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The experimentally observed high-I-state population of ions excited in ion-solid interactions differs
sharply from I-state populations produced in ion-atom collisions. We have studied the population dy-
namics of electronic excitation and transport within the framework of a classical transport theory for
O?" (2-MeV/u) ions traversing C foils. The resulting delayed-photon-emission intensities are found to
be in very good agreement with experiment. Initial phase-space conditions have been obtained from
both classical-trajectory Monte Carlo calculations and random initial distributions. We find evidence
that the very-high-/-state populations produced in ion-solid collisions are the result of a diffusion to
high-/ states under the influence of multiple scattering in the bulk of the solid.

I. INTRODUCTION

Since the early days of beam-foil spectroscopy, the
nonexponential decay of beam-foil-excited electronic
states has been known to complicate the accurate deter-
mination of lifetimes [1]. It became clear very soon [2,3]
that this behavior was caused by the cascades from high-
ly excited states, which modify the time dependence of
the photon intensity I (¢) for t >>7,, (7, being the life-
time of the state) from an exponential to an approximate
power-law dependence I(t)x<t ™ ° Calculations of cas-
cade contributions to the observed states showed [4,5]
that fast ions emerge from the solid in Rydberg states
with very high angular momenta /. This contrasts sharp-
ly with binary ion-atom collisions at similar high collision
velocities in which mainly small / values are populated
(I £1). This observation—not easily explained in terms
of conventional binary collision models—has become a
standard for “solid-state effects” characterizing ion
penetration through solids.

Delayed-photon-emission spectroscopy is one impor-
tant tool for investigating the high-/ population of Ryd-
berg states emerging from solids. The principle of this
method is to measure the cascade contribution from
high-n,[ states by observing the time-dependent photon
flux I(¢) of Ly, or Lyg transitions for ¢ >>7, ;. Recently,
it has become possible to observe the / distribution more
directly [6] by applying ‘‘angular-momentum-resolved
Auger spectroscopy.” However, because of the inherent
requirements on the energy resolution of different / states
this method is restricted to moderate-n shells.

A large body of data on high-/ Rydberg-state popula-
tion, mostly for highly charged ions (Z, >>1), has been
compiled in several laboratories. A theoretical analysis
of these results appears to be, heretofore, missing. In the
following we present a detailed study of the Ly, and Lyg
radiation for hydrogenic O’ resulting from the passage
of 2-MeV/u O?% ions through thick carbon foils [7]. Our
analysis employs the recently developed method of classi-
cal simulation for the electronic evolution during the pas-
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sage of ions through the solid [8], which has been success-
fully applied [9] to explain the / distribution of the n =5
shell of carbon observed by Yamazaki et al. [6]. In this
work we apply this theoretical concept to the evolution of
the / distribution of high Rydberg states. While our nu-
merical results pertain to the collision system O** —C,
our findings provide for the first time an explanation for
the production of high-/ Rydberg states in other collision
systems.

Special attention is focused on the initial phase-space
distributions and on the effective projectile potential used
in our classical transport calculations. The sensitivity of
the final results with respect to the initial conditions will
be tested by employing both a “random” initial distribu-
tion and an initial phase-space distribution resulting from
a classical-trajectory Monte Carlo (CTMC) calculation.
We will also investigate the effect of Stark mixing. Atom-
ic units are used throughout the paper unless otherwise
specified.

II. ELECTRON EXCITATION AND TRANSPORT

A. General

It is convenient to distinguish three different steps of
the electronic excitation in ion-solid collisions: (i) the pri-
mary binary collision in the bulk of the target by which a
bound projectile electron is excited or a target electron
captured into an excited state, (ii) the transport of the ex-
cited electron towards the exit of the solid, and (iii) the
solid-vacuum transition and its influence on the finally
measured electronic configuration.

While highly desirable, a description in terms of
quantum-mechanical transport theory is a challenging
task in view of the large number of coupled states and the
ambiguity in the choice of an appropriate basis set. It
should be stressed that excited states in a solid have to be
viewed as strongly perturbed transient wave packets with
little resemblance to stationary atomic states in vacuum.

