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The photoionization of N2 leading to the X Xg+, A II„,and 8 X„+ states of N2+ has been studied us-

ing the random-phase approximation (RPA) and the multichannel frozen-core Hartree-Fock (MCFCHF)
approximation. The RPA has been implemented as a coupled-channel method with a set of open and
closed channels corresponding to excitation operators and with a set of closed channels corresponding to
deexcitation operators. Thus in the case of the photoionization of N2 there are 14 coupled channels.
Both the RPA and MCFCHF were solved using the Schwinger variational method with Pade-
approximant corrections. Good agreement was found between the RPA results and the MCFCHF re-
sults when the dipole-mixed form of the cross section was used. In comparison with experiment, both of
these methods show qualitative improvements over previous computational results. These calculations
give the correct behavior of the cross section in the l~„~keg channel without ad hoc corrections need-

ed in earlier calculations. Also both of these methods exhibit autoionizing resonances lacking in earlier
results. However, there are still a number of discrepancies between theory and experiment, including the
position and shape of the autoionization resonances, and the behavior of the photoelectron asymmetry
parameters in the (2o.„) ionization channel, which is strongly perturbed by the shape resonance in the
(3o.

~ )
' ionization channel.

I. INTRODUCTION

The photoionization of Nz has been studied by
numerous theoretical methods [1—7] and also has been
the object of many experimental studies [8—11]. This sys-
tem is a prototype of molecular photoionization with
three characteristics: It is a highly anisotropic system, it
has both one-particle (shape resonances) and two-particle
(autoionization) resonances, and it also has a vibrational
mode. Additionally, Nz is an important atmospheric
molecule. Here we will consider the photoionization pro-
cess in the fixed-nuclei approximation, and we will limit
ourselves to consider only the ionization from the valence
orbitals on Nz. With these restrictions we will consider
the effects of electron correlation on the total and
differential cross sections leading to the X X+, A H„,
and 8 X„+ states of N2+.

There are three questions in particular which we will
examine. The first question is what degree of correlation
is needed to accurately treat the 1~„~k~ channel. In
the separated-channel frozen-core Hartree-Fock
(SCFCHF) approximation there is a strong valence tran-
sition in this channel which appears above threshold. In
previous studies [2,12], the interaction potential for this
channel was modified to remove this state. Although this
procedure leads to more reasonable predictions for the
cross sections, its ad hoc nature keeps the method from
being a generally applicable approach. The second ques-
tion is what degree of correlation is needed to accurately
describe the effects of interchannel coupling on the pho-
toelectron asymmetry parameters in the (2a „) ' channel

[1,10], which are greatly affected by the shape resonance
in the (3cr ) channel. Finally, we will consider how

well the position and widths of the autoionization states
leading up to the (2tr„) ' threshold are predicted at the
level of theory considered here.

In the present study we have considered two alterna-
tive approaches for including electron correlation in the
computation of the photoionization cross sections of N2.
We have computed the photoionization cross section us-
ing the multichannel frozen-core Hartree-Fock
(MCFCHF) [1,13] method and the random-phase approx-
imation (RPA) [14]. Both of these methods can be cast as
sets of close-coupled equations involving nonlocal non-
spherically symmetric coupling potentials [15]. In the
case of the MCFCHF calculations, the four valence ion
states were included in the calculation. In the RPA cal-
culations all 14 channels were included, where seven of
the channels correspond to excitation operators and
seven of the channels to deexcitation operators. Once
these methods are written in the form of close-coupled
equations, the resulting equations were then solved using
the Schwinger variational method with Pade-
approximant corrections [16]. All of the required matrix
elements were computed using single-center expansion
techniques [16,17].

Both the MCFCHF and the RPA methods have been
applied to the photoionization of N2 previously. In ear-
lier two-channel MCFCHF calculations [1,18] the vibra-
tional branching ratios and the fixed-nuclei results were
obtained. However, these results do not give quantitative
agreement with available experimental data [10]. The
RPA method has been previously applied [5—7] to the
photoionization of N2. However, these studies used
basis-function methods which did not give angular distri-
butions and which required additional approximations to
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obtain partial channel cross sections. In this paper we
will only compare our current results to those of
Swanstrq(m et al. [5] since those authors did obtain ap-
proximate partial channel results and they considered all
of the relevant channels.

