)—:Re(I")6v '",
y 4

(31)

where y:—2hvDT, with AvD the Doppler shift, and T the
geometrical transit time through the region. The shift is
proportional to the real part of the reAection coefficient
I, referred to the center of the region. If we regard the
phase of I as unknown, then

~
I ~b, v '" sets a limit on the

size of the expected shifts. To the extent that the
reAection coefficients of the two (nominally identical)
ends of the interaction region are equal, the shifts of the
line centers would cancel in the average over the two
directions of propagation. We assign an additional sys-
tematic error of hv„=+0. 3~I'~b, v '" to these intervals.
In the one case where only one direction of propagation
was studied, I7 ~K7, we assign an error of

+~1 ~g max

Table V shows the mean results from the three AN =0
transitions, obtained from a straight average of results
from each of the four peaks of the spectra, with a statisti-
cal error assigned as discussed above and also including
uncertainty from the systematic errors. The most impor-
tant of these is due to possible inaccuracies of the MFS
model. Since the net contribution of the MFS correction
to the mean value of each of these EFS intervals is ~ 4
MHz, and we estimate that the correction is reliable to
2%, we assign an additional error of +0. 1 MHz to each
AN =0 interval.

Table VI shows the results from the measurements of
AN=1 transitions. Most of the corrections and sys-

interval, for which Av~Fs ranges from —54 to +36
MHz, give results consistent to within 0.24 MHz. Evi-
dently the calculated MFS is reliable to better than 1% in
this case. By a similar comparison of the scatter in the
calculated MFS corrections to the scatter in the correct-
ed results, in all three AN=0 cases, we conclude that the
MFS is calculated to a precision of at least 2% in our
model, and adopt this as an estimate of the reliability of
the MFS corrections. At the same time, we recognize
that the excess scatter in the sets of four results could be
due to some other source of statistical variation, so we
use the larger of the internal and external errors in as-
signing a statistical error to the mean result.

A systematic correction to these results comes from
the Stark shifts in resonance frequencies due to the
motional electric fields that were present within most of
the microwave interaction regions. For the waveguide
interaction regions, the earth's magnetic field was
unshielded, leading to a motional electric field of about
0.3 V/cm. The small Stark shifts that result (all ~0. 1

MHz) were calculated and subtracted from the observed
line positions. The coaxial region was magnetically
shielded, and Stark shifts were considered negligible.

Another systematic effect that contributes to the ap-
parent centers of the resonances is due to the reAected
microwave traveling waves within the interaction re-
gions, which were typically 0.3 by amplitude (Table IV).
The resulting distortion of the resonance line shapes has
been discussed elsewhere [27,28]. The resulting shift of
the line center is given by

tematic errors for these transitions are similar to those
discussed above; only the correction for MFS differs sub-
stantially. For these transitions the frequency offsets of
the 12 individual MFS transitions is small, ranging over
+4 MHz for the 6~H, +2 MHz for the H ~I, and +1
MHz for the I~K transitions. As a result, the primary
uncertainty in Av~„s, the correction that accounts for
the unresolved composite structure, is not due to the cal-
culated positions of the component resonances (which are
apparently correct to 2%), but rather to uncertainty in
the relative strengths of the component resonances.
Based on a careful comparison of the relative strengths of
the four Gaussian fits of the simulated and observed
AN=0 resonances, it appears that statistical weighting
reproduces the relative peak strengths to within 10%.
With this in mind, simulations of the AN=1 transitions
were prepared consisting of 12 Gaussians whose positions
are fixed at the calculated offset from an assumed EFS in-
terval, and whose strengths are either (a) proportional to
the statistical weight of the state of lesser J, or (b) as in (a)
except additionally weighted by a linear function of fre-
quency changing by 10% over the range of individual
components. These simulations were fit to the same sin-
gle Gaussian used to fit the data. The difference of the re-
sult found in (a) from the assumed EFS interval was tak-
en as the best estimate of Av~Fs for each transition, and
the uncertainty in this correction was taken to be the
difference in the fitted centers found in (a) and (b), gen-
erally about 0.05 MHz. These corrections, and the "pure
EFS" intervals that they imply, are shown in Table VI
along with the other systematic corrections discussed
above. In the case of the G5 ~H6 transition, good agree-
ment is found with a previous determination based on
measurements of somewhat better resolution [15].