A classical transport theory [8] circumvents this prob-
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lem. Its justification is in part based on the observation
that the manifold of projectile bound and continuum
states can be divided into two regimes separated by a crit-
ical quantum number #,: (a) deeply bound states which
are at most slightly disturbed by the multiple inelastic
and elastic collisions with the electrons and atomic cores
in the target, and (b) the highly excited electrons with ei-
ther negative or positive binding energies in the frame of
the projectile ion strongly perturbed by collisional in-
teractions. A rough estimate of the critical n, value
separating these two regimes can be obtained from the
criterion that collisional broadening exceeds the level
spacing. An order-of-magnitude estimate in the case of
hydrogenlike bound states gives [10]

2 1/3
Zp Af
21rvp

n,=

(1)

Here A, denotes the mean free path between two col-
lisions and Z, and v, are the projectile charge and veloci-
ty, respectively. For electrons in states n > n,, the con-
ventional description in terms of stationary states is no
longer valid: in this case the electron cannot complete
even a single orbit around the projectile ion without
suffering a collision. In this regime, for which collisional
interactions strongly perturb bound states, quantum
effects due to the existence of a discrete spectrum can be
neglected. In the framework of classical dynamics, the
transport problem can be expressed in terms of a micro-
scopic Langevin equation of motion for the momentum
vector p,of the electron [8]

dp,
dt

This equation describes the motion of the electron in a
classical orbit in an effective electron-projectile potential,
perturbed by a random force F(¢) which represents the
inelastic and elastic collisions the electron suffers in the
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FIG. 1. Bare Coulomb potential ¥* and screened Coulomb
potential V¥ for a 2-MeV/u O®* ion traversing a thick carbon
foil. V;” is calculated in linear response theory [11]. The
quantum-mechanical energy levels are indicated by horizontal
lines.
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solid. In order to test the sensitivity of the results to the
form of the potential, we have analyzed in this work two
particular forms: a dynamically screened potential (V;S))
obtained from linear response theory [11] and a bare
Coulomb potential ¥;”. The screened potential is aniso-
tropic (“wake,” Fig. 1) which leads to a Stark splitting of
bound states in the solid [12].

The transport problem is solved by Monte Carlo sam-
pling of a discrete ensemble of initial phase-space coordi-
nates which are propagated according to Eq. (2). For a
more detailed description of the transport model we refer
to Ref. [8].

B. Initial conditions

In this work we are interested in studying the produc-
tion of O’" ions in Rydberg states resulting from the in-
teraction of 2-MeV/u O?* ions with a thick carbon foil.
The charge-state distribution for this collision system is
in complete equilibrium after passing through a carbon
foil of 20 ug/cm?, the most probable charge states being
O’* and O%'. Therefore, the initial electronic phase-
space distribution at each target thickness is generated by
a thickness-independent source of primary collision
events, in which an electron is either captured from a tar-
get atom or excited from a low-lying bound state of O .

These initial electronic conditions are chosen to closely
resemble the result of fast binary collisions between the
projectile and the target. Unfortunately, the choice of
these initial conditions is not unique since it requires the
knowledge of the initial phase-space distribution as a
function of six dynamical variables, i.e., Py(r,v) or,
equivalently, Py(E,l,¥,a,B,y) where (a,B,y) are the
Euler angles describing the orientation of the orbit in a
space-fixed frame and 3 is the mean anomaly describing
the instantaneous position on the orbit. This information
cannot be uniquely obtained experimentally (e.g., from
measured cross sections) since, according to the uncer-
tainty principle, the maximum set of compatible observ-
ables (i.e., quantum numbers) for the present case is equal
to 3: e.g., (n,l,m) or equivalently (E,/,m). Alternatively,
an attempt could be made to obtain the initial conditions
from quantum-mechanical pseudo-phase-space distribu-
tions (e.g., Wigner functions) obtained from the wave
function after the binary collision between the target and
the projectile. However, this procedure would not only
be a formidable task, but it is also not uniquely defined
and possesses inherent limitations in the compatibility of
quantum-mechanical and classical phase-space distribu-
tions.