In addition to RPA cross sections, Swanstrq(m et al.
[5] also computed multiconfigurational RPA (MCRPA)
cross sections for the photoionization of N2. In the
MCRPA calculations of Swanstrgm et al. [5] the initial
state was treated using a multiconfigurational wave func-
tion, and appropriate transfer operators were then added
to the operator basis set. Unfortunately, the acronym
MCRPA has also been used by Cacelli and co-workers
[19,20] to denote multichannel RPA. A multichannel
RPA is an RPA calculation where all channel couplings
are included but where the target states are represented
by frozen-core Hartree-Fock (FCHF) wave functions.
The calculations presented in this study are multichannel
RPA calculations (which we will denote by just RPA) but
they are not MCRPA calculations using the definition of
Swanstrq(m et al. [5].

In the energy region of the Hopfield autoionization
series leading up to the B X„+ threshold, we will also
compare our results to those obtained by Raoult et al.
[3] who used the multichannel quantum-defect theory
(MQDT). In their calculations, the parameters used in
the MQDT were obtained from a SCFCHF calculation.
These MQDT results can thus be characterized as
distorted-wave calculations, where the effects of channel
coupling are only included to first order.

II. THEORY

(4)

0 is a vector of target states, the superscript T indicates
the transpose, the subscript N —1 indicates integration
over X —1 electronic coordinates, P is a matrix defined
by (P) J ="ojP, E is defined by (E)~ =o; E;, where E, is
the asymptotic energy of the electron leaving the system
in target state 0, , and where 6 is the matrix of Coulomb
channel Green's functions defined by (G),"=5,"G(E, ).
The kernel of the Coulomb channel Green's function
satisfies the equation

(5)

In the MCFCHF approximation the optical potential
V given in Eq. (4) has the form of a Phillips-Kleinman
(PK) pseudopotential [2,23]:

VMcPK VHF+ Vc L g gL +gl g
where I., Q, and V "are defined by

(I. )pq
—— ——V' ——+E, 5„,+ ( V""),

q
+ ( V')pq, (7)

1 2 1

r

(V ")~ = —g +—+ g (2J„E„)6—
a a t=1

The basic scattering equations that describe the final
state of the photoionization process can be written using
a scattering wave function for an N-electron system of
the form [21]

(V )„=—J, , +2E, , (10)

where 3 is an ¹electron antisymmetrization operator,
and 8i are (X —1)-electron target states. The projection
operator P enforces orthogonality between the orbitals

aliis and all of the bound orbitals used to describe the tar-
get states 8&. Thus P is a one-electron operator of the
form

(2)

where the orbitals
~ P, ) are the bound orbitals used to de-

scribe the target. The appropriate Lippmann-Schwinger
equation for the scattering functions /is can then be ob-
tained from the Schrodinger equation by projecting onto
the subspace spanned by the scattering function. This
leads to an equation of the form

4s =4's+G V@s

where @s is a vector of the channel solutions, Ps is a vec-
tor of the homogeneous solutions (i.e., in the absence of
V), Vis the optical potential matrix which can be written
(in atomic units) as [21,22]

In Eqs. (7)—(10) n is the number of occupied orbitals, the
sum over o. runs over the nuclei, the index t indicates
the orbital from which an electron is removed to give the
ionic state in channel p, and J and K are Coulomb and ex-
change integrals.

An alternative approach to obtaining a set of scattering
equations which include correlation effects is through the
RPA or related formulations [14]. For the study of pho-
toionization cross sections we have implemented the mul-
tichannel RPA by rewriting the usual matrix RPA equa-
tions as a set of close-coupling equations which have the
same form as those given in Eq. (3). In the RPA, an exci-
tation operator 3 is defined by

(12)

where ~0) is the ground state with energy Eo, ~E) is an
excited state with energy E, and AE=E —Eo. By ex-
panding 3 (E) in single particle-hole excitation and
deexcitation operators and linearizing the resulting equa-
tions, where ~0) is a closed-shell singlet Hartree-Fock
(HF) wave function with n occupied orbitals indexed by a
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and p and where E & is a singlet state, a set of
integrodifferential equations is obtained of the form [7,15]

O=P(II "—E —hE)PY (r)

yRPA
yMCPK y IPK

y IPK V MCPK (17)

and

+ g P(2Kp —Jp )PYp(r)
p

+ g P(2Ip I p)—PZp(r)
p

O=P(H " E—+KE)PZ (r)

