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The far-infrared spectra of HCI in Ar at T=162.5 K and at densities of 100, 200, 300, 400, and 480
amagat have been studied by applying a non-Markovian theory in which the theoretical dipolar absorp-
tion coefficient is obtained by a superposition of basic resonances (Lorentzian lines in the Markovian
limit) modified by nonadditivity effects due to the existence of cross correlations between different rota-
tional transitions. In terms of only two phenomenological parameters (the square interaction strength
and its correlation time) obtained by fit to the experimental spectra, we have analyzed, qualitatively and
quantitatively, the influence of the memory as well as of the nonadditivity effects on the system under
study: while the former are not very significant, it is shown that the latter have great importance in cal-
culating the theoretical dipolar absorption coefficient, even for the Ar-lowest density of 100 amagat. As
a consequence, strong deviations from the additive superposition of Lorentzian lines are observed, espe-
cially in the minima between lines, which mainly consist in an enhancement of the absorption (construc-
tive interference) in the low-frequency side and in a reduction of the absorption (destructive interference)
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in the high-frequency side.

I. INTRODUCTION

From a theoretical point of view, the simplest way to
study the infrared absorption spectra of small polar mole-
cules dissolved in dense nonpolar media is to consider
that the associated absorption coefficient is built from an
additive superposition of Lorentzian lines located close to
the free rotational transition frequencies of the absorbing
molecules. This basic spectrum is based on two funda-
mental hypotheses: (1) the Markovian (impact) limit, and
(2) an assumption of additivity. The first one assumes
that the time scale characterizing the correlation of the
absorber-perturbers interaction is practically zero com-
pared with any other time scale appearing in the prob-
lem. The second one consists of neglecting the cross
correlations between the transition lines forming the
spectrum. These two simplifications seem to be adequate
for the case of low-density gas mixtures, for which the in-
frared spectra exhibit a clear rotational structure, but
they no longer remain valid for dense gas mixtures and
liquid solutions, for which the transition lines are not
completely resolved. Therefore an accurate description
of the infrared spectra of this class of systems must in-
clude the influence of a finite correlation time for the
absorber-perturbers interaction (non-Markovian effects)
as well as the influence of the line coupling (nonadditivity
effects). To get this, most of the theoretical works on
near-infrared spectra [1-3] assume that each transition
line making up the spectrum consists in a Lorentzian
line, with a nonzero correlation time, modified by a line
coupling coefficient that takes into account all the effects
induced by line overlapping. An improved theory of the
infrared absorption that takes into account both the ini-
tial orientational correlations between colliding molecules
and line coupling for each pair of lines, has been recently
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developed and applied to the CO,-Ar system at several
temperatures [4].

Concerning the pure rotational far-infrared spectra of
diatomic polar molecules in dense nonpolar media,
Bonamy and Hoang [5] studied the influence of a finite
correlation time of the interaction and a nonadditivity
effect of the Lorentzian resonances in HCI dissolved in
rare-gas liquids. Also, the influence of the first effect in
HCI-Ar mixtures was carefully analyzed by Boulet,
Robert, and Galatry [6] in terms of the anisotropic part
of the intermolecular potential.

The present paper is devoted to a quantitative and
qualitative study of the influence of the non-Markovian
and nonadditivity effects on the calculated rotational far-
infrared spectra of HCI in dense Ar, at T=162.5 K and
Ar densities between 100 and 480 amagat. To this end,
we shall use a non-Markovian spectral theory developed
by Breton and co-workers [7,8] [called totally time-
ordered cumulant (TTOC) spectral theory] and based on
a master equation for the relaxation to equilibrium of a
multilevel quantum system weakly coupled to a thermal
bath. This theory, which has been successfully applied in
obtaining the dipolar absorption coefficient of HCI in Ar,
Kr, and Xe rare-gas liquids [9] and HCI, DCI [10], and
HF [11] in liquid SF,, enables us to compute explicitly
the influence of non-Markovian and nonadditivity effects
in terms of only two statistical parameters which are cal-
culated for the system under study by fit to the experi-
mental spectra of Frenkel, Gravesteyn, and van der Elsk-
en [12].

This paper is organized as follows. In Sec. II we
present the necessary theoretical background. In Sec.
III, the Markovian limit including interference effects is
calculated. Then, a detailed study on the influence of the
memory effects is presented. Next, in Sec. IV, the nonad-
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ditivity effects are evaluated and discussed. Finally, some
conclusions are summarized in Sec. V.

