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Leading asymptotic term of the small-angle scattered intensity
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It is shown that the leading asymptotic term of the small-angle intensity scattered by any amorphous
sample is determined by the parallelism among subsets of the sample interfaces. Its general expression is

g, [A icos(5ih }+Sisin(5&h }]/h 4, where the 5~'s denote the distances between parallel surfaces and the

A i's and the Si's are appropriate geometrical averages of the corresponding Gaussian curvatures. Since
each surface is parallel to itself with a relative null distance, in the former expression the well-known Po-
rod contribution comes out from the term relevant to 5=0. The expression is specialized to the case of
those three-component samples where one of the constituting phases has a constant thickness and lies in

between the remaining two phases which have no common interface. Different approximations are con-
sidered and, in the most favorable cases, it appears that the average Gaussian, mean, and squared mean

curvatures of the dividing 61m can be determined.

I. INTRODUCTION

The main assumption [1] of small-angle scattering
(SAS) theory is that n(r), the electron or the scattering-
length density of the sample depending on the nature of
the incident beam, can be approximated by a discrete
valued function nD(r), i.e., by a function that assumes
only a finite number of values: n&, n2, . . . , nz. In this
way, the sample is idealized as made up of X diferent
homogeneous phases and it is fully characterized once
the densities n; and the regions V;, occupied by the con-
stituting phases, are known. In other words, by the
aforesaid idealization, referred to later as Debye s ideali-
zation [1,2], one neglects all density fiuctuations internal
to the V s. Clearly the approximation will surely fail
mhen one looks at the internal sample structure with a
high resolution, i.e., at large momentum-transfer (=h)
values. On the one hand, the geometrical features of the
interphase surfaces, i.e., the boundaries S; of the V s,
aftect mainly the asymptotic behavior of the so-called
standard scattered intensity [3] I (h ). On the other hand,
it is possible that the onset of the asymptotic behavior
takes place at h values suKciently small for Debye's ideal-
ization to be still accurate, as it has recently been found
in some cases [4]. Therefore, a better knowledge of the
relation existing between the interface shapes and the
asymptotic expansion of the scattered intensity is not use-
less, also from a practical point of viem. In this paper we
shall focus our attention on the leading asymptotic term
[=—It&T(h)]. In fact, we shall show that its more general
expression is

A icos(5&h)+&r
L~T("}=X g4

Before knowing the meaning of the symbols present in

(1.1},one wonders where all these contributions come out
and where the well-known Porod contribution [5,6] has
finished. Indeed, we shall show that the appearance of
these contributions is related to a particular geometrical

property that interfaces may have: namely, the parallel-
ism property. Let us first recall the latter's definition and
some of its consequences. Two surfaces X& and Xz are
said to be parallel when each straight line orthogonal to
one surface is also orthogonal to the other. This
definition generalizes the one well known between planar
surfaces and it implies that the distance (—:5), evaluated
along the normal lines, is the same at each point of the
surfaces. Moreover, one should note that a surface is al-
ways parallel to itself with a relative null distance, e.g.,
5=0, while, in some cases, it can also turn out parallel to
itself with a diferent distance value. For instance, a
sphere of radius R is parallel to itself both with 5=0 and
2R.

We now come back to Eq. (1.1) and define the quanti-
ties involved there. Clearly, 5„52, . . . , 5M denote the
distances where the parallelism occurs. (We consider M
finite for simplicity. } The Ai's and the Si's are given by
appropriate integral expressions over the corresponding
parallel interfaces subsets [see Eqs. (3.17) and (3.18) and
(3.13 and (3.14)]. Moreover, the Ai expression, when

5i =0, reduces to the well-known Porod expression.
Since any surface is parallel to itself at a relative null dis-
tance, then one of the 5&'s will certainly be equal to zero.
Thus, choosing 5, =0, we can say that the first term of
the sum on the right-hand side (rhs) of (1.1) yields the Po-
rod contribution. Each of the remaining contributions,
characterized by 5i+0, shows an oscillatory (damped) be-
havior and for this reason their sum will be referred to as
the oscillatory deviation from the Porod law. Moreover,
the presence of oscillations proportional either to the
cosine or to the sine functions is not new. Indeed, devia-
tions proportional to the cosine have been noted in the
asymptotic expansion of the form factors of spherical [7]
and of prismatic particles [8], while a deviation propor-
tional to the sine function has first been found by Schmidt
[9] in the case of right circular cylinders. More recently
[10], these results have been generalized and put into a
form close to that of Eq. (1.1). In the present paper we
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make the proof complete showing that deviations
different from the sine and the cosine ones do not exist
when interphase boundaries are assumed almost every-
where smooth. Besides, we shall considerably simplify
the expressions of coefficients A i and Si and we shall il-
lustrate how Eq. (1.1) can find useful applications in
analyzing the intensities scattered by the samples where
one of the constituting phases has a constant thickness.

