
PHYSICAL REVIEW A VOLUME 44, NUMBER 5 1 SEPTEMBER 1991
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Application to impact dissociation of F2
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An analysis of the close-coupling method as it is traditionally formulated for electron-scattering prob-
lems shows that it can give rise to spurious resonances at intermediate energies when multiconfiguration
target states are used. These resonances are associated with excited states of the target that are not ex-
plicitly included in the close-coupling expansion. We develop a modification of the close-coupling tech-
nique that allows one to isolate and systematically eliminate terms from the total wave function which
are responsible for the spurious behavior. We have applied this technique to the study of electron-
impact dissociation of F& through its two lowest excited states. The complex Kohn variational calcula-
tions we have performed on this system incorporate accurate, multiconfiguration descriptions of the tar-
get wave functions.

I. INTRODUCTION

Many theoretical methods for studying electron-impact
excitation of atoms and molecules are based on the close-
coupling formalism [1], in which the total (N + 1)-
electron wave function is expanded as a sum of (antisym-
metrized) products of ¹lectron target wave functions
and single-electron channel orbitals. In principle, this
sum should include all energetically open channels.
However, as the incident energy in a collision is increased
toward the ionization energy, the number of open chan-
nels approaches infinity. Practical considerations gen-
erally limit the number of target states that can be includ-
ed in a close-coupling calculation. Moreover, in many
applications one is only interested in cross sections for ex-
citation to low-lying excited states and physical con-
siderations can be used as a guide in determining which
excited states should be explicitly included in the close-
coupling expansion. Nonetheless, one frequently requires
these cross sections well above the thresholds of other
low-lying states, so it is natural to inquire about the effect
of neglected channels at intermediate collision energies
and to examine whether there is anything about the
close-coupling formulation that might lead to pathologi-
cal results.

Fundamental questions about the convergence of
close-coupling expansions pose formidable theoretical
problems even for the simplest atomic systems. Our in-
terest here is in electron- molecule collisions. In contrast
to the electron-atom problem, the entire body of ab initio
studies that have treated electronic excitation of mole-
cules is quite small [2] and the target states employed
have been, with a few recent exceptions [3,4], quite sim-
ple. Our purpose here is to investigate aspects of the
coupled-channel problem which arise when
multiconfiguration target states are employed. Although
the focus will be on molecular problems, the points we
address in this study are applicable to electron-atom col-
lisions as well. The particular computational method we

employ is the complex Kohn variational method [5], but
this fact will not limit the treatment. The aspects of the
close-coupling formulation we will discuss are quite gen-
eral and the methods we develop here can be incorporat-
ed into other expansion and/or numerical integration
methods.

%'ith the exception of single-electron atoms and ions,
exact target states are not known and approximate wave
functions must be used. These are generally expressed as
linear combinations of configuration state functions
(CSF's) built from a specified list of "target" orbitals. To
simplify the formulation of the collision problem and the
evaluation of many-electron matrix elements, the channel
scattering functions are generally required to be orthogo-
nal to all of the target orbitals. It is well known that this
strong orthogonality constraint can lead to physically in-
correct results if it is not relaxed. Indeed, early calcula-
tions [6,7] on electron-impact dissociation of H2 were
subsequently shown to be incorrect for precisely this
reason. The standard remedy [8—10] for removing the
orthogonality constraints is to include (N+1)-electr on
functions or "penetration terms" built exclusively from
target orbitals in the close-coupling expansion. This set
of functions is chosen by taking the direct product of the
target orbitals and all the ¹ lectron configurations used
in building the target wave functions. One then retains
all such terms that are consistent with the Pauli exclusion
principle and that have the same symmetry as the total
wave function.

Because the coe%cients of the individual penetration
terms are chosen variationally, this procedure can, in the
case of multiconfiguration target states, provide more
Aexibility than the minimum needed to compensate for
any orthogonality constraints and can actually incorpo-
rate additional correlation effects. In effect, the penetra-
tion terms built from ¹ lectron configurations that con-
tribute weakly to the target states explicitly chosen can
represent excited pseudostates and can give rise to broad
unphysical resonances at intermediate energies where no
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structure is expected.
We can illustrate this phenomenon with the simple ex-