IV. COMPARISON WITH THEORY

The measured EFS intervals may be compared with
theory in several ways. The simplest way is to note that
the ten measured intervals determine the relative posi-
tions of the 11 fine-structure levels shown in Fig. 2.
Choosing the (0, 1)10Ks state as a reference level, and
taking its energy (relative to zeroth order) to be—2731.90 MHz as predicted by the polarization model,
the energies of the ten other levels are determined from
experiment and are shown in the last column of Table
VII. These can be compared directly with the predic-
tions of the polarization model, and are found to give sa-
tisfactory agreement in all cases. The precision of this
comparison, however, is limited by the rather large con-
vergence errors assigned to the scalar constants 3o in the
polarization model.

A much more critical comparison between experiment
and theory can be achieved by fitting the total energies,
shown in the last column of Table VII, to obtain experi-
mental estimates of the structure factors Ao and A2 for
each L. The structure factor A2 determines the relative
positions of the three states of common L. The structure
factor Ao gives the statistically weighted average energy
for the three states of common L, although due to the
lack of an absolute energy determination, only differences
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TABLE VII. Comparison of theoretical and experimental energies of 11 Rydberg levels measured in this study. The last column
gives the total energy in MHz {relative to the zeroth-order Rydberg energy), as determined from experiment, with the energy of the
K, state chosen to agree with theory. The other columns show the theoretically predicted contributions to each state's energy. One-
standard-deviation errors are shown in parentheses.

State

G3
G4
G5
H4
H5
H,
I5

I7
K7
K8

Ao

—8265(190)
—8265(190)
—8265(190)
—2901(24)
—2901(24)
—2901(24)
—1194(4)
—1194{4)
—1194(4)

—548.9{10)
—548.9{10)

—18 157{6)
25 420(8)
—9244(3)

—9 056.2(70)
13 584.3(10)

—5 224.5(40)
—5 163.66(12)

8 114.50(19)
—3 245.80(7)

5 235.87(4)
—2 155.87(2)

—429.8(36)
—1 003.6(41)
—947.3(21)

—111.24(15)
—274.94(17)
—233.50(10)

—37.18(1)
—90.03(1)
—72.31(1)

—32.42
—27.15

Theory
total

—26 852(190)
16 151(190)

—18 456(190)
—12 068(25)

10408(24)
—8 359{24)

—6 394.8(40)
6 830.5(40)

—4 512.1(40)
4 654.6(10)

—2 731.9(10)

EEFs

—26 785.39(26)
16252.50(21)

—18 380.27(13)
—12 058.55(25)

10423.55(20)
—8 349.18(9)

—6 394.87(24)
6 832.88(18)
—4 512.36(6)
4 655.88(52)

—2 731.9'

'The energy of the K8 state is defined to be the theoretical value.

of scalar structure factors between states of different L,

can be determined from the data. The structure factors
were determined in two ways. First, a least-square fit of
the tabulated energies to the expression

E(L,N ) = Ao(L)+ A2(L)(RLNiP2(cos8)RLN )

+Ep(, )~ (L,N ) (32)

was found, where E(,~&(L,N) is the calculated second-
order polarization energy for each state, as defined in Eq.
(12) and shown in Tables II and VII. The resulting least-
squares-fit parameters are shown in the column of Table
VIII labeled "two-parameter-fit. " The errors in these pa-
rameters were conservatively computed by assuming that
the contributing errors from the measured frequency in-

tervals were completely correlated. Similarly, the con-
tributing errors from the calculated E ~ corrections were
also assumed to be completely correlated. The parameter
error was then computed from

2

(5A) = g (5v ) + g (5E( ))
a-, y~ t2j

2

(33)

The quality of these "two-parameter" fits was only fair,
reproducing the data with g =14 for three degrees of
freedom.

As a second approach, the level positions were fit to a
function of the form

TABLE VIII. Structure factors of the (0, 1)10 Rydberg states of H, . The second column lists the
structure factors calculated from the higher-order polarization model (HOPM). The third column lists
the structure factors obtained by fitting the state energies (Table VIII) and measured energy differences
using a parametrization containing only Ao(L) and A2(L) as parameters. If a third parameter A &(L) is
added, as discussed in the text, the results are as shown in the last column. The units are MHz. The
numbers in parenthesis are one-standard-deviation errors computed as described in the text.