In view of these ambiguities in the definition of the ini-
tial conditions, and to study the dependence of the final
results on the particular choice made for these condi-
tions, we consider in this work two different initial
phase-space distributions. The simplest one will be
named “random” and will be denoted by
P, ondom E, LY, a,B,y). This distribution is assumed to be
spatially isotropic, which implies that all Euler angles are
uniformly randomized on the unit sphere. In addition,
the mean anomaly is assumed to be uniformly distributed
in the interval [ — g, 3,] with ¢y <. The limit 3, corre-
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sponds to a maximum distance |r(1y)| = r, from the pro-
jectile nucleus, which is a maximum radius outside of
which the primary collision events cannot occur. An es-
timate for r, can be derived from three increasingly res-
trictive criteria: (i) ry should be smaller than the dynami-
cal screening length (ry <Ap =v, /0, o being the plasma
frequency), (ii) ro should not exceed the maximum dis-
tance from the nearest atom in the solid (7 < ryg, where
rws is the Wigner-Seitz radius), and (iii) 7, should be of
the order of the impact parameter for an electron-ion col-
lision sufficient to transfer a momentum to the electron of
the order of v, (ros 2z, / v;). For the present study, we
have chosen a value for ry corresponding to the inter-
mediate criteria (ii), i.e., r5=2.2 a.u. Finally, the energy
and angular-momentum distributions are taken from
known cross sections for the formation of Rydberg states
in ion-atom collisions. For the energy distribution D (E)
we have chosen D (E)=const, or equivalently, an n distri-
bution following an n ~3 law, which is a well- known re-
sult for Rydberg states at high collision speeds. Consid-
ering that in the present work we are only interested in
the production of Rydberg states and taking into account
the condition given by Eq. (1), we have restricted the
range of D (E) to an energy band of —4 a.u.<E <4 a.u.
in the projectile frame. The choice of a cutoff on the
high-energy side is based on the fact that electrons with
high relative speeds |v,—v,| escape very quickly from
the immediate neighborhood of the projectile ion. Their
chance to be recaptured into a Rydberg bound state via
inelastic or elastic collisions in the solid (Coulomb trap-
ping [8]) is therefore very small. On the other hand, the /
distribution is taken from calculated cross sections for
the production of excited projectile states in ion-atom
collisions. For the present case, these distributions have
been obtained from the CTMC calculation described
below. In summary, the “random” initial distribution
represents the maximum randomness or maximum-
entropy distribution for classical variables subject to the
constraints provided by known properties of ion-atom
collisions. It should be stressed that this distribution is
not microcanonical, since the latter would correspond to
an unconstrained maximum randomness for each energy
shell.

An improved initial phase-space distribution can be
achieved using the CTMC method [13]. Details of the
CTMC model used in this work can be obtained from the
article of Toburen et al. [14]. The CTMC method has
two major advantages: it takes the collision dynamics ex-
plicitly into account and gives realistic estimates for the
initial population of excited states after a binary collision.
Furthermore, it generates directly the six-dimensional
phase-space distributions, avoiding any hypothesis about
the randomization at this stage. The initial distribution
P,(r,v) is obtained by integrating the trajectory of each
individual electron up to a separation of 10 a.u. between
projectile and target in the direction of v,. At this point,
the influence of the target atom on electrons in the energy
band —4 a.u. <E <4 a.u., which is not considered in the
transport code, can be neglected. On the other hand, the
distance of propagation must be chosen small enough so
that the probability for the electron to suffer an inelastic
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or elastic collision is small. The latter requirement is cer-
tainly fulfilled for the collision system studied here since
the mean free path for inelastic scattering and elastic
scattering are A; =51 a.u. and A, =50 a.u., respectively.

For the present system, we have found that the major
contribution to the production of electrons in the energy
band mentioned above are the electron capture from the
K shell of C and the excitation from the n =1 and n =2
shells of O’ with cross sections O cap o'l and o).
These cross sections are weighted with the equilibrium
charge-state fraction of 0", Fg, O"T(n =1), F'", and
0’*(n =2), F'? to determine the relative sizes of the en-
sembles of initial conditions associated with each case.
The fraction of the n =2 shell of oxygen was estimated
by using an n ~3 dependence for the relative occupation.
With the relation

_ Ocapfls N = Tapl’s (2 3)
cap ) (D) Y exc 2) (2) Y exc
Uech7 Uech7

we obtained the relative fraction of captured (N,,) and
excited (N{!) and N2)) electrons which are listed in
Table I. More than 60% of the initial phase-space distri-
bution arises from capture. The resulting energy distri-
bution D (E) in the projectile frame is displayed in Fig. 2
(denoted as CTMC initial distribution) and shows a slow
decrease as a function of the electron energy E. This be-
havior differs slightly from the D (E)=const assumption
made for the random initial phase-space distribution
(denoted as random initial).