ample of elastic scattering of an electron from H2 in X+
symmetry. For the ground-state X 'Xg wave function,
we use a simple configuration-interaction (CI) wave func-
tion of the form (C, los+ Cz lcr„), with C, =0.9968 and
C2=0.0799. We included the single penetration term
10 10 g in the trial wave function to relax the ortho-
gonality constraint on the scattering wave function with
respect to the 1o. orbital and used the complex Kohn
method to solve for the elastic cross section. The result is
shown in Fig. 1. There is evidently a broad resonance
near 16 eV. Elastic scattering cross sections obtained
with a simple self-consistent-field (SCF) target wave func-
tion, which differs only slightly from the target CI wave
function we used, show no such structure. When the cal-
culation is performed without the lo.„lo. term, the reso-
nance disappears. This result is also shown in Fig. 1.

The 1'„lo. term can be thought of as a doubly excit-
ed negative-ion term whose parent is the
(Icr 1o„), b X„+ state of H2. This state is physically
open at energies above 10 eV, but is not properly includ-
ed in the single-channel calculation. To demonstrate this,
we performed a third calculation in which the X 'X+ and
b X„+ states were both included in the open-channel por-
tion of the trial function and the single-penetration term
was again retained. The resulting elastic cross section,
shown in Fig. 1, is evidently quite close to the smooth re-
sult obtained from the single-channel calculations in
which the penetration term was dropped. This simple ex-
ample serves to show how excited states, which are not
explicitly included in the close-coupling expansion, can
enter the problem in an indirect way when correlated tar-
get wave functions are used. In this simple case, it is pos-
sible to easily identify the cause of the trouble and re-
move the term responsible for this behavior from the
single-channel trial function.

In this paper we will show that it is possible to develop
a procedure for incorporating the penetration terms in

the expansion of the total wave function in fixed linear
combinations that are consistent with the approximate
target state that are being employed. This contraction of
the Hilbert-space component of the total wave function
then allows us to develop a procedure for identifying and
eliminating the terms in the trial wave function that will
give rise to pseudoresonances. This procedure effectively
allows one to meaningfully apply the close-coupling
method at intermediate energies even when elaborate
multireference target states are employed.

To illustrate this discussion, we present cross sections
for electron-impact dissociation of F2 from 5 to 30 eV
through its first excited ( II„and 'II„) states. We chose
to study F2 for several reasons. The dissociation cross
sections turn out to be quite small and are consequently
very sensitive to approximations made in the dynamics.
Moreover, the total wave function used in the scattering
problem must reAect the fact that the F2 negative ion is
bound in X„+ symmetry [11]. Electron-target correlation
is consequently very important in this system. Finally
there is a need for accurate e +F2 dissociation cross
sections in modeling several important types of lasers
(HF, KrF) and only one previous theoretical study has
been performed using the distorted-wave approximation
[12].

The details of our formulation will be presented in Sec.
II. Section III presents the results of our calculations on
e +F2. We conclude with a brief discussion.

II. THEORY

The scattering of an electron by an ¹ lectron target
can be described by a wave function of the form

qir=+Ay„Frr +g d 6„,
where gz. is a normalized ¹electron target wave func-
tion, F~„. is a one-electron function which describes the
scattering of an electron, incident in channel I, into
channel I", and A antisymmetrizes the product gr Fr& .
The target states are expressed as linear combinations of
configuration state functions,
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FIG. 1. e +H2 X elastic cross section. Solid curve, static
exchange plus penetration term; dashed curve, static exchange
without penetration term; solid circles, two-channel calculation
including penetration term.

which are in turn constructed from a set of orthonormal
orbitals, y [o = I, n]. The functions 6„,which make up
the Hilbert-space component of the total wave function,
are (%+1)-electron functions constructed from the same
set of molecular orbitals cp~, while the functions Fzz are,
by construction, orthogonal to the set y . The ortho-
gonality of these functions ensures that the first term in
Eq. (1) is orthogonal to the Hilbert-space component of
%. The functions O„are introduced in order to allow the
scattering function to penetrate the target wave function,
that is, to compensate for the orthogonality constraint
imposed on F&I-, and to introduce correlation and/or po-
larization effects into the scattering wave function.