Structure
factors

A o( G)- Ao(H)
Ao(H)- Ao(I)
Ao(I)- Ao(K)

A2(G)
A2(H)
A2(I)
A, {~)
AI(G)
A, (H)
A, (I)

HOPM

—5 364(189)
—1 708(24)
—644.8(44)

—127 099(40)
—67 921.6(52)
—40 572.6(9)
—26 179.3(2)

0.0
0.0
0.0

Two-parameter
fit

—5 294.1(33)
—1 696.0(5)
—644.6(3)

—127 197(16)
—67 938.4(9)
—40580.5(5)

—26 183.6(18)

Three-parameter
fit

—5 293.9(33)
—1 696.0(5)
—644.6(3)

—127 197(23)
—67 938.4(12)
—40 580.6(7)

—26 183.6{18)
0.26(71)

—0.073(49)—0.057(34)
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E(L,N)= Ao(L)+ A i(L )&RLN~R L~RLN &

+ A 2(L ) & RLN ~Pz(cos8) iRLN &

+E(,I(L,N) . (34)

tion model predicts that the results will be of the form

Ao(L) =Bq& r &I +B6&r &I +V+'E„I(n,L ), (35)

where T represents higher-order terms and E„I is the
leading relativistic correction to the Rydberg energy

The parameter A, is predicted to be zero in the polariza-
tion model, but does represent another physically accept-
able way to form a scalar quantity. In the case of the
10E states, where only two states are determined, A] was
set equal to zero. This fit has just enough parameters to
reproduce the data exactly. The indicated parameter
values are shown in Table VIII, labeled "three-parameter
fit." Again the parameter errors were computed from
Eq. (33). A comparison of the results of the two fits
shows that they yield essentially identical values of the
A o and A 2 parameters, and that the parameters A, are
close to zero. The results from the three-parameter fits
are taken to represent the best experimental estimates of
the structure factors A o and A 2. Also shown in Table
VIII are the polarization-model predictions of these
structure factors, from Table I. The experimentally
determined scalar factors are in good agreement with
these predictions and are considerably more precise. On
the other hand, the tensor structure factors are systemati-
cally and significantly larger than the predictions. This
confirms the behavior first reported after preliminary
data analysis [16],but with some reduction of experimen-
tal uncertainty. One of the tensor structure factors,
A2(G), has been determined previously from optical
spectroscopy to be —4.200(15) cm '= —125 913(450)
MHz [10]. The 2.8o discrepancy with the much more
precise result of the present measurements suggests that
systematic errors were underestimated in the optical
spectroscopy.

We now consider what conclusions may be drawn
about Hz+(0, 1) electric properties from the observed
Rydberg fine structure. The polarization model predicts
the fine structure as a function of a small number of core
properties, the most significant of which are the electric
quadrupole moment (Q) and the scalar and tensor adia-
batic dipole polarizabilities (as, ar ). As discussed above,
the observed fine structure can be parametrized in terms
of the scalar and tensor structure factors (Ao, A2). This
approach is convenient for displaying the I. dependence
of the structure, which is essential for separating the con-
tributions from different terms in V,I. Comparing the
observed structure factors with predictions, it is possible
to determine the values of core parameters Q, as, and
az-, which give the best fit to observations, effectively
determining the core parameters experimentally [31].
These conclusions rest on the assumption that the form
of the structure factors, Eqs. (35) and (41), is correctly
predicted by the polarization model. As will be shown
below, the present observations appear consistent with
these expected forms, and complete agreement with ex-
periment can be found by adjustment of Q, as, and az.
However, it should be noted that should Eqs. (35) or (41)
be found to be incomplete, conclusions regarding the core
properties would require reexamination.

In the case of the scalar structure factors, the polariza-

2

E„i(n,L ) =
n

3 1--+
4n I.+ —,

' (36)

which contributes approximately 4—7 MHz to the mea-
sured scalar constants, and the constants B4 and B6 are
predicted, based on calculated core properties, to be

and

&sB4""'= —1.000 544 = —1.5913 a. u.
2

Co 3psB',"-'= — + = —2.41+ IL0. 26=7.85
10 2

V' represents the possible efFects of uncalculated terms
proportional to r, r, etc. These are crudely estimat-
ed within the polarization model as

7=—( —B,& '&/2+B &r '&/2) . (37)

Subtracting the values of this expression for states of ad-
jacent L„and dividing through by the differences of the
expectation values & r &, this gives