The plan of the paper is the following. In Sec. II, we
report the general main formulas of SAS theory. In Sec.
III we discuss some properties of parallel surfaces and
particularly the relation existing between their curvature
radii at correspondent points (for this definition see the
end of Sec. IIIA). This relation, in turn, allows us to
prove that deviations, different from the ones reported in
(1.1), do not exist as well as to simplify the A i and Si ex-
pressions. In Sec. IV the result is applied to the samples
just mentioned, while Sec. V contains some conclusive re-
marks.

II. CORRELATION FUNCTION PROPERTIES

A. Definitions and assumptions

For isotropic samples, the standard [3,2] scattered in-
tensity is given by

I(h) = f ry(r)sin(hr)dr,
4~V& q'&

h 0
(2.1)

(2.3)

where y(r), the isotropic component of the autocorrela-
tion function [1]of the sample, is defined as

y(r) = (477V&rt'&—)

X f dco f, )(r7, +rcpt))g(r, )du, , (2.2)

and g(r)=[n(r) —&n &] represents the fiuctuation of
n (r) (the electronic or the scattering-length density of the
sample) with respect to its average value & n &. Moreover,
V and &g & denote, respectively, the volume and the
mean-squared Auctuation of the sample, while the first in-
tegral on the rhs of (2.2) amounts to integrating over all
possible directions of the unit vector co. Approximating
n (r) by nD(r), il(r) can be written in terms of the so-
called characteristic functions p;(r) of the sets V; [11].
[We recall that p;(r) is defined as equal to one inside V,.
and to zero outside V, ] By some algebraic manipulations
[12,13],one proves that

&q'&= g (n, —&n&)'y,

X
(n; n—)P.,.P, P, = V, /V',

with

P, (r) =
(. 4~V—) ' fde f p, (r, )pl(r, +re)du,

=(4vrv) ' f dry f du; f du 5(r, +re@ r) . —

(2.4)

[V; denotes the volume of the ith phase region V; and
5( . ) is the Dirac function. ] We note that, in obtaining
Eq. (2.3), the contribution due to the boundary of the
sample has been assumed to be negligible. A convenient
way for assuring this condition is to assume an infinite
(and nonpathological) volume limit of the sample. More
definitely, we shall assume that (a) except for sets having
zero measure, the phase boundaries are smooth surfaces,
(b) the area S; of the surface 4;, enveloping the ith phase,
is such that S;/V tends to a finite value as V~ ~ [note
that assumptions (a) and (b) definitely rule out any fractal
behavior], and (c) at large distances, whatever i and j,
P; (r) P;P d. ecreas—es at l.east as 1/r'+' (with e) 0) and
that the asymptotic behavior of any P, (r) derivative we
shall later consider is given by the corresponding deriva-
tive of the aforesaid asymptotic expression. (Note that
the assumed decrease behavior is much weaker than in
the exponential case. Roughly speaking, this amounts to
saying that our analysis holds true also close to a "critical
point. ")

By assumptions (a) and (b), and from Eqs. (2.3) and
(2.4) it immediately follows that y(r) is a continuous
function. Moreover, using the integral expression of
P~ (r) [the first deriva. tive of P; (r)] reported in [11],one
shows [10] that P, (r) and y'(r) ar. e also continuous.

B. Parallel surfaces and singularities
of the second derivative of y(r)

By contrast, ~'P(r), the second-order derivative of
P, (r), can be discontinuous at some r values, generally
denoted by 5. The geometrical feature of the interphase
surfaces responsible for this phenomenon has been isolat-
ed [10] starting from the two integral expressions of
P,"(r) obtained in Ref. [11],

P;, (r)= (4~V) f dna—f dS, f dS, [o, (r,. ) Q][o,. (rl) Q]fi(r, +rQ —r. ) (2.5)

with

&,(r;, r)—:f r (, „)dl[ (or; ).co(l)]c t[orcac [oos. (r. ).c0(l)]] .