The initial n,/ distribution resulting from the CTMC
calculations for a variety of different n shells is given in
Fig. 3. As expected from binary ion-atom collision
theory, all distributions are peaked at low-/ values (I =1).
However, it is a remarkable fact that no significant
change as a function of n can be observed, i.e., the n,/ dis-
tribution appears to be separable. This separability is
very important in view of the task of modeling realistic
random initial phase-space distributions and it drastically
simplifies the determination of the initial / distribution.

For a better understanding of the similarities and
differences between the CTMC phase-space distributions
and the random initial distributions it is instructive to
study projections of the distribution functions. A projec-
tion of the initial space coordinates onto an arbitrary
plane in the coordinate space would result in a structure-
less cloud of points around the projectile nucleus. A
more “orderly” picture can be obtained when all the

TABLE 1. Equilibrium charge-state distributions for
O, Fy, O'Y(n=1), F{Y, and O"*(n=2), F? for O*" (2
MeV/u)— carbon foil. Also given are CTMC cross sections for
capture and excitation from the n =1,2 shell of O’ into an en-
ergy band —4 a.u. <E <4 a.u. N denotes the percentage of ini-
tial conditions associated with each process.

Process F, o (cm?) N (%)
Ot > C(K) 0.320 3.13 xX10718 62
o't (n=1)—C 0.444 3.28 X107 9
0'"(n=2)—C 0.055 8.38 X107 18 29
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FIG. 2. Energy distribution D(E) in the interval —4 a.u.
<E <4 a.u. before (top) and after (bottom) transport averaged
over all target thicknesses. Initial distributions are displayed
for CTMC or random initial conditions. Final distributions are
shown for different combinations of initial conditions and evolu-
tion in different projectile potentials (Coulomb or screened
Coulomb field).

different orbits, whose orientations are characterized by
the Euler angles a,f3,7, are rotated into a single orbital
x-y plane, which is defined by the angular-momentum
vector L pointing in the z direction (out of the plane in
Fig. 4) and the pericenter vector, pointing in the positive
x direction. In this representation, all unperturbed
Coulomb orbits are symmetric with respect to the x axis
and electrons in the continuum escape in the direction of
negative x values.

The space coordinates for the initial random distribu-
tion are calculated for the moment of closest approach
between projectile and target, denoted as ¢ =0. In order
to compare them with the initial CTMC distribution we
can either evolve the random initial conditions in time to
match the CTMC values at tv,=10 a.u., or evolve the
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S o4l mn=8
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é v n=10
@ 03+ =
)
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FIG. 3. Initial n,/ distribution calculated with the CTMC
method (sum over / normalized to 1 for each n).
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FIG. 4. Evolution of the initial coordinate-space distribu-
tions for a random distribution (a) and a CTMC distribution (b)
up to a separation of fv, =10 a.u. between target and projectile.

CTMC data back to t =0, in the absence of the target. In
Fig. 4 the random distribution is shown together with the
CTMC initial space distribution for tv, =10 a.u. In both
cases most of the electrons are found in the upper left
part of the figure, signifying that they already passed the
pericenter and are heading away from the projectile ion.
No dramatic difference between the two distributions is
visible. Slight differences become evident when we evolve
the positions of all CTMC initial conditions back to point
of closest approach between target and projectile ion
(Fig. 5). The major part of all electrons is confined to a
very small volume element. The random distribution in
Fig. 5(a) again looks very similar to the CTMC initial dis-
tribution although the electrons are spread over a larger
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FIG. 5. Initial coordinate-space distributions from a random
distribution (a) and a CTMC distribution (b) evolved back in
time to ¢ =0. In (c) and (d) the CTMC coordinate-space distri-
butions at ¢t =0 are decomposed in bound (c) and free electrons
(d).
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volume. The latter is due to the choice of r,=2.2 a.u.,
which indicates that the most restrictive criterion (iii) dis-
cussed above is better in line with the CTMC calcula-
tions.

The empty region close to the nucleus in Figs. 5(a) and
5(b) is due to the restriction E = —4 a.u. Deeply bound
states, which would be located closer to the origin, are
not occupied. The CTMC initial distribution in Fig. 5(b)
is symmetrically distributed around the pericenter.