+ ~&r & b

When plotted as a function of the coeKcient of B6, this
derived quantity should, except for the inhuence of
higher terms, give a straight line with slope B6 and inter-
cept B4. Such a plot is shown in Fig. S, including the
three points derived from the experimentally measured
G-H, H-I, and I-K differences. The dashed line is the ex-
pectation based on calculated values of B4 and B6. The
fact that the three points do not lie on a straight line indi-
cates that higher terms are contributing significantly to
the measured structure. However, their contribution ap-
pears substantially smaller than suggested by the
polarization-model estimate discussed above, which
would give the dashed-dotted line and an uncertainty
given by the shaded area in Fig. 5. In order to extract the
best experimental estimate of B4 and B6, the observed
scalar constant differences are fit to the function

A(AO E„,)=B~A&r &—+B66&r & +Bb7&r 7&,

(40)

where the term proportional to r is intended to ac-
count approximately for the contribution of higher terms.
This fit gives

Experimental observations are most clearly compared
with these expectations by the use of a graphical con-
struction. Correcting for E„I,it is expected that

[Ao(L) E„,(n, L)]=B—~&r &~ +B&6r 6&~+7 .
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and

B&"~'= —l. 5894(17) a. u. ,

B6"i"=8.4(8) a. u. ,

B7"r'= —21(6) a. u.

quadrupole polarizability, which have not yet been calcu-
lated might be expected to be larger than these.

A similar examination of the tensor structure factors is
somewhat more complex. In this case, it is expected that

A (L)=C (r )+C (r )+C (r )+V', (4l)

The fitted values of B4 and B6 are both consistent with
the predictions cited above. The fitted value of B4 can be
taken to give an experimental determination of the scalar
dipole polarizability of H2 (0, 1) with the result

( as )o, =3. 1770(34)a 0 .

This is 0.1% lower than the calculated value [13],but is
well within the range of uncertainty (0.3%) which we es-
timate results from the approximations made in those
calculations regarding the effects of nuclear motion and
neglect of nonadiabatic wave-function corrections. The
fitted value of B7 implies a contribution to Ao(G) of—122(35) MHz, which appears plausible, judging from
the two terms of this order that have been calculated [10]
and the fact that other terms, such as the nonadiabatic

where the predicted values of C3, C4, and C6 are

C3"'"= —1.000 172Q = —1.642 90 a. u. ,

C4"' ' = —1.000 544—T= —1.3432 a.u. ,

and

r theor

2 7

C) =6.24 —3.82 —0.73
7

=1.69 a.u.

When the observed values of Az(L) are divided by
( r ) and plotted as a function of ( r ) I( r ), the re-
sult should, except for the C6 and higher terms, be a
straight line with intercept C3 and slope C4..

(42)

—I.50—
Such a plot of the experimental results is shown in Fig. 6.
It clearly indicates a slope and intercept near the expect-

/

G-H/

0 + re[

a(r ') —l.65 —X

—I.55

A~

&r '&

—I.60—
0.005 O.O I 0

6(I' )
~(r ')

—I.70— H

yG

FIG. 5. Plot of scaled differences of measured Rydberg H2
scalar structure constants ( A o ), corrected for relativistic contri-
butions. As described in the text, the intercept, slope, and cur-
vature of this plot are associated with portions of the polariza-
tion potential proportional to r ' with s =4, 6, and ~ 7, respec-
tively. The dashed line shows the expected result, based on cal-
culated H2+ properties and assuming that terms with s ~7 are
negligible. The dashed-dotted line and the shaded area
represent the results predicted by the polarization model, in-
cluding an estimate of the s ~ 7 terms given by ( —2+ 2 ) times
the total s =6 contribution. The solid curve is a fit of the data
varying coefficients B4, B6, and B7, as described in the text.

—l.75—
I

0.02 0.04
(r ')
(r ')

I

0.06

FIG. 6. Plot showing the variation of the measured Rydberg
JI2 tensor structure factors ( A2) over a range of L. The plot is
scaled so that its intercept and slope are related to the portions
of the polarization potential proportional to r and r, re-
spectively, if higher-order contributions are negligible. Mea-
surement errors are smaller than the plotted points.
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ed values. Before drawing any conclusions, however, the
possible inhuence of the C6 and higher terms needs to be
carefully considered. In order to examine this, it is help-
ful to examine the slope of the curve plotted in Fig. 6.
This is accomplished by taking differences of the ratio
22/(r ) between states of adjacent L, and then divid-
ing through by the difference of the ratio ( r ) /( r )
to form the derived quantity