(2.6)

(2.7)
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Here o;(r;) denotes the unit vector pointing externally to
the ith phase and orthogonal to the infinitesimal element
dS, (set at the point characterized by the position vector
r;) of surface S, . [& (r ) is similarly defined. Moreover,
we shall often use the simpler notation cr, omitting to
specify the point coordinates. ] The Dirac function re-
quires that the two points, denoted by r, and r and lying,
respectively, on S, and S., are far apart r along the direc-
tion co. Taking r; fixed and letting co vary over all possi-
ble directions, the former constraint will single out the
curve, denoted by I (r;, r) in Eq. (2.7), resulting from the
intersection of 4 with S(r, , r), the sphere of radius r, and
center at r, Finally, in Eq. (2.7), co(l) is the direction of
the hne going from r, to the infinitesimal element dl
(characterized by the curvilinear coordinate l and set at
the point r ) of the curve I (r, , r). From Eqs. (2.6) and
(2.7) it follows that P '(r) can be singular only when an g,
subset is parallel to an 4 subset. In fact, the integrand of
(2.7) is singular when & (I) and co(l) are parallel, i.e.,
&J.=co or —co. Whenever &;(r;) were not parallel to the
previous vectors, the former singularity would not be
really present, since one could locally consider as P,"(r)'s
expression the one obtained by interchanging index i with
index j in Eq. (2.6). Thus, a singularity of P,

' (r) can exist

only when &;(r;), & (l), and co(l) are parallel and this
amounts to saying that the corresponding surface ele-
ments dS; and dS. are parallel. Of course, for a singulari-

ty really to exist, the aforesaid parallelism has to occur
for an S; subset which has a finite measure. The nature
of the singularity depends on the behavior of X (r, , r) as r
approaches 6, the distance between the present parallel
interface subsets.

C. Contact nature and singularity behavior

Although this problem has been thoroughly discussed
in Ref. [10], for the sake of completeness we shall recall
the main points of that analysis. First of all we note that
SJ and 4( r;, 5 ) will be tangent at the aforesaid point r .,
denoted by r.(5) in order to make the underlying paral-
lelism more evident. The behavior of X~(r;, r), as r~5,

in general depends on the relative spatial position of S.
and S(r, , r) in a small neighborhood of r~(5). Two cases
are possible: (a) S(r, , r) intersects 4 both when r (5 and
when r )5; (b) S(r, , r) intersects g. either when r (5 or
when r )5. In case (b), S(r;, r) will lie only on one side
with respect to 4 and then, when r =6, the two surfaces
will only share the point r (5) [14]. On the contrary, in
case (a), the two surfaces will always have a curve in com-
mon and the latter will be tangent to both surfaces at
r&(5), when r =5. Since the integrand of (2.7) diverges as
r —+5, in case (a), at least a logarithmic divergence of
XJ(r, , r) in general has to be expected. In case (b), the
limit of the integral (2.7) will be zero as r —+5 from that
side where no intersection occurs (say r ~5 ) and it can
be finite as r ~5+, since the divergence of the integrand
can be cured by the vanishing of the integration domain.
Thus, X,(r, , r) can have a discontinuity at r=5. Of
course, these results hold true, provided the integrand in
(2.7) does not diverge too fast. This condition is surely
met when the contact between 4 and S(r;,5) is simp/e.
In order to formulate this condition and obtain the lead-
ing behavior of X&.(r&, r) as r —+5, we consider a Cartesian
frame having the origin at dS, and as z axis the hne join-
ing dS; with the element of dS set at r (5). Around this
point, let z =f~(x,y) and z =f&(x,y)—:+5 —x —y
denote the equations of S. and of S(r;,5), respectively.
Let F~(x,y):f~(x,y) f+(x—,y). Th—e contact is named
simple when the hessian ofI, defined as

jxx j xy

&,.(r;,x,y) =det (2.8)

turns [15] out different from zero at the origin. Other-
wise it is of higher order. Thus, the contact between
S(r;,5) and S. is called elliptic when it is simple and the
two surfaces share only the tangency point, hyperbolic
when the contact is simple and the two surfaces intersect
each other around the tangency point, and, finally, para-
bolic when the contact is not simple, e.g. , & =0. In the
first two cases it has been shown [10] that the singular be-
havior is given by

X~(r, , 5+)—X,(r, , 5 )=2'&~(r;) '~ [&;(r, ) & (r (5))]sg (Fn~. ,„+F~~),

X~(r, , r) = —2~&.(r, ) ~

' [&;(r,. ) o .(r.(5))]ln( ~r —5~ )+o

(2.9)

(2.10)

for the elliptic and the hyperbolic cases [16],respectively.
In the parabolic case, in order to isolate the singular be-
havior, we need to analyze higher-order terms and thus
further assumptions are required. In the next section,
however, it will be shown that the parabolic contacts take
place on sets of null measure so that, in practice, we can
ignore their existence.

pal curvature radii at correspondent points. This relation
allows us to get a simple expression for &J.(r, ) and to
show that the set of points where parabolic contacts take
place have a null measure.