II. THEORETICAL BACKGROUND

We are interested in the study of the far-infrared spec-
trum of a very diluted solution of diatomic polar mole-
cules dissolved in a nonpolar fluid. Our analysis is based
on the following assumptions: (i) the solution concentra-
tion is low enough to assume that the system under study
can be adequately represented by a single diatomic mole-
cule surrounded by a large number of solvent molecules;
(ii) the diatomic molecule remains in its ground vibration-
al state; (iii) the unperturbed rotational states of the dia-
tomic are taken as the eigenstates of a free quantum rigid
rotor (system S); and (iv) the remaining degrees of free-
dom (i.e., the translational degrees of freedom of the dia-
tomic and of the solvent molecules) behave as a classical
thermal bath (system B). The small corrections intro-
duced by a fully quantum study of the thermal bath [13]
are not considered in this work.

Using the rotational eigenstates of the Hamiltonian
Hg, {li)}={lj;m;)}, and the corresponding eigenvalues,
E;;=Bhcj;(j;+1), B being the rotational constant of the
active molecule, the dipolar absorption coefficient (DAC)
can be written as a function of the reduced density opera-
tor o(t)=Try[p(¢)] [where p(t) is the total density ma-
trix] [7]:

alw)=4rnw/3%c)(1—e _ﬁﬁ“’),uz

X33 0%Auy)pS (uy)iRe [fowdte"wfaf;é,.,(z)
Lf a fLi
@.1)
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0}=Zg 'exp(—BE;) , (2.2)
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where u is a unit vector in the direction of the permanent
dipole moment p of the diatomic (the index a labels the
vector components in a given reference system), and
a'fi(¢) denotes the matrix element o pi/(2) derived from
the initial condition o ;;,(0)=8,.(5,;.

Equation (2.1) relates the theoretical DAC to the prob-
lem of the rotational relaxation of the diatomic molecule
in the fluid medium, and it constitutes the basic expres-
sion in our spectral theory. The interest is thus focused
on obtaining closed differential equations for the off-
diagonal matrix elements of the reduced density operator
o(t). For this, several elegant procedures have been used
in the literature. In particular, assuming the absence of
correlation at the initial time between the systems S and
B and that the bath equilibrium average of the interac-
tion Hamiltonian is zero, ( H') =0, the Zwanzig projec-
tor operator technique or the totally time-ordered cumu-
lant expansion method lead to the following equation
[7,8]:

Gph=—lopon(t)— 3 foth Wi prit —7)0 p:(7)
o

(2.4)

where w;;=h " NE;;—E;) and W(t) is a relaxation su-
peroperator (tetradic) driving the system S to thermal
equilibrium. W (¢) contains information about memory
effects and it is usually known as the memory kernel.
From the Fourier-Laplace transform of Eq. (2.4), Bretén
et al. [7] have obtained for 0(/[::?(@), at the second order
in the S-B Hamiltonian interaction H’, the expression

(2.5)
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with the angular brackets ( ) denoting an equilibrium
average over the bath variables. Equations (2.5)—(2.6)
show that evaluation of the theoretical DAC, Eq. (2.1),
requires the knowledge of the bath correlation functions
(H/;(t)H;(0)) for which dynamical models [5,14] or
molecular-dynamics calculations [15] can be used. An al-
ternative approach is to use a stochastic bath description
instead of a microscopic one, by assuming a set of statisti-
cal properties for the interaction where the characteristic
parameters are then considered as phenomenological
[16]. This method is very useful for the analysis of line
shapes, since it allows a considerable reduction in the

(2.6)

[

number of fitting parameters in comparing theory with
experiment. We shall follow this procedure here. Thus
the rotor-bath interaction Hamiltonian H'(¢) is taken to
be a Gaussian process with zero mean and a time decay
exponential correlation, i.e., as an Ornstein-Uhlenbeck
stochastic process, whose H' autocorrelation functior.r
are [13,17]

(H(0O)Hp(0)) =102 7 3 (ug) lug) pp (2.7

when substituted in Egs. (2.4)-(2.6), thus allowing us to
write the theoretical DAC, Eq. (2.1), in terms of only two
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statistical parameters: the mean-square value of the in- DAGC, from Eq. (2.1), becomes [9]
teraction A2 and its correlation time . _
Using Egs. (2.5)-(2.7) and the selection rules of the alo)=ag(w)+ao)

Wigner 3j and Racah 6j coefficients, the theoretical  with

|

ao(@)=(4mnw/3fic)(1—e Py 2Z ! 3 (+De TBBhej U+ Re[A; 4 ;(@)] ,

J

a(@)=(4mnw/3fc)(1—e PRy 2 (15202 Z 5!