The expansion given by Eq. (1) is quite general and is
common to many close coupling formulations [8—10]. In
algebraic variational methods, such as the complex Kohn



ELECTRON-MOLECULE CLOSE COUPLING WITH CORRELATED. . . 2915

method, which we employ in our electron-molecule
scattering work [5,13], the one-electron functions Frr
are further expanded in terms of a complementary set of
molecular orbitals, qr, [s =n + l, mI as well as continu-
um functions that satisfy appropriate incoming and out-
going asymptotic boundary conditions. The expansion
coefticients are determined from a variational principle.
However, the particular method employed to determine
the scattering functions is not central to this discussion
and our remarks will also apply to methods in which the
functions Err. are determined by numerical integration.
We shall refer to methods which use a wave-function ex-
pansion of the type given by Eq. (1) as close-coupling plus
correlation (CCPC) methods.

It is convenient to adopt the language of Feshbach par-
titioning theory [14] at this point. The open-channel
component of the total wave function is assigned to P
space and the variational terms weighting the (N+1)-
electron CSF's, 6„,are assigned to Q space. It is the con-
tribution of these (N+1)-electron terms which can give
rise to spurious features in the computed cross sections
when certain open channels have not been included in the
close-coupling expansion.

Our intention is to introduce a formalism which can
systematically eliminate the terms which give rise to this
spurious behavior. Instead of the general CCPC expan-
sion, we introduce a multiconfiguration —close-coupling
(MC-CC) expansion of the total wave function where the
terms comprising Q space are restricted to the penetra-
tion terms which arise by taking the direct product of the
target wave function and occupied orbitals:

'Pr=+~XrFrr'+ X d~ ~Xr f'~
r', o.

=Q Ayr Frr. + g d g T"„6„

X C l~ V 1+C2~ [0 2& 'P3 I singlet & (4)

where C1-=0.9 and C2 =—0.4. Then the unnormalized Q-
space CSF's would be

dix A that this matrix can be constructed by modifying
the transition-density code present in most modern
electronic-structure packages.

The basic idea underlying the close-coupling method is
that the set of target states included in the expansion of
the total wave function can be extended toward corn-
pleteness. In practice, the expansion must be severely
truncated so that physical considerations must dictate
which target states to include. One consequence of this
truncation, as noted previously, is that spurious reso-
nances can arise in the cross sections obtained in CCPC
calculations as a consequence of excluding certain open
channels from the close-coupling expansion. The conse-
quence of truncating the CCPC expansion is that there
may be terms in Q space which are the direct product of
major components of missing open-channel wave func-
tions and occupied orbitals. These terms can be identified
with eigenvalues of the Q-space Hamiltonian, which give
rise to spurious resonances. There are also poles in the
optical potential constructed from the Q-space Hamil-
tonian associated with open channels which have been in-
cluded in the close-coupling expansion, but these terms
do not give rise to any spurious features in the computed
cross sections. The contraction of Q space inherent in
the multiconfiguration close-coupling Hamiltonian elimi-
nates most, but not all, of these spurious poles. In order
to understand the types of terms which arise by contract-
ing Q space, consider a single-channel (static-exchange)
calculation, which employs the following target wave
function:

=QAyr Frr. + g d " (3) ~1 C2~ p1 I P2& p3Ising1et &

~2 Cl~'Pl%2 (1~ ~)C2~f 2V 3

Thus there will be one Q-space term for each partially oc-
cupied orbital in the target wave function yr (the prod-
uct Ayrip vanishes if tp is doubly occupied in every
CSF used in the expansion of yr. ). The Q-space
configurations, e„used in a CCPC expansion are gen-
erated by taking the direct product of an occupied orbital
and every CSF appearing in the target wave function,
whereas the Q-space terms appearing in the MC-CC wave
function are the direct product of occupied orbitals and
the linear combination of CSF's that define the target
states. Thus, penetration terms that appear in the
multiconfiguration close-coupling wave function can be
expressed as a contraction of the Q-space terms in the
CCPC trial function.

While it is a simple matter to build the list of (N+ 1)-
electron CSF's 8„, needed in the CCPC wave function
that are consistent with the Pauli exclusion principle, the
construction of the transformation matrix, T"„used to
build the Q-space CSF's employed in the MC-CC wave
function requires some additional effort. However, the
construction of these terms is neither a formal nor a com-
putational problem of note. In fact, we show in Appen-

&3 C1A pi p3 ( 1 /&2)C2A p2 p3 ~

The direct product of the strongly occupied orbital, y&,
with the target wave function can be associated with an
excited state whose principal CSF is y2y3, while the
direct products of the weakly occupied orbitals, y2 and
ip3, and the target wave function give rise to Q-space
CSF's associated with the target wave function itself.
The norm of these direct-product CSF's also reAects this
dichotomy of terms. The terms associated with the tar-
get wave function have norms which are close to 1, while
the term associated with an excited state will have a
norm close to zero. The excited-state terms that lead to
spurious resonances are now easily identified and can be
removed from Q space.