A. General recipe for constructing parallel surfaces

III. PARALLELISM AND FORM
OF THK LEADING ASYMPTOTIC TERM r, =r, (u, u) (3.1)

To this aim, we need to analyze more closely parallel
surfaces in order to obtain a relation between the princi-

denote the parametric equation of a smooth surface X&.

The surface X2, defined by the parametric equations
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r2=r2(u, v) =r, (u, v)+6+, (u, v), (3.2)

is a surface parallel and distant 6 from X,. [Here,
v&(u, v), defined as

r, „(u,v)Xr, „(u,v)
v, (u, v)=

~~r, „(u,v)Xr, , (u, v)~~
(3.3)

is the unit vector orthogonal to X& at the point ri while
ri „—=Bri/Bu and ri „—=Bri/Bv are linearly independent
vectors parallel to X&.] This statement can be easily
proved by showing that v2(u, v), the normal to Xz at
rz(u, v), is parallel to v, (u, v).

On the one hand, Eq. (3.2) gives a simple recipe for
constructing a surface X2, parallel and far apart 5 from a
given surface X&. In fact, X2 is the locus of the points de-
scribed by one end of a stick of length 6, as the opposite
end moves throughout X, and the stick, during its
motion, always remains perpendicular to Xj. Besides,
this construction, or equivalently, Eq. (3.2), defines a nat-
ural mapping from X& to Xz and the points r&(u, v) and
r2(u, v) will be said correspondent On the. other hand, us-
ing the equations which define the enveloping surface of a
family of surfaces [17],it is not difficult to show that X2 is
the envelope of the Huyghens wavelets, originating at X&,
after these have travelled a distance 6. This property
represents, perhaps, a more physical way for defining
parallel surfaces: these correspond to different-time
configurations of a propagating wave front.

B. Relation between curvature radii

In order to find the above relation, we first recall the
definitions of the curvature lines and of the curvature ra-
dii of a surface [18,19]. Consider the family of planes, go-
ing through the normal to X& at a point r&. From the sec-
tion of each of these planes with X&, one obtains a curve
to which one assigns a curvature radius in the following
way. One considers the circle osculating the curve and,
depending on whether the center lies, or not, in the half-
space delimited by the plane tangent to X& at r& and con-
taining vi(u, v) (the unit vector orthogonal to X& at r&),
one assigns, at the considered point of the curve, a curva-
ture radius equal or opposite to the value of the radius of
the osculating circle. The principal curvature radii or,
more simply, the curvature radii of the surface X& at r,
are equal, respectively, to the minimum and to the max-
imum of the curvature radius values relevant to the
curves associated to the aforesaid family of planes. The
(principal) curvatures are the reciprocals of the (princi-
pal) curvature radii. Finally, the curvature lines are
those X

&
curves which, at each of their points, have a cur-

vature equal to one of the principal curvatures of X&. By
continuity, if a curvature line at one of its points has a
curvature equal to the maximum (minimum) of the prin-
cipal curvature values, then its curvature value will al-
ways be equal to the maximum (minimum) principal one.
The curvature lines are characterized by the property of
meeting each other orthogonally. Moreover, they are
uniquely determined by the following property: for a
curve I, lying on X, to be a curvature line, it is necessary

and sufhcient that the normals to X& from each point of
I i have an enveloping curve. By this theorem [18], one
easily obtains the relation between the curvature radii of
two parallel surfaces X& and X2. In fact, let us assume
that I

&
be a curvature line of X& and let us denote by I 2

the curve of Xz obtained from I i by the mapping (3.2).
By the aforesaid theorem, I 2 is a curvature line of X2. In
fact, the family of normals to X2 through the points of I 2
is exactly the one relevant to the curvature line I

&
and

thus it has an enveloping curve. At this point we use the
Rodrigues formula [18] which relates the infinitesimal
shift d ri along I &, a curvature line of X&, to the variation
of the corresponding normal vectors d v, (r, )

=v, (r, +dr, )
—v, (r, ) according to

dr&+R &, dv& =0, i =m, M (3.4)

where the choice between m and M depends on whether
the line has minimal or maximal curvature, respectively.
Clearly, one has a similar relation for I z. Recalling that
vi and v2 are either equal or opposite, we prefer to write
the relation using v, instead of v2 and thus we find

dr, +R, dv, =0, j =~,M (3.5)