+ QP(2Kp —Jp )PZp(r)
P

+Q P(2Ip I p)PY—p(r) .
p

(13)

where the first n indices refer to the excitation channels,
the second n indices refer to the deexcitation channels,
and where the V matrix is the same as given in Eq.
(6) with all n possible channels included. ln the RPA for-
mulation, the channel energies in the excitation channels
are E; =E —Eo+c; and the channel energies in the deex-
citation channels are E,-= —E+Eo+t-;. As before, the
tilde over an operator implies that the kernel of any in-
tegral operator contained in that operator is complex
conjugated. In Eq. (17), the potential V is defined by

VIPK —VI VI/ g VI+ g VIg

where

In Eqs. (13) and (14), H " is the Hartree-Fock Hamil-
tonian, e,. is the orbital eigenvalue of orbital P;, J p and
K

&
are the usual Coulomb and exchange operators, P is

the projection operator defined in Eq. (2), the kernel of
I & is givenby

P (r')Pp(r)I p(r, r')=
r —r' (15)

and the tilde over an operator 0 indicates that the opera-
tor is obtained from the operator 0 by taking the com-
plex conjugate of the kernel. The value of the matrix ele-
ment of any one-electron operator p between IO& and
IE & is then given by

&ElplO&=(2)'~ f d r[P*(r)p(r)Y (r)

+Z (r)p(r)P (r)] .

The RPA equations (13) and (14}can be written in the
form of the Lippmann-Schwinger equation given in Eq.
(3), where the potential is again a Phillips-Kleinman
pseudopotential in the same manner as in the MCFCHF
case. The RPA potential V is then a 2n X2n (n is the
number of occupied orbitals in the reference state) matrix
given by

(V ) p=2Ip I p . —

Note that using this multichannel formulation, both
the MCFCHF and the RPA calculations naturally in-
clude both one-electron shape resonances found in
separated-channel calculations and two-electron autoioni-
zation resonances. As the photon energy E is lowered
below a given threshold Eo —E;, the channel energy E,
becomes negative. Then the channel Green's function
that is used is that appropriate for a closed channel. The
states which would be bound states of the closed channel
in a separated-channel approximation become autoioniz-
ing states in the coupled-channel problem.

In this study of photoionization, we do not need to
directly compute the solutions to the Lippmann-
Schwinger equation given in Eq. (3), we only need to
compute matrix elements of one-electron operators be-
tween the HF initial state and the multichannel final-state
wave function. To compute these matrix elements we use
the C-functional variational method with Pade-
approximant corrections to the initial variational esti-
mate [1,16,24,25]. The explicit form of the functional for
a matrix element of the operator 0 is

& y, lo lq,'=, '
& =M'„(y, o, y'=„')

=&4, I lob',=„,'&+&&,Io6, vgl&;'„,'&+&&-, lo G, v, G, vgly';-„,'&

+ g [&W, lo G, vgg, vgl~&(D-'). p&plvgG vgly';-„'&),
a, P

(20)

where the matrix D is given by

(D ).p= & a
I
v g

—v g 6, vg I p &,

and where I a & and
I p & are elements of a multichannel

square-integrable basis set and
I P, & is a vector which

contains the orbitals i)), in the corresponding channels p.
An initial estimate of the matrix element of interest is ob-

tained using Eq. (20); then the variational basis is aug-
mented systematically with continuum functions. The se-
quence of estimates formed in this manner [25] are
equivalent to a diagonal [N/N] Fade sequence for the
difference in the first variational estimate and the exact
matrix element for the given interaction potential V.

In order to compute both total and differential cross
sections for the photoionization by light, which is linearly
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polarized in the n direction, dynamical coefficients I-
Fkpn

are computed using Eq. (20) in both the length form, us-
ing

=(k)'"&y, ~r n~y';-„'),Ekp

and in the velocity form, using

(k)1/2
Ekpn

(22)

(23)

We then compute the total and difFerential cross sections
in the mixed form using [26]

d o.
Ep 4

2 M 2

dndn
=

n

(24)

where Ace is the energy of the ionizing photon and c is the
speed of light. The final cross sections are obtained in the
usual manner by integrating over all orientations of the
molecule in the laboratory frame to give the difFerential
cross section as [27)

doEp OEp
M M

[ I+13@Pz(cos8) ], (25)
k

where 0 is the angle between n and k, P2 is the Legendre
polynomial of degree 2, and Pz is the photoelectron

asymmetry parameter. The mixed form of the cross sec-
tion is believed to be more useful than either the usual
length or velocity forms of the cross section, since the os-
cillator strength computed in the mixed form satisfies the
Thomas-Reiche-Kuhn (TRK) sum rule [28].