(43)

three points in Fig. 7 are consistent with a straight line.
However, the slope of that line, —1.4+1.0, is very
different from the calculated value of C6 ( + 1.69 ).
Perhaps this indicates that the calculated value of C6 is
incorrect. However, an alternative explanation is that
the higher terms are contributing at a level somewhat
larger than that predicted by the polarization-model esti-
mate. Since the data cannot discriminate between these
two possible interpretations, we consider the implications
of each for the best estimates of C3 and C4. In the first
case, allowing for the fact that C6 may be in error, the
data are fit to the function

A 2(L)= C3(r )+C„(r )+C6(r ) . (44)
When plotted as a function of the coeKcient of C6, this
quantity should, except for the inhuence of the higher
terms, give a straight line with intercept C4 and slope C6,
which is somewhat analogous to the plot in Fig. 5. Such
a plot is shown in Fig. 7, where, as in Fig. 5, the expected
values in the absence of higher terms are shown by the
dashed line, and the polarization-model estimate of the
higher-term contribution is shown by the dashed-dotted
curve and the shaded area. In contrast to Fig. 5, the

—I.50

This gives a good fit, y =0.59 for one degree of freedom,
and the least-square parameters

C'"~" = —1.643 35(22) a. u. ,

C~'~" = —1.3336(81) a. u. ,

C6"~' = —1.4(10) a. u.

In the second case, if the higher terms are the most
significant factor, C6 is fixed at its calculated value and
the data are fit to the function

32(L)=C3(r )+Cz(r )+1.69(r )+C7(r ),
(45)

where again the term proportional to r is intended to
approximate the effect of the higher terms. This also
gives a good fit, y =0.16 for one degree of freedom, and
gives the least-square parameters

-l.35
fit No. 2

C'"~' = —1.643 11(15)a.u. ,

C'" ' = —1 3447(47) a u

C7"~' = —18.5(5.9) a. u.

G-H

I

0.005
I

0.010

=3

I

0.0 I 5 0.020

FIG. 7. Plot showing the variation in slope of the plot of Fig.
6 over the range of L studied. As in Fig. 5, the intercept, slope,
and curvature of the quantity plotted here are associated with
portions of the polarization potential proportional to r ' with
s =4, 6, and ~ 7, respectively. The dashed line is again the ex-
pected behavior based on calculated H2+ properties if the s ~ 7
terms are negligible, and the dashed-dotted curve and shaded
area show the region consistent with polarization-model esti-
mates of the s ~ 7 contributions. The two solid curves represent
alternative extrapolations of the data, described in the text. The
approximately 1% difterence in the extrapolated intercepts lim-
its the precision with which the tensor polarizability aT can be
inferred from the data, which in turn limits the precision of the
determination of the quadrupole moment Q.

The fitted value of C7 implies a contribution to Az(G) of—109(35) MHz, in contrast to the polarization-model es-
timate of —40+40 MHz. Both of these fits are illustrated
in Fig. 7, labeled fits 1 and 2, respectively. Their different
intercepts imply different slopes of the curve of Fig. 6
near the origin, with consequent changes in both C3 and
C4. Figure 8 further illustrates the implications of the
choice of fitting procedure by plotting the limits of
confidence in the parameters C3 and C4 from the two fits.
These curves are taken to be the projections of the elip-
soidal surface of y =2.0 into the C3-C4 plane. Clearly
the results are quite sensitive to the interpretation of Fig.
7 and the choice of fit. Since either interpretation is con-
sistent with the data, the best experimental estimates of
the parameters C3 and C4 are taken to be the average of
the results of the two fits, with error bars expanded to in-
clude the one-standard-deviation limits of both fits. This
gives

C3"~'= —1.643 23(30) a. u. ,

C~"~' = —1.339(12) a.u. ,
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TABLE IX. Selection rules for the MFS operators, shown in Eqs. (17)—(19), between
(v, R,F)nL&(J&,J) basis states. All the operators obey the selection rules EJ=AI=O. Additional
selection rules are shown in the table. The quantum numbers are defined in the text. Matrix elements
ofF diagonal in L and R are numerically insignificant in determining the second-order magnetic-fine-
structure energies for n = 10 states.