Thus, from Eqs. (3.4) and (3.5) it follows that

R2~(u, v)=R, ;(u, v) —6, i,j =m, M . (3.6)

Equation (3.6) represents the sought for relation for the
curvature radii. Writing the index values, more explicitly
the result corresponds either to

R2 ~(u, v)=R, (u, v) —5,
R2 ~(u, v) —R, ~(u, v) —5

(3.7a)

or to

R2 (u, v)=R, ~(u, v) 6, —

R2M(u, v)=R, (u, v) —5 .
(3.7b)

Initially the choice between (3.7a) and (3.7b) has to be
performed by comparing the relevant curvature radii at a
pair of correspondent points. Then, the resulting equa-
tion will continue to hold true by continuity (as far as one
does not meet an umbilical point, a point where the two
curvatures are equal, or a singular point).

C. Irrelevance of parabolic contact points

Before discussing this point, we apply the former result
in order to simplify the & (r; ) expression obtained at the
end of the previous section. We can identify X& and X2
with 4',- and 4 and orient 4; in such a way that its nor-
mal goes from 4; to S~. Moreover, we can choose the x
and the y axis along the principal directions (e.g., the

where, once again, the choice between R2 or R2 ~ will
depend on the actual value of the curvature of I 2 with
reference to the chosen orientation of Xz. Differentiating
Eq. (3.2), one gets

dI 2
—d ri +5d V)
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tangents to the principal curvature lines) of S; at r, . In
this way, the parametric equation off . becomes

Ri =0

and/or
1 xf =5+— +
2 R R ~

+0 Ri ~=0 .

in a small neighborhood of the origin. Using the
definition of F, reported just above Eq. (2.8), and Eq.
(3.7a) or (3.7b), one finds

R; R;~%.(r;)=
R R~5

(3.8)

Recalling that the Gaussian curvature of a surface at a
point, where the curvature radii are R and R~, is
~—= 1/R RM, Eq. (3.8) can be put into the more elegant
form

~ (r.(5)}~&& (r, )=
Ic; r;

(3.9)

which involves only the Gaussian curvatures of the three
involved surfaces. Equation (3.9) shows that the result
does not depend on the chosen frame of reference because
the Gaussian curvature is an intrinsic property of the sur-
face [19]. Moreover, it shows that the nature of the con-
tact depends on the curvature values of the parallel sur-
faces at the correspondent points. In fact, the contact
turns out to be elliptic when S; and 4 are both elliptic or
both hyperbolic [20] and hyperbolic when one surface is
elliptic and the other hyperbolic. The parabolic contact
occurs only when

However, at a point where one at least of the curvature
radii is null or, equivalently, the curvature diverges, the
smoothness of the surface fails. Physically these points
are real oddities [21]. Therefore, according to assump-
tion (a) of Sec. II A, if these points exist, they form a zero
measure set and thus the corresponding divergence of
XJ(r;, r) has no consequence because it is washed out by
the integration required by Eq. (2.6).

D. Al and I expressions

In order to write down the general expression of P '(r)
around one of its singular points, we shall denote by

(5) and 4; .(5) the X; subsets which are elliptically or
hyperbolically parallel to (and distant 5 from) X [in the
sense that they give rise to elliptic and hyperbolic con-
tacts between S(r, , 5) and 4 ]. Then we substitute Eqs.
(2.9) and (2.10) in Eq. (2.6), we use Eq. (3.9), and we find
that, around r =6, the behavior is

~E, (5) gK (5)
P,"(r)=— ' e(r —5)+ '

ln(~r —5~ }+c,
26 V 2~5 V

(3.10)

where c is a continuous contribution, e( ) is the Heavi-
side step function, and

1/2

[o;(r, ) & (r (5))]sgn(R R, ), (3.11)

sc, (r, )
b.; (5)=—I dS,

1/2

[&,(r, ).&, (r, (5))] . (3.12)