X3 (j+1)e FBRIGHI([(j +2)/(2j +3)IRe{A) 4 j+1(@)A; 4 (@) [Clo—w;1,;)+Cl0)]} .

J

where

Ap=ilo—w;+iW(0)]7",

i

Wi @) =W

Clo)=(—io+t H .

Equations (2.8)—(2.10) show that the theoretical DAC
is written as a sum of two contributions: the first one,
called the secular contribution, ay(w), is given by an ad-

(0)=14"2A%{[1/(2j + D] + DC(@—0; j+)TiClo—w; ;4]

+[1/72"+ DG+ DC(@—0; 44 ;) +j' Clo—w;—y ;)]}
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(2.8)

2.9

(2.10)

(2.11)

(2.12)
(2.13)

[

ditive superposition of basic resonances A;,;;(®)  Then, when the condition

weighted by the Boltzmann factor corresponding to the
rotational transition line j — j +1; the second one, called
the interference contribution, a,(®), is given as a sum of
three terms arising from the cross correlation between
the main rotational transition line j—j +1 and the two
adjacent lines j+1—j+2
j—Ji—1[A;; (@A}, ;(®)], and the antiresonant line
J—i+1[A;;1(@)A; 4y ()], respectively. These three
terms appear as a consequence of Eq. (2.7), where an an-

[Aj12,j+1(@)A; 4y j(@)],

27720 <1

isotropic potential of the type P,(cos@) for the absorber-
perturbers interaction is implicitly assumed. aM(w)=aM(w)+a¥(w)

III. MEMORY EFFECTS

When relaxation of W, ;(t) and o ;(¢) take place on
separable time scales, so that the decay time of W (t) is
the shortest resolvable time, Eq. (2.4) can be notably
simplified by raising the upper limit in the integral to

infinite. Then

& ﬁ( f=— ia)f,-oﬁ-( t'— 3 R FipiC f’i'(t) 3.1 tained by fitting the experimental
i

with

the inverse of the factor -}fi_zkztc, appearing in the real
part of the coefficients (2.12), can be considered as a time
characterizing the relaxation of o(¢) [see Eq. (2.4)].

(3.3)

is met, one can use the Markovian equation (3.1) instead
of the non-Markovian one (2.4) to develop the spectral
theory. Condition (3.3) leads to the usual way of stating
the Markovian limit: the bath correlation time is much
smaller than the inverse of the interaction strength
(#7'\t, <<1). Taking into account Egs. (3.1) and (3.2),
the theoretical DAC in the Markovian limit becomes

(3.4)

TABLE 1. Values of the parameters A% and ¢, used in calcu-
lating the theoretical far-infrared spectra of HCl in dense Ar at
T =162.5 K at densities between 100 and 480 amagat. Numeri-
cal values of non-Markovian (D,,), Eq. (3.12), and nonadditivity

(Dy), Eq. (4.3), effects. The parameters A? and ¢, have been ob-

results

of Frenkel,

Gravesteyn, and van der Elsken [12]. The tilde (~) denotes re-
duced units (2wBc for frequencies and Bhc for energies with

where B=10.4 cm™! being the rotational constant of HCI in its
© o, round vibrational state).
Rpg = [ "dt " Wy s(V=Wp si(0p;) @2 = e)
0 _ p (amagat) A2 A X% Dy (%) D; (%)
is the time-dependent superoperator governing the relax-
ation of the system S, which shows a relaxation of o () 100 10  0.10 0.06 0.83 11.86
independent of its past history, and it is usually referred 200 15 011 0.12 1.57 15.87
to as a Markovian master equation [18]. Z% 3(5) 8}1 g§§ ggg igg;
Roughly speaking, ¢, can be considered as a measure- - - . .
ugh y spe g e 480 30 0.15 0.45 491 27.08

ment of the decay time of the memory kernel W (¢), while
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S

(3.5)