Term

I.Si
T [2].T [2]

Si R
L S2
L.Si

Sz.[S,—3r(S, r)]
0.5+2(S& S2)

0
0
0

0, +1
0

0, +1
0, +1

0
0, +1,+2

0, +1
0, +1
0, +1

0, +1,+2
0

0
0, +1
0, +1

0
0, +1
0, +1
0, +1

0
0
0
0
0

0, +2
0

0
0, +2

0
0
0
0
0

I.36—

I.35—

I.34—

I.33—

I.32—

1.6425
I

QAD

Fit No. 2 ', ~

1.6430
I

I.6435
I

QNA

~AO
T

Fit No. I

—4.05

—4.00

which imply the following values of the H2+ electrical
properties:

( Q )o, = 1.642 95 ( 30 )ea o,
(aT )o, =4.015(36)ao .

Since Q and aT are linearly related to C3 and C4, these
alternate labels for the axes of Fig. 8 are also shown
there.

The result for aT is consistent with the theoretical pre-
diction [13]

a'""'=4.0273+0.3%

where the estimate of error is our guess of the possible
e6ects of the nuclear motion and adiabatic wave-function
approximations. The experimental result for Q lies ap-
proximately midway between the adiabatic prediction
[13]

1.6425
I

1.6430
I

1.643 5

—3.95
I

I.6440
( Q )o, = 1.642 57ea o

and the more recent, and presumably more reliable, result
of calculations employing the full nonadiabatic wave
function [32,19]

FIG. 8. Plot illustrating the limits on the fitted coefficients
C3 and C4 imposed by the measured tensor structure factors
( A2 ). The left vertical axis measures C4 (in a.u. ), while the right
vertical axis measures the equivalent parameter a T(a 0 ). The
bottom horizontal axis measures C3 (in a.u. ), while the top hor-
izontal axis plots the equivalent parameter Q (eao). The elipses
and open circles show the results of two di6'erent fitting pro-
cedures described in the text. The elipses are the projections of
the surface of y =2.0 into the C3 —C4 plane, and the error bars
on the open circles are standard errors from the fits. The solid
point shows the average of the results from the two fitting pro-
cedures, which is taken to be the best experimental estimate of
C3 and C4. For comparison, the best calculated value of aT is
shown at the right, with 0.3%%ug error bars to reAect the approxi-
mations made in the calculations. At the top are shown two
calculated results for the quadrupole moment Q. The result
from the nonadiabatic calculation Q is expected to be most
reliable. The data indicate that the calculated values of a& and

Q cannot both be correct.

(Q)o, =1.64327eao,

and. is consistent with either result.
It is important to note, however, that the possible

values of Q and a T that are consistent with the data are
highly correlated, as illustrated in Fig. 8. In particular,
the calculated nonadiabatic value of Q and the calculated
value of aT, taken together, are in poor agreement with
the data. If aT is correct to within the 0.3% error esti-
mate (as we assumed in our preliminary report), then a
value of Q of about l.642 85(15) is indicated by the data.
This result is in disagreement (2.2cr ) with the results of
the recent nonadiabatic calculations. On the other hand,
if Q is correct, then a value of a T more than 1% below
the calculation is required. Each of these scenarios also
favors one or the other interpretations of Fig. 7. With
some oversimplification, it appears that either (a) C6"' ' is
correct, a'T""' is correct, and Q is wrong, or (b) C6""'
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is wrong, a'T""' is wrong, and Q is correct are allowed
by the present data. Based on the brief discussion of Ref.
[19],it appears unlikely that relativistic corrections to the
quadrupole moment, estimated there as -=—0.00008eao,
can account for the discrepancy in the first case.

The measurements reported here do not by any means
represent the ultimate precision with which these Ryd-
berg fine structures can be measured. Analogous fine-
structure intervals in Rydberg states of the helium atom

have been measured by us with precision of approximate-
ly +0.01 MHz [28], and there is no fundamental reason
why similar precision should not be possible in Hz also.
Future experimental measurements of improved precision
should clarify the ambiguities left by the present results,
and should lead to improved determinations of the H2+
properties Q, as, and az. . The simplest improvement
would be more precise measurement of the n = 10 I~K
intervals. Other helpful new measurements would be

TABLE X. Contributions to the MFS energy for all of the (0, 1)10H states. The states are labeled
(F)L~(J, ,J). The ratio of the diagonal matrix element of H [Eq. (19)] to the exchange energy V„ is
listed in the second column. The third column shows the first-order MFS energy due to H„„~ [Eq. (17)],
except that the magnetic dipole hyperfine structure (b+c/3)I S& is omitted. The first-order MFS due
to H, [Eq. (19)] follows. The total second-order MFS energy is shown in the fifth column, and the to-
tal MFS contribution to the state energy is listed in the last column. All units are MHz.