This procedure is based upon the notion that the excit-
ed states, associated with the small components of the
physical states included, are not strongly coupled to those
states that have been included in the trial function. We
wish to emphasize that we are not now referring to spec-
troscopic states of the target which may have physical
resonances associated with their thresholds, but rather
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the broad structures generated by pseudostates that occur
at energies above the ionization threshold of the target,
where no such behavior is expected.

One can test this procedure by performing close-
coupling plus correlation calculations at low incident-
electron energies, where all of the penetration terms can
be included in the problem, and by comparing the results
to MC-CC calculations with and without terms being ex-
cluded from Q space. Such a series of calculations will be
discussed in Sec. III.

A note about the target orbitals bears further com-
ment. In the examples we have considered, as well as in
the calculations we will describe next, the target wave
functions are assumed to have a compact representation
in terms of the orbital set chosen so that it is easy to iden-
tify a principal configuration for each target state. If this
were not the case, then it might be necessary to carry out
a rotation of the target orbitals, on a state-by-state basis,
to obtain the desired representation of the co basis. Such
a procedure, which is described in Appendix B, guaran-
tees that the MC-CC results will not depend on the way
in which the target orbitals are defined.

III. CALCULATIONS

We have applied the formalism outlined in the preced-
ing section to study electron-impact dissociation of F2.
This is an important process in electrically excited gas
mixtures containing Auorine and plays an important role
in the modeling of several gas lasers.

Fluorine is a closed-shell molecule with a 'X+ ground
state. The two lowest excited electronic states are the
dissociative H„and 'H„states which correspond, in a
simple molecular-orbital picture, to the promotion of an
electron from the doubly occupied ~ orbital to the low-
lying 3o„orbital. Previous theoretical calculations [15]
place the vertical excitation energies of these states from
the ground state at 3.32 and 4.64 eV, respectively. The
only previous theoretical investigation of dissociative ex-
citation of Fz is the distorted-wave study of FliAet,

McKoy, and Rescigno [12], which considered excitation
of the H„state. The cross sections they found were
rather small, with a peak value of —1.SX10 ' cm at an
energy of 10 eV. No previous study of excitation of the
H„state has been carried out, but since the transition

moment between this state and the ground state is known
to be anomalously small in the Franck-Condon region
[15], one also expects the excitation cross section to be
weak.

We have carried out three-state calculations including
the 1 'Xz, 1 H„, and 1 'H„states using the complex
Kohn variational method. This technique has been fully
discussed in preceding publications [4,5, 13,16] and these
derivations will not be repeated here.

The target wave functions were determined in the fol-
lowing manner. We began with a SCF calculation on the
ground state of F2 using the basis of contracted Gaussian
functions given in Table I. All calculations were carried
out at the equilibrium internuclear separation of 2.68
bohr. We then carried out a configuration-interaction
calculation which included all single excitations from the
two dominant configurations for the ground state (3o.
and 3cr„) and the excited 'II„state (vrg3a „and n„3o )s
[15]. From this calculation we obtained natural orbitals
of the averaged one-particle density matrices for the
ground and 'H„states. This orbital set was truncated on
the basis of occupation number to a final target basis con-
sisting of four 0. , four o.„, two ~, and two ~„orbitals.
To generate the target wave functions for the scattering
calculations, the CI calculations were repeated using this
compact set of natural orbitals. The final excitation ener-
gies we obtained for the X~ H„and X~ 'H„ transitions
were 3.28 and 4.56 eV, respectively, which are in good
agreement with the values obtained by Cartwright and
Hay [15].

We augmented the functions listed in Table I with ad-
ditional Gaussian functions, depending on the total sym-
metry being studied, in order to generate the square-
integrable basis orbitals for the complex Kohn variational
calculations. These additional functions are listed in
Table II. Finally, we included partial-wave continuum

S type

TABLE I. Contracted Gaussian basis for F2 target states.