X3 (j+1)e PBRIGFU([(j +2) /(2 +3)IRefA},, j 11(@AY | (@) Cl@) 41 j12)+Clw) 4y )]}
J

+[j/(2j + DIRe[{A}; _((@)A}) ) j(@)[Clo;_, ;) +C (a4, )]}

+[2/(2j +1)(2j +3)IRe[ A} 1 (@AY, (@)C(@; 4y ;)])

where
AM(o)=i(o—w;;+iT¥)"! (3.7)
with
a)j,j=wj,j+A% s (3.8)
AV =Im(R; ) )=Im[W; (0;;)] , (3.9)
I =Re(R;;)=Re[ W, (w;;)] . (3.10)

Equations (3.5) and (3.7) show that the Markovian sec-
ular contribution a¥(w) is given by an additive superpo-
sition of Lorentzian lines with half-width I‘j-”H’ ; and
shifted in Ajwﬂy j respect to the pure rotational frequen-
cies ®; 1 ;. This is the well-known result of those spec-
tral theories in which non-Markovian and nonadditivity
line effects are not taken into account. Equation (3.6) and
(3.7) show that the Markovian interference contribution
a¥(w) takes into account the overlapping effects between
the, now, main Lorentzian transition line j—j +1 and
the two adjacent Lorentzian lines j +1—j +2, j—1—j,
and the antiresonant Lorentzian line j +1—j, which are
given, respectively, by the factors Aj-”“’ j+il w)Aj-”H, j(@),
A _(@)AYy ) (), and AY, | (0)AY, | (o).

In order to study the influence of the memory effects,
we now focus our attention on the far-infrared spectra of
HCI dissolved in dense Ar at 7=162.5 K and at Ar den-
sities of 100, 200, 300, 400, and 480 amagat. For this sys-
tem the values of the stochastic parameters involved in
the theory, A and ¢, are obtained using a fit procedure
between the experimental spectral results [12] and the
theoretical DAC, obtained from the TTOC framework,
Eq. (2.8). The good agreement obtained from the fit pro-
cedure can be checked in Fig. 1 and the fitted values of A
and ¢, are collected in Table I. In Fig. 1, the theoretical
TTOC values have been normalized to unity for each
density. This normalization, as well as the fitted values of
A and ¢,, will be used in all following computations.

As a first step in our study on the memory effects, it
seems illustrative to visualize for any frequency the
differences between the theoretical DAC, a(w), and the
theoretical Markovian DAC, a™(w). To this end, we in-

troduce the band shape function K,,(w) defined as
Ky(w)=alo)—aw) (3.11)

which accounts for deviations from the Markovian limit
of the total theoretical DAC, a(w), by retaining the in-

j
(3.6

f

terference effects. K, (w) is plotted in Fig. 2 (dotted
lines) for HCI-Ar at the five Ar densities here considered.
A glance at this figure shows that (i) the differences be-
tween Markovian and non-Markovian expressions are
very small in all frequency ranges at all densities; (ii) the
memory effects increase when the Ar density increases,
and (iii) for fixed Ar density, K,,(w) is positive for low
frequencies (w <75 cm™!) and negative for high frequen-
cies (w>75 cm™ 1), exhibiting extreme values in the
45-65- and 85-125-cm™! frequency ranges. At the
highest frequencies K ,(@)—0.

A quantitative analysis of the memory effects can be
deduced from the parameter

DszIa(a))—-aM(a))|dw/fa(w)dw . (3.12)

The values obtained for this parameter are given in Table
I and plotted in Fig. 3 as a function of the Ar density [the
integrals appearing in (3.12) were performed over the ex-
perimental available range of frequencies: 0—200 cm ™.
The smallness of the reported values proves that the
corrections on the calculated profiles due to memory
effects are not very significant for the HCI-Ar system at
the densities under study, although, as expected, the
memory effects are more relevant as the density increases,
showing a linear behavior with the Ar density.