State
( —,

' )H (3.5, 3.0)
( —')H (3.5,4.0)
( —')H4(4. 5,4.0)
( )H.(45.5O)
( —)H {2.5, 2.0)
( —)H (2.5, 3.0)
( )H.(35,30)
{—)H (3.5,4.0)
( )H.(4-5.40)
( )H.(45.50)
( )H. (5 5.50)
(-,' )a, (s.s, 6.o)

( —' )H5 (4.5,4.0)
( —')H (4.5, 5.0)
(-,' )H, (s.s, s.o)
(-,' )H, (s.s, 6.o)
(-,' )a, (3.s, 3.o)
( )H (35.40)
( )a.(45.40)
( —)H (4.5, 5.0)
(-,' )a, (s.5, s.o)
(-,' )a, (s.s, 6.o)
(-,' )a, (6.s, 6.o)
( —')a (6.5, 7.0)

H /V
—0.33
—0.63
—0.70
—0.33
—1.00
—0.14
—0.52
—0.48
—0.19
—0.76

0.09
—1.00

—0.33
—0.64
—0.70
—0.33
—1.00
—0.11
—0.55
—0.45
—0.21
—0.74

0.08
—1.00

—7.07
—7.07

5.65
5.65

12.64
14.73
14.73
6.22

6.22
—21.32
—21.32

1.41
1.41

—1.18
—1.18
18.02
18.02

—13.25
—13.25
—20.08

20.08
16.38
16.38

Emag—5.54
0.54

—1.27
4.13

3.89
8 ~ 14
0.94
5.31

—3.22
1 ~ 86

—8.53
—2.19

—5.34
0.64

—1.18

4.15

3.72
8.06
0.56
5.14

—3.53
1.72

—8.51
—2.20

&I'ks
—0.23
—0.23
—0.70
—0.68

0.00
0.31

—0.10
0.32
0.26
0.40

—0.59
—0.54

—0.10
—0.05
—0.03
—0.01

0.02
0.05
0.28
0.39
0.06
0.15

o.o6
0.01

tot
EMFS—12.85
—6.76

3.68
9.10

16.53
21.60
15.57
20.36
3.26
8.48

—30.44
—24.05

—4.03
2.00

—2.39
2.96

21.76
26.13

—12.41
—7.72

—23.52
—18.21

7.93
14.19

( —')H (5.5, 5.0)
( —')H6(5. 5, 6.0)
( —,

' )H, (6.s, 6.o)
( 2 )H6(6. 5,7.0)
( 2 )H6(4. 5,4.0)
( —)H6(4. 5, 5.0)
( )H. (5 5.50)
( —)H (5.5, 6.0)
{—)a6(6.5, 6.0)
( —)H (6.5, 7.0)
( —)H {7.5, 7.0)
(-,' )a, (7.5, 8.o)

—0.33
—0.64
—0.69
—0.33
—1.00
—0.09
—0.58
—0.44
—0.23
—0.73

0.07
—1.00

8.24
8.24

—7.07
—7.07

—38.35
—38.35
—3.99
—3.99
16.38
16.38
12.64
12.64

0.74
—1.14

4.29
3.75
8.19

—5.55

5.15
—3.83

1.67
—8.78
—2.25

—0.28
—0.31
—0.07
—0.09

0.12
0.08
0.67
0.54
0.18
0.16

—0.08
0.00

2.58
8.67

—8.28
—2.87

—34.48
—30.08
—8.87

1.70
12.73
18.21
3.94

10.39
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higher precision measurements at the highest possible L,.
For instance, the n =10, I.=7—9 intervals would appear
as indicated in Fig. 7, and could be of great assistance in
determining the intercept of that curve, which is the criti-
cal question in interpreting the results. Since the contri-
butions of terms proportional to r and r are impor-
tant in the data analysis, it would be very helpful if the
polarization model could be consistently extended to in-
clude all terms of this order, as has been done in the heli-
um atom. This would greatly facilitate the use of that
model to infer H2+ properties from the experimental re-
sults.