(We recall that &; and & are, respectively, orthogonal to
X,. and to X and point externally to phases i and j. At
the denoted points, their scalar product is equal either to
1 or to —1. Since no apparent advantage is gained, we
avoid introducing a further decomposition of the integra-
tion domains in order to account for this property. ) The
argument of the sign function in (3.11) deserves an expla-
natory word. When one uses the frame specified just
above Eq. (3.8), the matrix related to the Hessian be-
comes diagonal at the origin. Since the determinant is
positive, the sign of the trace is equal to the sign of one of
the matrix elements, which turn out to be equal to
(R &+5)/(R t5), I =m, M The argumen. t of the sign
function reported in (3.11) immediately follows because
m ' reminds us that we have to choose between (3.7a) and
(3.7b) the equation which presently holds true. The sym-
metry of (3.11) and (3.12), with respect to the exchange
i~j, becomes evident if we express the corresponding in-
tegrals in terms of the spherical images 0; .(5) and

o, (r, ) o, (r, (5))
b,E, (5)=

Q~, (r, )~, (r, (5))

Xsgn(R R; ), (3.13)

&, (r, ) o, (r, (5))
b;)(5)=

Q ~x., (r, )~J(r~(5) )
~

(3.14)

From Eq. (2.3) and the pointed out continuity properties
of P, (r) and of P,'(r), it f"ollows that y. (r) and y'(r) are
continuous, while the general behavior of y"(r) around
point 5I is

(5) of the two sets S, (5) and 4; .(5) obtained by the
Gaussian mapping [19,18] of the latter sets on the unit ra-
dius sphere. In fact, using the well-known relation
dS, =de/a. ;(r, ) one finds
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(3.15)

where c is a contribution continuous around r =5. In
this way the properties and the behavior of y(r) are ex-
actly those discussed in Ref. [10] and thus we can now
use the corresponding results in order to obtain the lead-
ing asymptotic term of the scattered intensity. In partic-
ular, the result that the behaviors given by Eqs. (10a) and
(1 lb) of Ref. [10]give rise to the asymptotic contributions
specified by Eqs. (39) and (40) of [10] allows us to con-
clude that, in general, the leading asymptotic term of the
SAS intensity is given by

A, cos(5, h )+X,sin(5, h )
~L~T(")= X

1=1 h
(3.16}

with

A, —:—2~ g (n; n)—b,;)(5i),
ij =1
j&i
M

%i =——2~ g (n; —nj)'&;, (5i) .
ij =1
j&i

Before concluding this section, we must still show that
the well-known Porod contribution

(3.17)

(3.18}

M
2m g (n,. n )S, /h- .

i j =1
j&i

is given by the first term of the sum (3.16). Each surface,
in fact, is parallel to itself with a relative distance 5=0.
Thus (3.16) will always contain at least one term, i.e., the
one associated to 5=0. It is convenient to associate this
contribution to the index value I =1. Our task then is to
evaluate A, . At 5=0, one has that r (0)=r;, &, &.
= —1, the contact throughout the 4;- interface is elliptic,
and the remaining factor in the integrand of (3.13)
reduces to dro/a;(r, . ) =dS;, so that b, ;J(0)= —S;~.. Substi-
tuting in Eq. (3.17), one recovers the Porod result [22].

IV. A GENERAL APPLICATION

We illustrate the relevance of the former analysis to the
case of the three-component samples where one phase is a
region with constant thickness and separates the remain-
ing two phases. Porous materials with a coating film and
oil-water-surfactant systems are the most important prac-
tical samples showing the aforesaid feature, since the
coating or the surfactant film can be assumed to have a
constant thickness to a fair approximation. According to
the discussion carried out in Sec. III A, the surfaces de-
limiting the film are parallel surfaces. Consequently, the
asymptotic leading term of the intensity scattered by
these samples will certainly contain, besides the Porod
term, two contributions proportional to cos(5h)/h and

M (n,. —n )
y "(y) g b, , (5& )e(r —5i )

=i 25( V(g )

gH (5
1n(~r —5, ~) +c ,

to sin(5h)/h, once we have denoted by 5 the thickness
of the film. In the following we shall confine ourselves to
the case where no further parallelisms are present [23].
In order to specialize Eqs. (3.16)—(3.18) to this case, the
densities of the bulk phases will be denoted by n, and n2
and that of the film by n 3. The corresponding interphase
surface areas will be S,3 =S, and S23 =S2, while S,2 =0.
Thus, the coefficient of the Porod contribution is

Ao= 2m[(ni n—3) S»+(n2 n3) S23] (4.1)

while, from Eq. (3.17), the coefficient of the cos(5h)/h
contribution will be

—2m[(n, n2) b—, i2(5)+(n, n3) b—.i3(5)

+(n2 n3) 623—(5)] . (4.2)

Definition (3.13) implies that the 6,"(5) s, present in (4.2),
can dier among themselves only for a sign, related to the
relative orientation of the o s, and then Eq. (4.2) be-
comes