The Pade sequence method converged very rapidly in
this study. In regions where the cross sections were slow-
ly varying functions of the energy, the cross sections
changed by less than 1% between the A =2 and 3 esti-
mate. In the regions where autoionization was impor-
tant, we typically needed X =4—6 to obtain satisfactory
convergence. One advantage of using the Pade approxi-
mants is that they can eliminate the spurious singularities
which occur with these variational methods when only a
single fixed-basis-set calculation is considered [29]. The
cross sections in the 3o. ~ko.„channel are shown in
Fig. 1 as obtained using the variational estimate using
only the original basis given in Table I (denoted as N =0)
and using the Pade approximants up to 2V=3. These
cross sections were obtained using the four-channel
MCFCHF approximation. The spurious structure in the
noniterative (N =0) result is due to a zero in the deter-
minant of the matrix D at a photon energy of approxi-
mately 32 eV. With the iterative method, the efFects of
this spurious singularity are removed from the computed
cross section. Thus, we have found that being able to
compute a basis-set-independent result in the Pade-
approximant approach can greatly reduce the efFort need-
ed to assure the convergence of a calculation in compar-
ison to methods which are strictly dependent on basis
sets, such as the multichannel Schwinger method [30] and
the complex Kohn method [31].

We had difIiculty converging the Pade-approximant se-
quence at only one energy of the many energies con-
sidered in this study. This occurred at E=34.80 eV in

1.5

1.0

O
~ ~
U

V)

0)
O
~ 0.6

0.0
31

3o ~ko„

32 33
Photon Energy (eV)

34

FIG. 1. ~. Convergence of the partial photoionization cross sec-
tion in the 3o.

g ~ken„ ionization channel: N =0;
%=1; ——— %=2' —- —-, %=3. The difference between
the 1V =3 and X =4 calculations is not detectable on the scale
used in this figure.

the MCFCHF approximation in the 6m=0 channels,
where numerical inaccuracies in the evaluation of the in-
tegrals combined with the inversion of nearly singular
matrices lead to a Pade sequence that did not converge.
The nature of the problem at this energy can be under-
stood by considering the data given in Table II. Here we
have given the partial cross section in the 3o. —+ko.

g t$

channel and the determinant of the matrix D which is in-
verted in the computation of the Pade correction to th e
matrix element IEI „, where I =1 and m =0, and the
ionization channel index p corresponds to the (2cr )ll

channel. In all stages of the calculation, where a matrix
is inverted, the matrices should be complex symmetric
matrices. Due to the finite precision with which our ma-
trix elements are computed, the matrices inverted were
not exactly symmetric. To judge the numerical stability
of this calculation we have compared the determinant
and cross sections obtained when the slightly unsym-
metric matrices are used and when we have symmetrized
the matrices before every matrix inversion. As can be
seen from Table II, the fractional errors in both the
determinant and the cross sections are not large for
%~2. For the original basis set, given in Table I, after
X =2, the difFerence between the symmetrized and un-
symmetrized calculation grows quickly. We have also
considered a modified basis set where the ( A=O, l =1,
m =0) functions with exponents a=11.387 and 2.254 in
the 2o ~k o „channel were changed to a ( A =0, l = 1,
m =0) function with a=0.054 and a ( A=O, l =3,
m =0) function with a=0. 177 in the same channel. We
can see that even though the calculation with the original
basis set was numerically unstable, the resulting error in
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TABLE I. Basis sets used in the evaluation of Eq. (20) for Am =0. All scattering basis functions are spherical Gaussian functions
of the form given in Eq. (26).

Symmetry

1~„~keg

30g~k0 ~

20 „~k0g

20g~k0„
10 „~kcT
10g~k0„
k~g ~1m„
k0 „~30g
k0g ~20 „

0 u ~20g
k0g~10 „
k0' ~10g

( A, l, m)'

(RN, O,O),

(RN, O,O),

(R,O,O),

{RN,1,1),
(RN, O,O),

(RN, O,O),

(RN, O,O),

(R,O,O),

(R,O,O),

(RN, 1,1)
(RN, 2, 1), (0,2, 1)

{0,4, 1)
(RN, O,O)

(RN, 1,0), (0,1,0)' ' '
(0',3',0)

(RN, O,O)

(RN, 1,0), (0,0,0)
(0,2,0)

(RN, 1,0), (0,1,0)
(R.,'1,'0),

'
(0,'0,'0)

(RN, 1,0), (0,1,0)
(RN, 2, 1), (0,2, 1)