In summary, the fine structure of (0, 1)10L& Rydberg
states of H2, with 4 ~ I. ~ 7, has been mapped experimen-
tally with six-digit precision. The results are found to be
completely consistent with the predictions of the polar-
ization model if allowance is made for adjustment of the
three leading parameters that characterize the long-range
electric properties of the free Hz+ ion, the quadrupole
moment, and the scalar and tensor dipole polarizabilities.
This adjustment yields experimental determinations of
these three quantities, which are found to be largely, but
not totally, consistent with existing calculations.
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+d(R.S, ) . (A3)

Of the various terms in H ",only the I S, term is com-
pletely diagonal in the chosen basis. It contributes an en-
ergy of +0.5[b + (c /3) ] to the F=—', states and
—[b+(c/3)] to the F= —,

' states. Since the allowed elec-
tric dipole transitions between the (v, R,F)nL& states
obey the selection rule AF=O, this energy does not con-
tribute directly to the observed transition frequencies,
and can be considered part of the core energy. We note,
however, that this term will contribute to the observed
transition frequencies indirectly through the effects of
mixing of different basis states.

In the following,

Q) Q2 Q3

Qs a

Q& a2 a3

Q4 as a6

In what follows the sign conventions are the same as
those used by Edmonds [33].

The first two terms of Eq. (17) can be rewritten [32] as

b(I S,)+c(I.p)(p S, )=[b+(c/3)](I S, )

+cT( }(I,S,}.T( }(p,p}, (A2)

where T ( }(r,s) denotes the second-rank irreducible ten-
sor operator which is the tensor product of vector opera-
tors r and s. One can then rewrite Eq. (17) as

=[b+(c/3)](I S, )+cT( }(I,S, ) T( }(p,p)

APPENDIX

lq) = [(R,L;N), (I,S,;V);J,],S„J) . (A 1)

This appendix explicitly lists the formulas for the ma-
trix elements contained in Eqs. (16)—(19). The angular
momenta are defined in the text, and the basis states are
coupled as follows:

Q( Q2 Q3

Q4 Qs Q6

Q7 Q8 Q9

are Wigner 3-J, 6-J, and 9-J symbols, respectively [33].
The matrix elements follow:

F(F+ 1) I(I+ 1)—Si (S—i + 1) (A4)

(Q'lT( (I S )'T( }( p)ly) =( 1) ~ [5I(I+1)(2I+1)(2F+1)(2F'+1)(2R+1)(2R'+1)(2N+1)(2N'+1)]'

2 R
0 0 0 2

S S

F X 2 N R
Fl

1

2

(A5)

( 'lR'S
I ) = 1 [ ', R(R+1)(2R+1)(2—F+1)(2F'+1}(2N+1)(2N'+1)]

J, E' F' I S, F' I, R
1 F S 1 F S] 1 N R

(A6)
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I )
J

&

+2F'+N+N'+R+L+ I+ I/2

X [—', L(L+1)(2L+1)(2N+1)(2N'+1)(2F+ 1)(2F'+1)]'

J) F' I S) F'

F 1 F S)
R L
1

( ~L S2i ) =( 1) [—,'L(L+I)(2L+1)(2N+1)(2N'+1)(2Ji+ I)(2Ji+ I)]'i2

J S2 J& F X' J&

1 J] S2 1 J1 N 1 X L (A7)

(A8)

(Q'~S, S2~$) =( —1) ' '
—,'[(2J, +1)(2J', +1)(2F+1)(2F'+1)]'

J S2 J] X F J& I S) F
S2 1 J, F 1 F S

(q'~S, .[S,—3r(r S, )]~q) =( —1)

X —', [30(2J, + 1)(2J', + 1)(2F+1)(2F'+ 1)(2N+ 1)(2N'+ 1)(2L+1)(2L'+ 1)]'i

(A9)

J S2 J) I Si F'

0 0 0 1 Ji S2 1 F S) 2

F' F 1

2 . .

J) J, 1

(A10)

The selection rules between the various quantum numbers for each of the above terms are listed in Table IX. In order
to demonstrate the size of the terms involved, we explicitly list in Table X the contribution of Eqs. (16)—(19) and (21)
to the energy of the (0, 1,F ) 10H~(J„J) states.

The relative intensities S of individual MFS transitions within a family of EFS transitions may be estimated as [33]

(Al 1)

R L'
7 ]/2(n L))—

where the last term is the square of a reduced matrix element, which is given by

(Q'iiriif) =( —1) ' ' [(2J+1)(2J'+1)(2J,+1)(2J', +l)(2N+1)(2N'+1)(2L+1)(2L'+1)]'

I S2 J& J' F iV' J&

0 0 0 1 J J 1 J (A12)

where L & is the greater of (L,L').
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