Fluorine
P type D type

9994.79
1506.03
350.269

104.053

34.8432
4.3688

12.2078

1.2078

0.3634

0.036

0.006 431
0.048 757
0.233 065

0.785 549

0.802 728
0.317 752

1.0

1.0

1.0

1.0

44.3555
10.082
2.9959

0.9383

0.2733

0.07

0.02

0.042 011
0.261 899
0.797 662

1.0

1.0

1.0

1.0

0.9 1.0
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TABLE II. Uncontracted supplementary basis for augmenting basis in Table I.

Fluorine S type

5.0
0.12

Fluorine D type

5.0
1.5
0.5
0.15
0.05

Bond-center
S type

0.1

0.036
0.012
0.004

Bond-center
P type

0.15
0.05
0.01
0.0065
0.002

Bond-center
D type

0.015
0.005

basis functions up to l =6 in our calculations. Details
about the numerical schemes used in the evaluation of
bound-free and free-free matrix elements [17], as well as
other technical aspects of the complex Kohn method
[4,13],have been given elsewhere.

The total and diff'erential cross sections we report in-
clude contributions from X+, X+, II, II, and
symmetry. We carried out both CCPC calculations using
all the Q-space penetration terms generated from the oc-
cupied target orbitals, as well MC-CC calculations using
the Q-space contraction scheme previously outlined. We
shall use the case of total X+ symmetry to illustrate the
way the calculations were performed. Because the spa-
cial symmetries of the target states are X+ and H„, the
only penetration terms we need consider in this symmetry
are those formed from the direct product of a target-state
configuration and target orbitals of o.g, ~„„,or ~» sym-
metry. Moreover, the 1o. and 2o. orbitals were doubly
occupied in all the target configurations, so they generate
no Q-space terms. The ground state gives rise to two Q-

lg+ lg+
space vectors, ~3 ' and co4 ', while the excited states'll„'H„„rl„H„,
give rise to the vectors co& "",co& "',co& "',~z ""+(x~y).

ux ux ux ux

Because the ground state of F2 is dominated by the
1g+

configuration (core) lvr"„lvr 3o, the vector .
co4 ' will

lg+
have a norm close to unity, whereas the norm of co3

will be small. The norms of the vectors generated from
the l~„orbitals will also be small, since the principal oc-
cupancy in the excited Il„states is (core) lvr„ lvr 3o 3o „.
In the MC-CC calculations we performed, the co vectors
with small norms were not used in contracting the Q-
space Hamiltonian. Similar considerations were used in
carrying out calculations in other symmetries.

The X„+ component of the total wave function is more
complicated and requires special consideration. The Fz
ion is actually bound at internuclear distances greater
than 2.68 a.u. in X„+ symmetry [11]. However, previous
state-exchange calculations on e +F2 show a broad
shape resonance in the elastic cross section at 2.2 eV in
X„symmetry [18]. This is a reAection of the fact that

the frozen-core potential is not attractive enough to bind
an electron and instead produces an unbound resonance
state. We found that the three-state MC-CC calculations
lower this resonance energy, but still do not provide
sufficient core relaxation to make it disappear entirely.

2.0
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— -- contracted—
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c 0 80

0.4
0

0.0
0.0

I ~ I

1 0.0 20.0 30.0
Electron Energy (eV)

FIG. 2. Total cross sections for e +F2, X'Kg+~1 II„.
Comparison of CCPC and MC-CC results.

As a result, there is an artificially large enhancement in
the X„+-symmetry component of the excitation cross sec-
tions. This phenomenon was also noticed in the early
distorted-wave calculations [12] and was dealt with in a
somewhat ad hoc fashion by modifying the distorted-
wave potential to make it more attractive. The uncon-
tracted CCPC calculations we performed did produce a
bound F2 state (the lowest eigenvalue of H&& is, in fact,
the F2 ground state), at the expense of producing pseu-
doresonances at higher energies. This suggested a simple
modification of the MC-CC procedure to handle cases
where there is a bound negative ion. We simply deter-
mine the lowest eigenvalue of the Q-space Hamiltonian
and add the corresponding eigenvector to the set of trans-
formation vectors used to contract H&&. We found that
MC-CC calculations performed with this one additional
vector give smooth cross sections that were very close to
the CCPC results at energies away from pseudoreso-
nances in the latter.