(RN, 1,0), (0, 1,0)
(R , 1,0), (0,0,0)
(R , 1,0), (0,1,0)
(R , 1,0), (0,0,0)
(RN, 1,0), (0, 1,0)

16, 8, 4, 2,

16, 8, 4, 2,

16, 8, 4, 2,

11.387, 2.254, 0.7,
304.287, 60.226, 18.718,
304.287, 60.226, 18.718,

70.834, 12.987, 3.633,
32.005, 6.335, 1.969,
35.015, 6.930, 2.154,
49.261, 9.750, 3.030,

342.255, 67.741, 21.054,
342.255, 67.741, 21.054,

1, 0.5, 0.25, 0.125
1, 0.5, 0.25, 0.125

0.25, 0.125
1, 0.5, 0.25, 0.125
1, 0.5, 0.25, 0.125

0.25, 0.125
1, 0.5, 0.25, 0.125
1, 0.5, 0.25, 0.125

0.25, 0.125
0.269, 0.117, 0.054
7.202, 3.128, 1.434
7.202, 3.128, 1.434
1.248, 0.485, 0.200
0.757, 0.329, 0.151
0.829, 0.360, 0.165
1.166, 0.506, 0.232
8.100, 3.518, 1.612
8.100, 3.518, 1.612

'The spherical Gaussians were either centered at the nuclei, indicated by A =RN, or at the bond midpoint, indicated by A =0.

the total cross section was less than 2% when compared
to the well-converged result obtained using the modified
basis set.

One advantage of the RPA form of the photoionization
calculation is that it gives cross sections that are identical
in length and velocity forms and that satisfy the
Thomas-Reiche-Kuhn (TRK) sum rule [14, 28]. In this
study, we will compare these accurate RPA results with
those obtained from the MCFCHF [1] approach using
the mixed form of the matrix element to compute the

cross sections and photoelectron angular distributions.
The mixed form of the MCFCHF method is known to
produce cross sections that satisfy the TRK sum rule
[28]. This comparison will then indicate to what extent
the RPA equations just provide the correct normalization
and to what extent the oscillator strength is redistributed
in the RPA. En general we will only present results in the
mixed form of the cross section for either RPA,
MCFCHF, or SCFCHF calculations since they satisfy
the TRK sum rules.

TABLE II. Convergence of the [N/N] Pade-approximant sequence at E=34.80 eV in the MCFCHF approximation for the

Am =0 channels. The original basis set is that given in Table I, and the modified basis set is detailed in the text. The cross section 0.

is for the 30.g~ko. „ ionization channel. The values 5 det(D) and 60- indicate the difference between the symmetrized and unsym-

metrized calculations as discussed in the text.

I
det(D)

I
0 (Mb)

Original basis set

6 det(D)
det(D)

Idet(Dll 0. (Mb)

Modified basis set

6 det(D)
det(D)

0
1

2
3
4
5
6
7
8
9

10
11
12

2.003 X 10-'
4.054 X 10
2.185 X 10
7.703 X 10-"
2.436 X 10-"
1 198X 10
3 ~ 364 X 10
5454X10 "
1.895 X 10
7.337 X 10
2.231 X 10-"
8.829 X 10

6.203 X 10-'
8.860 X 10
1.731 X 10-'
2.996X 10
3.144X10 '
1.234
1.252
3.472
2.345
2.664
1.894
1.973 X 10'

1.019978 2
1.114892 6
1.118090 7
1.118205 7
1.118286 6
1.118254 8
1.114643 9
1.103 875 5
1.139 129 2
1.140 213 9
1.177 0190
1.197051 0
1.196029 6

1.529 X 10-'
1.866 X 10-'
2.120X 10
3.255 X 10
4.748 X 10
4.266 X 10-'
5.679 X 10
3.564 X 10-'
5.921 X 10
1.562X10 '
9.328 X 10
1.917X 10-'
1.680 X 10

3.518 X 10
3.862 X 10
1.850X10 '
4.721 X 10
6.365 X 10-"
1.324 X 10-"

7.275 X 10
1.978 X 10-'
2.747 X 10-'
2.689 X 10
3.779 X 10-'
5.856 X 10

1.128 062 9
1.229 734 5

1 ~ 184 857 0
1.182 427 0
1.182 261 8
1.182 252 7
1.182 252 6

2.659 X 10-'
4.310X 10-'
1.266 X 10-'
1.015 X 10-'
1.015 X 10
1.015 X 10
1.015 X 10
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TABLE III. Basis sets used in the evaluation of Eq. (20) for Am =1. All scattering basis functions are spherical Gaussian func-
tions of the form given in Eq. {26).