Additionally, in Figs. 5(c) and 5(d) the CTMC initial
conditions are decomposed into bound electrons [5(c)]
and free electrons [5(d)], respectively. Between these two
distributions no apparent difference is visible. This indi-
cates that the large momentum transfer required for cap-
ture into highly excited or low-lying continuum states
smears out any difference between these two regimes.
Accordingly, electrons in those states originate from the
same initial coordinate-space region.

C. Stark mixing in the dynamical screened potential

The time evolution resulting from the Langevin equa-
tion [Eq. (2)] takes into account two different processes:
on one hand, inelastic- and elastic-scattering events of
electrons with electrons and atoms in the solid described
by the stochastic force F(z), which is modeled after
known scattering cross sections for free electrons in solids
[8]; on the other hand, the evolution of the electron in the
field ¥, (r) of the projectile ion. Therefore, it is of interest
to test the sensitivity of the evolution to the form of this
field. For example, some differences should be expected
when the evolution is evaluated by means of either a bare
Coulomb field Vlﬁb)(r) or a dynamically screened
Coulomb field V;S)(r) (see Fig. 1) which contains an elec-
tric field (“wake” field) at small distances from the nu-
cleus. In fact, Rozet et al. [15] observed n,! distributions
in low-lying n states of krypton ions (n =2) which they
could explain in terms of Stark field mixing in the
screened potential. Also, recent calculations of Miiller
et al. [12] show that—in the absence of inelastic and
elastic scattering—the anisotropic screening of the
Coulomb potential not only leads to a periodic fluctua-
tion in / as a function of time, but also shows in the limit
of strong perturbation an effective / mixing by / diffusion
to higher-/ states.

In Fig. 6 we display the time evolution of the / distribu-
tion for the n =3 level of O’" in a dynamically screened
potential in the absence of inelastic- and elastic-scattering
events. As a result of the anisotropic screening, the initial
I distribution, taken from the CTMC result for binary
ion-atom collisions, is seen to oscillate and to eventually
lead to an appreciable change in the overall / distribution.
This type of / mixing might be expected to have some
effect on the / distribution arising from the transport
problem. However, we have found that these “quantum
beats” (in fact, classical beats) are of minor influence on
the final outcome of our classical transport calculation
for high Rydberg states. A simple estimate based on scal-
ing properties of collisional cross sections and Stark split-
ting [12] indicates that with increasing n, collisional /
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FIG. 6. Stark-induced !/ mixing for the n =3 level of O’ in a
dynamically screened Coulomb field (wake potential).

mixing dominates over Stark mixing of /. Nevertheless,
the effect of additional / mixing will be tested below.

D. Surface effects

Before an excited state can be observed, the projectile
ion has to pass through the solid-vacuum boundary at the
exit surface of the target. In the velocity regime studied
here, electron kinetic energies relative to the target
exceed several hundreds of eV. Comparing these kinetic
energies to the height of the surface barrier (=5 eV), it
can be concluded that surface effects including pro-
jectile-induced dynamical image charges can be ne-
glected [16]. On the other hand, the transition from a
screened Coulomb field inside the solid to an unscreened
field after emerging from the surface leads to a reparti-
tion of the energy distribution in a shake-down-like tran-
sition which conserves the angular momentum /. This
redistribution is taken explicitly into account in the simu-
lation. Additional Stark mixing due to the image poten-
tial near the exit surface can be neglected at high veloci-
ties but could be taken into account for large Sommerfeld
parameters Z, /v, >>1.

E. Final angular-momentum distributions

Because the phase-space energies of bound states are
continuous, it is necessary to assign a definite band of
final binding energies E to a given quantum-mechanical n
level. Here, the range of E values associated with an n
level is assumed to be n — 1 <( —2E/Zp2)1/2§n +1. For
similar reasons, a band of angular momenta I/ <L <]+1
is assigned to the quantum number /. In the limit of large
quantum numbers (i.e., Rydberg states) these two assign-
ments reproduce the correct quantum-mechanical
weights and mean values associated with each n,/ sublev-
el.