In Figs. 2 and 3 we show the total cross sections ob-
tained for the 1 '2+ ~1 H„and 1 '2+ —+1 'H„ transi-
tions using both the CCPC method and the MC-CC tech-
nique with selected transformation vectors deleted, as
previously outlined. Evidently, the modified MC-CC
technique does a good job of averaging over the psendo
resonances that are evident in the CCPC cross section
and extracts the underlying background results.
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FIG. 3. As in Fig. 2, for X 'Xg+ ~1 'H„. FIG. 5. Differential
X 'X,+ 1'II„.

cross sections for e +F2,

In Fig. 4 we show the MC-CC results for the two indi-
vidual transitions along with the total dissociation cross
section. The singlet-triplet contribution is seen to dom-
inate the total dissociation cross section. It is interesting
that the cross sections we have obtained here are approxi-
mately 2—,

' times smaller than the distorted-wave results
of Fliflet et al. [12], which are the only other theoretical
results available for comparison. FliAet et al. speculated
that the distorted-wave results were likely to be 2—3
times too large, based on results from other systems and
limited experimental evidence for F2. Our calculations
appear to confirm these older estimates.

In Figs. 5 and 6 we present differential cross sections
for the 1 '2+ ~1 II„+ and 1 '2+ —+1 'll„ transitions.
These too are typical of what one expects to find: the
singlet-triplet cross sections show significant scattering at
large angles, associated classically with small impact pa-
rarneters, while the singlet-singlet cross sections do not
show the large backward peak.

IV. DISCUSSION

The intermediate-energy region in electron-scattering
problems is the most difficult to treat theoretically be-

cause the number of open channels is infinite, but the en-
ergy may not be high enough for perturbative methods to
be valid. We have analyzed the close-coupling method as
it is traditionally formulated and we have shown that it
can produce spurious structures when correlated target
wave functions are used. These structures are associated
with open channels that are not explicitly delineated in
the close-coupling expansion, but which nevertheless
enter the trial wave function indirectly through correla-
tion terms. As the description of the target wave func-
tions is improved, the number of such pseudoresonances
will grow.

We have outlined a general method for contracting the
penetration terms into linear combinations consistent
with the approximate target-state wave functions being
employed. This makes it possible to systematically iden-
tify and eliminate the terms responsible for the spurious
structure. We have illustrated this procedure with a sirn-
ple e +H2 example and extensive calculations on the
e +F2 system.

We should mention that other methods have been pro-
posed for dealing with the problems we have raised.
Burke and co-workers [19] have proposed an
intermediate-energy R-matrix theory in which one takes
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FIG. 4. MC-CC total cross sections for e +F2. FIG. 6. As in Fig. 5, for X '&+~ ]. 'II„.
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the opposite approach from that proposed here. Namely,
one tries to effectively saturate the continuum by incor-
porating many configurations built from discretized pseu-
dostates [20,21]. The idea is to make the number of pseu-
doresonances in the intermediate-energy region so dense
that a meaningful average can be taken. The claim is
that this technique will converge, in principle, to the
correct result. This idea has only been applied to the
simplest atomic systems. It is not clear whether the ap-
proach can be made practical for complicated atomic or
molecular targets. The method we have proposed
represents a practical, approximate alternative.

Xy, (N+1)d2, ,dN+I . (A4)

The nonzero matrix elements of this density must involve
the scattering orbital qr, since none of the (N + 1)-
electron CSF's comprising Q space, B„,contain this or-
bital. Thus, the only nonzero elements in this matrix are
of the form d", . We will show that these density matrix
elements are components of the transformation matrix we
need to contract Q space, that is
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APPENDIX A

e, =Ay, (N)f (N +1) (Al)

where the one-electron scattering function is now ex-
panded only in terms of occupied orbitals, f =g C q& .
We can rewrite this portion of the trial scattering func-
tion as

In this section we develop an algorithm to construct
the transformation matrix that we use to contract the Q-
space configurations which appear in our trial scattering
function. Such a (nonsquare) transformation matrix can
be easily constructed if we expand the CSF's in terms of
determinants, but a more efficient scheme is desired if we
wish to exploit the power of the current generation of
electronic-structure codes. We show that one can devise
such a method by modifying the density code present in
most state-of-the-art electronic structure packages.