Symmetry

1~„~k5g

1m„~kcr

3o.
g ~k~„

2o.„~k~g

2o.
g ~k~„

lo.„~k~g
1o.

g ~km„
ko.

g
~1m.„

k6g ~1~„
k~„~3o.g
k~g ~2o.„
k ~„—+2o.

g

keg —+ 1o.„
k ~„—+ 1o.

g

( A, l, m)'

(RN, 1,1),
(RN, 1,1),
(RN, 1,1),
(R,O,O),

(RN, 2,2),
(RN, 1,1),
(RN, 1,1),
(RN, 1,1),
(RN, 1,1),
(RN, 1,1),

(RN, 2,2)

(RN, 3,2), (0,2,2)
(0,4,2)

(RN, O,O)

(R , &,0), (0,0,0)
(0,2,0)

(RN, 1,1)

(RN, 2, 1), (0, 1,1)
(0,3,1)

(RN, 1,1)
{RN,2, 1),(0,2, 1)

(0,4, 1)
(R ,2, 1), (0, 1,1)

(R.,2, 1), (0,2,'1)

(RN, 2, 1), (0,1,1)
(R ,1,0), (0,0,0)
(R ,3,2), {0,2,2)
(R ,2, 1), (0, 1,1)

(RN, 2, 1), {0,2, 1)
{RN,2, 1), (0,1,1)
(RN, 2, 1), (0,2, 1)

(RN, 2, 1), (0, 1,1)

16, 8, 4, 2,

16, 8, 4, 2,

16, 8, 4, 2,

16, 8, 4, 2,

11.387, 2.254, 0.7,
304.287, 60.226, 18.718,
304.287, 60.226, 18.718,

70.834, 12.987, 3.633,
31.606, 6.256, 1.944,
32.005, 6.335, 1.969,
35.015, 6.930, 2.154,
49.261, 9.750, 3.030,

342.255, 67.741, 21.054,
342.255, 67.741, 21.054,

1, 0.5, 0.25,
1, 0.5, 0.25,

0.25,
1, 0.5, 0.25,
1, 0.5, 0.25,

0.25,
1, 0.5, 0.25,
1, 0.5, 0.25,

0.25,
1, 0.5, 0.25,
1, 0.5, 0.25,

0.25,
0.269, 0.117,
7.202, 3.128,
7.202, 3.128,
1.248, 0.485,
0.748, 0.325,
0.757, 0.329,
0.829, 0.360,
1.166, 0.506,
8.100, 3.518,
8.100, 3.518,

0.125
0.125
0.125
0.125
0.125
0.125
0.125
0.125
0.125
0.125
0.125
0.125
0.054
1.434
1.434
0.200
0.149
0.151
0.165
0.232
1.612
1.612

'The spherical Gaussians were either centered at the nuclei, indicated by A =RN, or at the bond midpoint, indicated by A =-0.

The matrix elements needed to evaluate the variational
expressions of the form given in Eq. (20) were computed
using numerical techniques based on single-center expan-
sions that have been discussed in detail elsewhere [16,
17]. Here we will only give sufficient details to define our
calculation. The radial grid used to study the photoion-
ization of N2 contained 1584 points and extended to a
distance of 17S a.u. The N atoms were located at 1.034
a.u. from the origin. The grid was selected using an
automatic-grid-generation algorithm, which will be de-
scribed elsewhere [32]. In the region near the nuclei, the
step size was 0.000236 a.u. The step size increased at
larger distances from the origin up to a value 0.1257 a.u.
at the end of the grid.

The integration formulas used for radial integrals on
this grid were Newton-Cotes-type formulas [17] that al-
low for the accurate integration of functions which have
discontinuities in their slopes such as occur in the in-
tegration of the Coulomb Green's function and in the in-
tegration of I /r, 2. The eighth-order integration rule was
used for all integration regions. However, at high ls in
regions near the origin, this integration scheme is known
to be unstable [17], and in these regions a second-order
integration rule (i.e., Simpson's rule) was used.