In Fig. 2, it is observed that K,;,(w)—0 for the higher
frequencies at all Ar densities considered. Then, for these
higher frequencies it is verified that a(w)~a™(w). Such
a behavior can be understood by analyzing the way in
which the Markovian limit is reached. Introducing the
reduced parameters, 7, =(27Bc)t, and A=A/(Bhc), the
Markovian condition (3.3) becomes

X721 . (3.13)
We check this condition in Table I. Although at some of
the reported densities the HCI-Ar system does not fulfill
this condition, the corresponding non-Markovian correc-
tions are not important. One concludes that condition
(3.13) is a very conservative estimate of the range of the
validity of the Markovian expressions. This is due to the
fact that each off-diagonal matrix element o j+1,;¢2) [see
Egs. (2.4) and (3.1)] has its own j-dependent relaxation
time, while in writing condition (3.13) we assumed that
the inverse of 27~ ?A%_ was a j-independent time charac-
terizing the relaxation of o(z). From Eq. (3.7), an ade-
quate parameter measuring the relaxation of o, (0
should be the inverse of the half-width I‘flﬂ’ j corre-
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sponding to the transition line j—j +1. Thus the Mar-
kovian condition (3.13) should be replaced by

rY, << (3.14)

o (w)

0.0
1-0.

a(w)

0.5

0.

T T

o 50 100 7
w(l/cm)

150 200

FIG. 1. Dipolar absorption coefficients for HCI in dense Ar
at T7=162.5 K and at five different densities: (a) p=100
amagat; (b) p=200 amagat; (c) p=300 amagat; (d) p=400
amagat; (e) p=480 amagat. Experimental spectra of Frenkel,
Gravesteyn, and van der Elsken [12] (- . . .). Theoretical
TTOC spectra ( ), obtained by Eq. (2.8) with values for the
parameters A2 and ¢, collected in Table I. For each density, the
corresponding a(w) has been normalized to unity.
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with T, =T}, ;/B. Note that T¥  ,—>21%
when ¢, —0 [from Egs. (3.10) and (2.12)] and so condition
(3.14) becomes condition (3.13) in this limit. Behavior of
r j-wﬂ’ ;I versus j is plotted in Fig. 4, where the reported

=02
0 ' 50 ° 100’ 150 00
w(l/cm)
FIG. 2. Band shape functions Kp(w) (- - - -) and K;(@)

( ) accounting for memory and nonadditivity effects for the
HCI in dense Ar at T=162.5 K and at different densities: (a)
p=100 amagat; (b) p=200 amagat; (c) p=300 amagat; (d)
p=400 amagat; (¢) p=480 amagat. Ky (w) and K;(®) are ob-
tained from Eqgs. (3.11) and (4.2), respectively, with parameters
in Table I. Vertical lines indicate the positions and the relative
intensities of some well-resolved theoretical rotation lines.
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B/’Aja/
0 T T T T T Al

0 100 200 300 400 500
P (amagat)

FIG. 3. Parameters Dy, Eq. (3.12), and Dy, Eq. (4.3), measur-
ing memory and nonadditivity effects, respectively, for the
HCI-Ar system at 77=162.5 K vs the Ar density.

values must be compared to unity, accordingly Eq. (3.14).
In this figure, it is observed that the high rotational tran-
sitions fulfill condition (3.14) better than the low ones,
and so the basic resonances are closer to the Markovian
shape when j increases, giving the obtained behavior
K (0)—0 for high frequencies. Besides, the increasing
importance of the memory effects when the Ar density in-

FIG. 4. Reduced parameter I ¥, ;7,, Eq. (3.14), vs the rota-
tional quantum number j for HCl in Ar dense at T =162.5 K:
(a) p=100 amagat; (b) p=200 amagat; (c) p=300 amagat; (d)
p =400 amagat; (e) p =480 amagat.
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creases can also be understood from the values of the
Markovian condition T, ;7. <<1. In this figure, it is
observed that, at fixed j, I ¥, ;7. gets its maximum devi-
ation from Markovian condition when the density gets
the maximum value of 480 amagat. At this density, the
system presents the biggest memory effects. Such a be-
havior is corroborated by previous studies of some of us,
where values of the Markovian condition T j-”ﬂy ke
greater than those reported here were obtained for the
same system but at higher densities, using both the sto-
chastic model considered in this work and a dynamical
quasiharmonic model [14]. For example, for HCI in
liquid Ar at 105 K, f‘wtc was found to be greater than
0.7 with both models [9,14], whereas the greatest value
here obtained for the same parameter is less than 0.4.

IV. NONADDITIVITY EFFECTS

The existence of cross correlations between different
transition lines, due to the off-diagonality of the TTOC
relaxation superoperator W (t) or its Markovian limit R
introduces nonadditivity effects with reference to the ad-
ditive superposition of basic resonances of the secular
contribution. In the study of these effects we follow the
same procedure as the one used in the preceding for the
memory effects: first, we present a qualitative analysis,
and then we present a quantitative one.