A(5)=2'[(n, n2—) —(n, n3)—

—(n2 n3)—]b, i3(5) . (4.3)

and the leading asymptotic term is

IL~T(h) = [Ao+A (5)cos(5h )+X(5)sin(5h) ]/h . (4.5)

Thus, an accurate measurement of l(h) in the outermost
region of the SAS h's, would allow one to get 6, Ao,
A(5), and S(5) by fitting (4.5) to the experimental tail in-
tensity. Moreover, whenever it is possible to change the
density of the phase 1 and/or 2, without modifying the
internal boundaries S, and Sz, one can obtain a new set
of values for Ao, A(5), and S(5), which are related to
the former ones by Eqs.(4.1), (4.3), and (4.4). Thus, if we
know the involved densities, from the two Ao values, we
can determine both 4» and $23. On the contrary, the
two deterininations ofA(5) and S(5) should scale by the
same factor, dependent only on the phase densities, as
one sees from Eqs. (4.3) and (4.4). In this way, one can
partially test whether the former constraint on the invari-
ance of the internal geometry of the sample is met or not.

Let us assume now that the principal curvatures radii
of the film are, in absolute value, larger than the film
thickness. Accounting for the molecular structure of
phase 3, this condition is practically necessary for the
phase to appear homogeneous, i.e., that n3 be constant.
From this property, it immediately follows that no hyper-
bolic contact can take place since, from Eq. (3.5), the
Gaussian curvatures of Si3 and $23, at correspondent
points, will have the same sign. Thus, X(5)=0, while

cubi

3 cV23, and A (5 ) can be expressed in terms of the area
S of the surface 4, exactly half-way between the faces of
the film and of some corresponding averages of the mean

Quite similarly, one finds that the coefficient of
sin(5h ) /h is

g(5)=2~[(n, nz) —(—n, n3) ——(nz n, ) ]b,—i3(5)

(4.4)
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[18] and of the Gaussian curvature of S. In fact, r and

RM, the two curvature radii of S, are related to those of
4~3 and to those of $23 by the relations

and

R )M =RM —5/2, R )~ =R —5/2, (4.6a)

2M M ~ & 2m m (4.6b)

obtained from (3.5). Expressing the infinitesimal surface
element dS, in terms of its Gaussian curvature
=1/(R, R,M) and its spherical image dro, since the
latter is equal to that of the set dS, correspondent to dS&
via the map (3.2), it becomes easy to relate the two sur-
face elements. Using (4.6a), one finds that

dSi =dSi3 =dS 1 + +5 1 1

2 R RM

Q2+
4

=dS( 1+H5+ ~5 /4), (4.7)

where H is the so-called mean curvature of 4 at the
relevant point. A similar expression holds true for dS23
and by their integration one finds

S, =S(1+(H )5+ (~ )5 /4),

S23 =S(1—(H )5+ (a.)5 /4),

(4.8a)

(4.8b)

where ( H ) and ( Ir ) denote the averages over 4 of its
mean and of its Gaussian curvature, respectively. Due to
the assumed existence [24] of an effective free energy in-
volving the mean and the Gaussian curvatures of the in-
terfaces, the possibility of determining the former average
quantities appears interesting. However, Eqs. (4.8a) and
(4.8b) are not sufficient to this aim because they involve
three unknown quantities: S, (H), and (a). Unfor-
tunately, even exploiting the information contained in
A, (5), one does not find the required third equation. In
fact, using Eq. (4.6), the integrand of b, f3 [see Eq. (3.13)]
becomes

( 1 52/4R 2 )1/2( 1 52/4R 2 )1/2 (4.9)

and the evaluation of A, 3 does not appear possible
without knowing the shape of S. Assuming that 5 be
sufficiently small for (4.9) to be well approximated by its
o (5 ) expansion, one finds

b, i3=$[1—((H ) —(~)/2)5 /2]+O(5 ) . (4.10)

First of all we note that the o (5) approximation of Eqs.
(4.8) and (4.10) yields

S=A 13

(4.11)

(H ) = (S,3 S23 )/(256 f3)

so that finding experimentally that S&3 =S23 implies that
(H ) =0+0(5). In passing, we recall that recently Au-

vray et al. [25] have already found some microemulsions
characterized by a null average mean curvature, essen-
tially by checking that the condition S,3=S23 turns out
experimentally true. Considering now the O(5 ) equa-
tions, one sees that the appearance of the new quantity
( H ) makes the total number of equations still
insufficient. In fact, only the quantities

$(1+(i~)5 /4)=($, 3+$2')/2,
s(H ) =(s„—s„)/(25),
S(H ) =(Si3+$~3 —2hi3)/(5 )

(4.12a)

(4.12b)

(4.12c)

are fully determined, although the lhs's involve the un-
known area S of the half-way surface of the film. Howev-
er, Eq. (4.12c) is particularly interesting because if one
finds that S&3+S23—26» =0, then one can conclude that
H(r) =0, i.e. , the mean curvature is local/y equal to zero
and thus the aforesaid surface is a minimal surface.