The partial-wave expansions used in this study were as
follows: l =60, where l is the maximum l included in
the expansion of the scattering functions at all times and
is the maximum l included in the expansion of the target
orbitals at all times; A, =120, where k is the maximum
l included in the expansion of 1/r &z in both the exchange
and static potential terms; and I~=11 for the hm =0

channels (lm„~kvr, 3o ~ko„, and 2o „~kcr ), and

lp =8 for the bm =1 channels (lvr„~k5, l~„~ko
3o —+km„, and 2o„~km ), where l is maximum l in-
cluded in the expansion of the homogeneous solutions

( —„)
~Ekp '

Tables I and III give the initial variational scattering
basis set used to evaluate Eq. (20). The variational func-
tions la ) are zero in each channel except for one channel
in which there is a spherical Gaussian function of the
form

A(r) =Air —Al exp( —air —Al ) I; (II, A),

(26)

where A is the center of the function and N is a normali-
zation constant. The use of reasonably large basis sets is
essential for the Pade sequence to converge rapidly.

The HF wave function for the initial state of Nz was
constructed from a one-electron basis set which was com-
posed of the priinitive Gaussians used by Rizzo, Graham,
and Yeager [33], where the primitive functions were not
contracted, additional uncontracted s Gaussians with ex-
ponents 0.0512, 0.0197, p Gaussians with exponents
0.0416 and 0.0166, and a d Gaussian with exponent 0.1.
With a R(N—N) bond distance of 2.068 a.u. , the total
HF energy was E= —108.991 48 a.u.

III. RESULTS AND DISCUSSION

We have considered the photoionization of N2 leading
to the three lowest states of N2+. These states are [34]
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the (3o )
' X X state which has an experimental ion-

ization potential (IP) of 15.58 eV, the (2'„) ' A II„
state which has an experimental IP of 16.70 eV, and the
(2o„) ' B X„+ state which has an experimental IP of
18.75 eV. In the MCFCHF calculations, we have con-
sidered the interactions between these three channels,
and we have included the (2cr ) ionization channel so
that four electronic states were included in the calcula-
tion. We have used the experimental values of the IP's
for the thresholds for each of the channels. For (2tT )

we have used the value of 37.9 eV [34]. It is well known
that the actual states of N2 in the energy of the (2o. )

threshold region are not well described by the simple
single-configuration hole states implied in the frozen-core
approximation [35, 36]. Thus the resonance structure in
the photoionization cross section, which results from the
inclusion of the (2cr ) channel, will not quantitatively
reproduce the structure that would be obtained if more
accurate states of the N2+ system were used. However,
the (2cr )

' target state can be thought of as a polariza-
tion pseudostate which provides for the polarization of
the other target states [21]. We then expect that at pho-
ton energies where there are no resonant states, effects of
accurate (2o. )

' hole states would be similar to those
found in this calculation. We additionally note that the
(2o&) ' state is the only low-lying pseudostate that can
directly contribute to the photoionization cross section
within the FCHF approximation used to describe the ion
states. Thus the results obtained with the simple FCHF
(2o s )

' hole states should qualitatively predict the
effects of the innervalence hole states of N2+ on the pho-

toionization cross sections of N2.
In the RPA calculations, the channel thresholds are

Koopmans' theorem values. Thus the RPA thresholds
were 426.75 eV for the (lt7 )

' channel, 426.65 eV for
the (lo „) ' channel, 40.11 eV for the (2cr )

' channel,
21.18 eV for the (2tr„) ' channel, 16.75 eV for the
(ln„) ' channel, and 17.28 eV for the (3o )

' channel.
Due to the difference between the RPA thresholds and
the experimental thresholds, we have not attempted to
use the RPA to study the autoionization resonances,
which occur just below these thresholds.

In Fig. 2 we present a comparison of the different
forms of the photoionization cross section for the
MCFCHF and RPA calculations for the ( lm„) ' ioniza-
tion channel. We can see that in the MCFCHF results
there is a large difference between the length and velocity
forms of the cross section. This indicates that there are
significant correlation errors in this calculation. Howev-
er, the mixed form of the cross section is in relatively
good agreement with the RPA calculation. The RPA
calculations presented in Fig. 2 show that length and ve-
locity are in very good agreement. In order to obtain this
level of agreement between the RPA length and velocity
cross sections, we were forced to use a very large basis set
to describe the target wave function, as discussed above,
and we needed to extend the partial-wave expansions to
much higher l than we had previously used [2] in studies
of the photoionization of N2. In Fig. 3 we compare the
mixed form of the SCFCHF, MCFCHF, and RPA calcu-
lations with available experimental data of Hamnett,
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298 ROBERT R. LUCCHESE AND ROBERT W. ZURALES

Stoll, and Brion [8] and Plummer et al. [9] and with pre-
vious RPA calculations of Swanstrgm et al. [5]. In the
SCFCHF approximation there is a large peak at thresh-
old due to oscillator strength in the 1~„—+k~ channel.
We can see that the correlation induced in the MCFCHF
calculation leads to much better agreement with the ex-
perimental data and that for this channel, the RPA and
MCFCHF results are of similar quality. The present
RPA results are also in reasonable agreement with the
RPA results of Swanstrdm et al. [5].