We need consider only that portion of the trial scatter-
ing function, y„which gives rise to penetration terms in
the MC-CC method

—=e, (A6)

and the density matrix that results when the occupied or-
bital y3 is replaced by a scattering orbital y, ,

(A7)

In this case the matrix element, d 3„ is 1. Now if we con-
sider another Q-space determinant,

In order to obtain a nonzero between a Q-space
configuration state function, 6„, and the target wave
function, the trace of the density defined in Eq. (A4) must
be nonzero. This means a nonzero overlap of these func-
tions will result if the prototype scattering orbital, y„ is
replaced by the occupied orbital y in the direct-product
wave function. This can be easily seen by expanding the
CSF's used to build the target wave function and the Q-
space CSF's in terms of determinants. Now consider
what occurs on a determinant-by-determinant basis when
we construct a direct-product wave function as a target
determinant 4&, =Ay&, y2y~3 times a target orbital. If the
direct-product function does not violate the Pauli princi-
ple, then the overlap can be only 1, —1, or 0 with a Q-
space determinant. Consider the example

A e
g lP3 —A IP $ (P2 q73 tP3

0', =g C g T„B„(N+ 1 ), (A2)
then a zero matrix element would ensue,

(A8)

where we now have a sum over antisymmetric (N+1)-
electron configuration-state functions. To obtain ele-
ments of the transformation matrix T„, we only need
consider the contributions from one of the occupied or-
bitals,

(A3)

This matrix element is obtained by replacing the occu-
pied orbital y from the one-electron scattering function,
f, with an arbitrary scattering orbital y, . This arbitrary
scattering orbital is orthogonal to all of the occupied or-
bitals. This orbital is used to represent the one-electron
scattering function f in the computation of the transition
density matrix that we will use to construct the T„
transformation matrix. We then compute the one-
particle transition density matrix between these func-
tions:

(A9)

which is again the desired result. Since a phase factor in
the overlap results in the same phase factor in the densi-
ty, these are the only two cases we need consider. Be-
cause we can expand a wave function expressed in terms
of CSF's as one expanded in terms of determinants, the
fact that each determinant-determinant interaction is
treated correctly means that we can obtain the desired
transformation matrix, T„,by computing density matrix
elements between CSF's.

APPENDIX B

The (N + 1 )-electron contracted functions [co basis
defined in Eq. (3)] are generated by taking the direct
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product of occupied orbitals and target wave functions.
In a multichannel calculation, it may not be possible to
generate a single set of orthogonal orbitals that provides a
compact representation of all of the states to be included
in the scattering calculation. This was not a problem in
the F2 calculations reported in this paper since the aver-
aged natural orbitals we used did provide such a compact
description of the target states. However, when there are
excited states that have mixed valence-Rydberg charac-
ter, such as the B state of H2, it is not always possible to
achieve a compact representation of the ground and ex-
cited states using a single orbital set. In such a case our
prescription for identifying excited pseudostates, which is
based on the norm of a contracted (N+ 1)-electron func-
tion, might fail. However, this problem can be remedied
by rotating the orbitals used to define the co basis. Such a
procedure is outline below.

We do not have to use the same occupied orbital basis
in constructing the one-electron scattering function

[f(N + 1) in Eq. (Al)] that we employ in the target wave
function. For each target state in the scattering calcula-
tion, these orbitals can be chosen so as to extremize the

norm of the contracted (N+1)-electron functions. We
can simply form the overlap matrix for the set of co vec-
tors generated by a particular target state and diagonalize
it. This procedure then defines a new transformation of
the contracted Q-space Hamiltonian. We note that this
transformation does not introduce any additional com-
plexities into the construction of the optical potential
since the linear combinations of (N+ 1)-electron CSF's
comprising the co basis are not, in general, orthogonal.

This transformation provides a unique definition of
these contracted functions which is independent of the
orbital basis used to define the target wave functions. We
tested the procedure of F2 by choosing a smaller basis
than that reported previously and using full CI target
wave functions, which are invariant to the choice of oc-
cupied orbitals. We first performed MC-CC calculations
using natural orbitals as the occupied orbitals. We then
generated a new set of orbitals by rotating one strongly
occupied and one weakly occupied natural orbital by 45'.
By diagonalizing the new co-overlap matrix, we recovered
the original m basis and the same cross sections were ob-
tained in both calculations.
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