In order to account for the spectral modifications for
each frequency, due to the line coupling effects in the
pure rotational infrared spectrum, we introduce a band
shape function K;(w) defined as

K (ow)=alw)—ayw) 4.1)

which, assuming the smallness of the memory effects ob-
tained in Sec. III for all frequencies and densities, be-
comes

K (w)~aMw)—ail(w) 4.2)
as the appropriate Markovian band function which takes
into account the mixing or nonadditivity effects.

For our system, K;(®) is plotted in Fig. 2 ( solid line),
where the importance of overlapping effects should be ob-
tained from deviations from zero [note that a(w) is al-
ways less than unity and, thus, the computed values of
K;(w) are numerically significant]. A first glance at this
figure shows that the mixing effects are very important
for all considered densities and that they become more
relevant when the Ar density increases. In all cases, the
interference contribution, as a whole, implies an enhance-
ment of the absorption (i.e., constructive interference) in
the low-frequency side and a reduction of the absorption
(i.e., destructive interference) in the high-frequency side
(note that the intensity transfer must be conservative in
the absence of induction absorption). This pattern is
sometimes  explained as super-Lorentzian (sub-
Lorentzian) behavior in the low (high) part of the spec-
trum [1-3].

A closer inspection of Fig. 2 reveals some other notice-
able facts. At low densities (100, 200 amagat), the band
shape function K;(w) vanishes (K;=0) near the centers
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of stronger lines, j =3,4,5 (see Fig. 1) while deviations
from zero occur only for weaker lines, 2> j > 6, present-
ing its extremal values into the windows between lines
(troughs). Moreover, the observed oscillatory behavior of
K (w) gradually disappears when going from low densi-
ties to high densities (400, 480 amagat), especially in the
low-frequency side. Such a behavior is in remarkable
agreement with the results reported by Bulanin et al [1]
for the R (2)-R (10) rotational lines of the CO-H, system
at T =78 K (see Fig. 9 in Ref. [1]), using a theory of line
mixing based on Markov approximation and on the
strong collision model. The existence of these oscillations
in vibration-rotation bands was later confirmed by Cousin
et al. [2] studying the CO,-N, and CO,-CO, systems at
296 K with the exponential-gap law model.

We recall attention to the fact that the factor K (w)
[Eq. (3.12) and dotted lines in Fig. 2] in accounting for
the memory effects, presents a very similar qualitative be-
havior to K;(®) although the numerical values are much
less significant. This fact shows the stronger importance
of the nonadditivity effects in studying the spectrum of
small polar diatomic molecules dissolved in dense nonpo-
lar media in contrast with the smaller quantitative impor-
tance of the memory effects.

The quantitative study of the nonadditivity effects is
made from the parameter

D,=f|aM(a))——a84(w)|dw/faM(a))dw

= [ 1K ()ldo [ [ a¥(@)do

which gives a measure of the influence of these effects.
The values obtained for this parameter given in Table I
and plotted in Fig. 3, showing the importance of the
nonadditivity effects at all Ar densities considered here
[the integrals appearing in (4.3) are also performed over

(4.3)

3
(e)
o R (d)
s 71 ()
="
140
(a)
0 T T T 1
0 2 4 6 8

FIG. 5. Same as Fig. 4, but for the reduced half-widths
Y
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the reported experimental range of frequencies]. As can
be seen in this figure, D, varies approximately linearly
with the Ar density and the interference effects are much
more relevant than the corresponding memory effects for
all densities.

<

0.Q

Ki(w)

(b)
/ \/W
Qa7

0.0 T T T T T T T
1.4
(e)
Ki(“’)
0.7
o.n T T T T
0 50 100 150 7 00
w(l/cm)

FIG. 6. The band-correction function K;(w), Eq. (4.6), for
the far-infrared spectra of HCl in dense Ar at T=162.5 K with
parameters given in Table I: (a) p=100 amagat; (b) p=200
amagat; (c) p=300 amagat; (d) p=400 amagat; (¢) p=480
amagat.
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Some conclusions on the j dependence of the nonaddi-
tivity effects can be obtained from Eq. (2.10). This equa-
tion shows that the interference contribution depends on
the overlapping between two resonances through the
products A (w)Ap (@), ie., the importance of these
effects is related to the linewidths of the resonances and
to the distance between them. In the TTOC non-
Markovian theory, a simple relation between widths and
resonance distances is not easy to obtain since the widths,
given by ReWj, (), are » dependent [see Eq. (2.11)].
However, in the Markovian limit, each basic resonance
Ai(@) becomes a Lorentzian line A%(m) given by Eq.
(3.7). From this equation it is obvious that

ReAY(0)=T};/{[o—(0;; +A¥)T?