In the bulk of the solid, electrons are continuously ex-
cited from low-lying bound projectile states or captured
from target atoms. The final / distributions are therefore
the result of an average over electrons originating from
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FIG. 7. Calculated ! distributions for the 4 <n <8 shells of

2-MeV/u O"" ions before and after passage through a 1000-a.u.
(~10-ug/cm?) thick carbon foil.

different depths inside the target. In Figs. 7 and 8 we
display the final / distributions for different n levels of
O’™ after traversing a target thickness of 1000 a.u. (ap-
proximately 10 ug/cm?) which is sufficiently large to ob-
tain complete equilibrium. The initial / distributions ob-
tained from CTMC calculations are also shown. For
low-n values, the overall shape of the curves still resem-
bles the initial distribution. However, an onset of a shift
to higher-/ states becomes visible. For higher-n values we
observe a sharp contrast to the CTMC initial distribu-
tions. The / distribution is composed of two conmiponents:
a contribution similar to the initial distribution accen-
tuating low-/ values and a slowly decreasing tail extend-
ing to very-high-/ values. The low-/ part stems from elec-
trons excited in the last layers of the target whereas the
high-/ part represents those electrons from deep inside
the bulk.

o initial distribution
final distributions:

a4 CTMC  Coulomb
v CTMC  screened
+ random  Coulomb
——————+

+—t

B<n<1BT

Distribution (arb. units)
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FIG. 8. Calculated / distributions for the 7 <n <32 shells of
2-MeV/u O’" jons before and after passage through a 1000-a.u.
(=~10-pg/cm? thick carbon foil. Several n shells had to be
summed up to get reasonable statistics.
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While the initial CTMC distributions contrast sharply
with the final distributions after transport, the difference
between the [ distribution for transport in a bare
Coulomb and in a screened Coulomb field is remarkably
small. Only for low-lying n shells a slight enhancement
towards high-/ values can be seen for the evolution in a
screened Coulomb field. This is in line with the / mixing
due to the wake field discussed above. However, the sta-
tistical error due to the Monte Carlo method does not al-
low proof of the existence of this rather small effect.

III. CASCADE CALCULATION

In order to compare our n,l distribution with experi-
ment, we have calculated the cascade evolution subse-
quent to the ion-solid collision of the highly excited states
down to the 2p and 3p levels whose Lyman transitions to
the 1s state have been experimentally observed [7].
Denoting the level population by N,; and the transition
probability by 4, we can write the differential change
of this population as

dN,(t) @ n—1
g % Niasi(O A1, —Nult) 3 Ay jen
i=N+1 j=1
(4)
where the transition probabilities A4, ,, for a one-

electron system can be taken from Ref. [17]. This system
of coupled rate equations has been solved numerically for
a large number of states (=~450) and the photon intensi-
ties for Lyg(3p —1s) and Ly, (2p —1s) decay have been
calculated as I3, (1)=N3,(¢)A4;,,, and I,,_,(?)
=N,,(t) 4,, 5, respectively.

It has been found experimentally [2,3,18,5,7] for very
different collision systems that these intensities as a func-
tion of time obey a power law of the form ¢~ ¢ with
a=1.5. In several papers [19,18] an attempt has been
made to derive this power-law dependence from general
assumptions for the n,/ distribution before the cascading.
To get a more quantitative understanding of the influence
of the population of cascading Rydberg states on the pho-
ton intensities, we compare in Fig. 9 these intensities for
two different n,! distributions: the one resulting from a
binary collision and the one arising from our transport
simulation (i.e., from Figs. 7 and 8). The slope of the Lyg
intensity for these two cases is found to be similar
whereas the slope of the Ly, intensity is very different.
The reason is that low-/ states feed with approximately
equal contributions the 3p and 2p levels, whereas high-/
states mostly decay via the yrast sequence to the 2p state
[18]. Therefore, the weaker decrease in the Ly, intensity
for £ > 0.3 ns can be attributed to the lack of high-/ states
in binary collisions. Differences are also appreciable in
the intensity ratio of Ly, to Lyg radiation. The reason
for this difference is again the lack of supply from
higher-/ states feeding preferentially the 2p state. Figure
9 indicates that the ratio of the Ly, to Ly emission is a
very sensitive measure for the population of high-/ states.