Whenever it is possible to modify the thickness of the
film without changing the geometrical configuration of its
half-way surface, then one could also determine S. In
this case, denoting by 6' the new film thickness, one ob-
tains the new values S&3, S23 and A&3. These, combined
with the former, give six equations, whose solution yields
the four quantities

S =(S+5' —S'+5 )/(5' —5 ),
(~) =4(s' —s, )/[s(5' —5')],
(H & =(S„—S„)/2$5,
(H ) =2(S+ —b, ,q)/$5

(4.13a)

(4.13b)

(4.13c)

(4.13d)

[here S+ —= (S&i+Sz3)/2 and S'+ —=(S',3+S23)/2] and
two constraints

($13 23 /5 ($13 23 )/5

(S+ —b, )/5 =(S'+ —b,
' )/5'

(4.14a)

(4.14b)

which have to be obeyed by the determined parameters if
the assumptions are really fulfilled. Thus, once the latter
turn out to be satisfactorily fulfilled, one succeeds in
determining the area and the averages of the Gaussian, of
the mean and of the squared mean curvature of the film
using only the leading asymptotic term of the scattered
intensity.

The case n, =n2&ni can be discussed along the same
lines. One finds that the resulting equations involve only
S+ and (n, —n3) . Thus, (H) never does appear and by
changing the phase densities, no new information is ob-
tained from the asymptotic leading term. A necessary
condition for ~5/R&~ ( I is that one observes X(5)=0.
Whenever one would also observe Ao= —A(5), from the
result (H ) =0 one would conclude that H(r) =0.
Clearly this result should be observed [26] in the case of
cubic phases [27] since the relevant surface 4 is common-
ly believed to be a minimal surface [28].
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V. CONCLUSIONS

Since our analysis focuses upon the behavior of the
SAS intensities at high h s, we are not interested in the in-
tensity features commonly observed in the range of low
h's as, for instance, those observed in some microemul-
sions and. related to the existence of a typical length scale
[29]. Two questions, however, appear quite natural: why
use only the leading asymptotic term and how accurately
can the asymptotic behavior of SAS intensities be ob-
served? Although no precise a priori answers to these
questions are presently possible, we would like to make
some remarks. Concerning the first question, ILAr(h) be-
comes dominant for sufficiently large h regardless of the
magnitude of the next term. Moreover, it is also well
known that accounting for higher-order terms in an
asymptotic expansion generally shifts to larger h's the re-
gion where the approximation becomes accurate. Thus,
rather optimistically, one could add to the considered
ILAT(h) expression the nonoscillatory contribution, first
worked out by Kirste and Porod [30,31],

using the argument that the sum of the asymptotic oscil-
latory contributions, decreasing as h ~ with 4 &P & 6
(whose existence appears possible according to the
analysis of [31]), averages to zero. However, we do not
believe that this argument can also be invoked in order to
discard [32] the O(h ) oscillatory contribution (4.5),
since the latter is determined by all the coating films. Ac-
tually, for the mathematical reason mentioned above, we
think that ILAT(h) should yield the most accurate asymp-
totic expression, although the experimental determina-
tion of the latter is not easy, in general. In fact, one can
expect that the corresponding asymptotic behavior sets in
when 6h ~2m. . Considering a film thickness of 10 A, one
concludes that the intensity must accurately be measured
at h =0.6 A '. Thus, we are in h region where the densi-
ty fluctuations, internal to each bulk phase, can become
important enough to invalidate Debye's assumption.
However, for thicker films, the situation becomes more
manageable and, moreover, some useful information can
also be obtained from the measurement of the Porod in-
variant and from the known sample stoichiometry. For
these reasons, knowing that the general expression of the
leading asymptotic behavior of SAS intensities is given by
Eq. (1.1) will certainly be of help in the analysis of experi-
mental results, as it has already happened in some cases
[4].

*Permanent address: Dipartimento di Fisica "G-. Galilei, "
via Marzolo 8, I-35131 Padova, Italy.
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