+(T¥)y . 4.4)

So, each Lorentzian line is centered at o ' +A%~, having
a half-width given by the w-independent parameter
I‘}”H, j- On the other side, the shifts A% are much less
than the corresponding Fj-"H, j» for all Ar densities con-
sidered. Then, from Eq. (4.4) the distance between two
adjacent resonances is |@; 5 ;11— @41 ;|=2B (cm™"
and therefore a sufficient condition to neglect the over-
lapping between resonances is

T,

P <<2.

; (.5)

Behavior of T’ ﬁ-”+ 1,; versus j is plotted in Fig. 5. A simple
analysis of the numerical deviations of T' 5'”+1, ; from 2
shows that (a) the low j-rotational transitions present
strong overlapping while the high j-rotational transitions
present weak overlapping and (b) these effects increase as
the Ar density grows. In agreement with the above be-
havior, previous studies of the far-infrared absorption
coefficient of HCl and DCI in rare-gas liquids and liquid
SF¢ have found that the interference contribution is
greater than those here obtained for HCl in dense fluid
Ar. T 11‘,10 was found to be approximately 4 for HCI in Ar
liquid [9,14] and 8 for HCl and DCI in liquid SF, [11],
while in the present work for HCl in dense Ar, T' 11th is al-
ways less than 2.7.

In the analysis of vibration-rotation spectra, it is a
common practice to use a dimensionless band-correction
shape in order to account for the spectral modifications
due to the line coupling effects which is different from the
one we use. Some authors [1-3] introduce a dimension-
less band-correction function, K;(®), defined as the ratio
of the calculated absorption coefficient to the Lorentz ab-

sorption. In our notation, K;(w) is
Kj(o)=aMw)/af(o) . (4.6)

For completeness, we have plotted K;() for our system
in Fig. 6, where the importance of overlapping effects
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should now be obtained from deviations from unity. All
essential qualitative characteristics above mentioned on
the behavior of K;(w), solid lines in Fig. 2, can be
checked also in Fig. 6. In comparing Fig. 6 in this work
with the results obtained by these authors for vibration-
rotation bands, it must be taken into account that our re-
sults agree qualitatively with those when only the R
branch is considered. No quantitative agreement is ex-
pected since the systems studied are different.

V. SUMMARY

Applying a non-Markovian theory we have obtained
the dipolar absorption coefficient of HCI in dense Ar at
T =162.5 K and at five Ar densities: 100, 200, 300, 400,
and 480 amagat. The spectrum is given by a sum of two
terms. The first one, called the secular contribution, ap-
pears as an additive superposition of basic resonances
which become Lorentzian in the Markovian limit. The
second one, called the interference contribution, incorpo-
rates a correcting factor due to the existence of cross
correlations between rotational transitions. This nonad-
ditivity effect arises from the off-diagonality of the su-
peroperator describing the rotational relaxation of the di-
atomic molecule.

Both secular and interference contributions are given
in terms of time correlation functions of the intermolecu-
lar potential. Assuming that the time evolution of this
potential is described by an Ornstein-Uhlenbeck stochas-
tic process, these correlation functions present an ex-
ponential time decay, and so the calculated spectra de-
pend on only two phenomenological parameters: the
mean-square interaction strength A2 and its correlation
time ¢,. These parameters are obtained by fitting to the
experimental spectra of Frenkel, Gravesteyn, and van der
Elsken [12].

We have presented a numerical analysis of the
influence of both non-Markovian and nonadditivity
effects for the system under study. We conclude that the
former are not very significant, while the latter are very
important in the calculation of the theoretical spectra, in-
ducing an important increase in the absorption (super-
Lorentzian behavior or constructive interference) for the
low-frequency side and an important decrease (sub-
Lorentzian behavior or destructive interference) in the
high-frequency side, even for the low Ar densities con-
sidered here.
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