It has been previously pointed out [18] that the highest
n level included in the cascading process determines the
time interval in which the power-law dependence is
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sulting from binary ion-atom collisions (dashed line) and from
transport simulation (solid line).

fulfilled. Furthermore, it gives an estimate of the n state
up to which the experiment should be sensitive. Accord-
ingly, since we include only states n <30 in the cascade
calculations we observe a rapid drop of intensity for ¢ >4
ns.

IV. COMPARISON WITH EXPERIMENT

In Fig. 10 the calculated delayed photon intensity is
displayed for the n,/ distributions arising from different
model assumptions. Within the statistical error of the
Monte Carlo simulation, all model calculations show ex-
cellent agreement with the experimental data of Can
et al. [7]. It is apparent that the common factor in the
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FIG. 10. Calculated delayed photon emission intensity for
different model assumptions in the transport simulation togeth-
er with the experimental results of Can et al. [7] (rhombi). The
transport calculations with CTMC initial conditions have been
performed using a bare Coulomb field (solid line) and a screened
Coulomb field (dotted line). The random initial distribution has
been evolved in a Coulomb field (dash-dotted line).
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different model calculations, i.e., the multiple scattering
described by a stochastic sequence of collisions, is much
more important than the evolution of the electron in a
bare or screened Coulomb potential. As expected from
the similarity of the initial distributions, the results for
CTMC and random initial conditions do not differ
significantly. This result also shows that the statistical
fluctuations of the high-/ distributions are smoothed out
by the cascading process and do not influence measurably
our final result.

The largest deviation from experiment in Fig. 10 (still
within the statistical error) is found for the cascade inten-
sity resulting from the random initial distribution. This
can be traced to the slight differences in the final energy
distribution [D (E) in Fig. 2] which in turn are due to the
slight deviation of the CTMC initial energy distribution
from the distribution D (E)=const assumed in the ran-
dom initial model. The different energy distributions
translate into different n distributions. In a model for the
cascade process Hopkins and von Bretano [19] have
shown that the exponent in the power-law dependence
for the photon flux depends sensitively on the population
of the n states.

In Fig. 11 the ratio of Ly, to Lyg intensity is displayed.
Most striking is the difference between the result from
binary ion-atom collisions and the transport simulation,
which amounts to more than a factor of 4. This
difference demonstrates convincingly the importance of
stochastic multiple scattering inside the solid. In con-
trast, deviations among the different transport simula-
tions are small. Within the experimental error, all agree
with experiment for both the absolute magnitude and the
slope as a function of delay time ¢. The sensitivity of the
ratio I Ly, /1 Ly, can be estimated when the result in Fig.

11 is compared to a calculation made in the paper of Can
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FIG. 11. Ratio of the calculated Ly, to Ly intensity together
with the experimental results of Can et al. [7] (rthombi). The
different models include transport simulations with CTMC ini-
tial conditions evolved in a bare Coulomb field (solid line) and
in a screened Coulomb field (dotted line) and also a random ini-
tial distribution evolved in a Coulomb field (dashed line). The
result from binary ion-atom collisions is also displayed (dash-
dotted line).
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et al. [7] assuming a constant / distribution. Although
such a distribution is seemingly similar to those shown in
Figs. 7 and 8, the calculated ratio is 20% higher than the
experimental result and therefore far outside the experi-
mental uncertainty.

Since the effect of stochastic scattering events in a solid
on the final n and ! distributions is very similar for
different projectile ions and the transition probabilities
for hydrogenic ions scale uniformly with the fourth
power of the ion charge, we can expect that in different
collision systems the time dependence of the Ly, and Lyg
intensities should closely resemble the one calculated
here, except for rescaling the time scale by Zp"“. This has
been indeed experimentally verified in several experi-
ments [2,3,18,5,7].

V. CONCLUSIONS

The classical transport calculation treating multiple
scattering in a solid can successfully describe the forma-
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tion of Rydberg states with very high angular momenta.
Simulating the post-foil-interaction cascade processes, we
find good agreement with experimental data obtained
with delayed-photon-emission spectroscopy. Our calcu-
lations clearly indicate that the most important factor
forming high-/ states is the stochastic scattering of the
highly excitéd electrons in the solid, whereas / mixing due
to Stark splitting is of minor importance. Furthermore,
we find that for high-n values the results are, to a good
approximation, independent from the details of the
chosen either random or CTMC initial conditions.
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