In the figures where we present cross sections and
asymmetry parameters for the MCFCHF calculations,
we have carefully computed enough points to obtain any
structure at an energy resolution of 0.05 eV. Thus we
have not attempted to compute cross sections within 0.6
eV of a new threshold since it would be dificult to resolve
all of the structures in these regions. In the RPA results
we have not attempted to study the cross sections in the
region where autoionization occurs. We did this since
the thresholds are at the wrong energies in the RPA. We
could have shifted the thresholds, but such a procedure
would have had no theoretical justification, and the result
would have been no more useful than the MCFCHF re-
sults which we present here.

In Fig. 4 we present the photoelectron asymmetry pa-
rameters for ionization in the (lm.„) channel. The
RPA and MCFCHF results are nearly identical for this
quantity. The only difference being the presence of the
autoionization resonances in the MCFCHF results below
37.9 eV. There is reasonable agreement between the
theoretical values for the asymmetry parameters and the
experimental data of Marr et al. [37]. The multichannel
theory is in somewhat better agreement with the experi-

ment than is the separated-channel theory. However,
when a modified potential was used in the SCFCHF cal-
culation [2] that removed the lrr„+—kyar intensity, the
agreement between the SCFCHF results and the experi-
ment was comparable to that found with the present
MCFCHF results.

The (3rrs) ionization channel contains a shape reso-
nance which is the broad feature centered around 32 eV
seen in Fig. 5. It is evident from Fig. 5 that the SCFCHF
results are in better agreement with the experimental data
of Hamnett, Stoll, and Brion [8] and of Plummer et al.
[9] at high energies than are the more sophisticated
MCFCHF and RPA calculations. In the region of the
shape resonance, the interchannel coupling has somewhat
broadened the resonance and shifted it to higher energy.
By comparison to earlier two-channel MCFCHF calcula-
tions [1,18] (not shown), which only included coupling
between the (3crz) ' and (2o„) ' channels and which
did not substantially affect this resonance, we can con-
clude that the coupling to the (lvr„) ' channel is prob-
ably responsible for these modifications to the resonant
cross section. This conclusion is also supported by the
fact that the 3o. ~ko.„ transition is important in corre-
lating the 1sr„~kyar channel [5]. This indicates that fur-
ther initial and final-state correlations would have to be
included for these transitions to be treated in a satisfacto-
ry fashion. The investigations of these issues are outside
the scope of the current study.

The agreement between the current RPA and the RPA
results of Swanstrgm et al. [5] shown in Fig. 5 is rather
poor. This discrepancy can be attributed to several
deficiencies in the earlier calculation: the incompleteness
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FIG. 4. Photoelectron asymmetry parameter in the {1m„)
channel. , MCFCHF four-channel mixed form; ———,
RPA mixed form; SCFCHF mixed form; A, experimental
data of Marr et al. [37].

FIG. 5. Photoionization cross section in the (3o.g) chan-
nel. , MCFCHF four-channel mixed form; ———,RPA
mixed form; . , SCFCHF mixed form; —- —-, RPA results of
Swanstre(m et al. [5];,experimental data from Hamnett, Stoll,
and Brion [8]; 0, experimental data of Plummer et al. [9].
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in the one-particle basis set, the approximations inherent
in the treatment of the continuum with the Stieltjes-
Tchebycheff moment theory, and the approximate
method used to separate the photoionization oscillator
strength into partial channels. Swanstrdm et al. [5] also
performed more sophisticated MCRPA's where addition-
al initial and final-state correlations were included. The
differences between the RPA and MCRPA calculations
of Swanstrdm et al. [5] were of the same order of magni-
tude as the differences between the accurate RPA results
presented here and the RPA results of Swanstrgfm et al.
[5]. This indicates that a more accurate treatment of the
continuum part of the problem than that used by
Swanstrdm et al. [5] is needed before one can assess the
importance of various correlation effects.

The photoelectron asymmetry parameters plotted in
Fig. 6 for the (3o. }

' channel show that all three
theoretical results are in good agreement with each other.
The significant deviation between theory and experimen-
tal data of Marr et al. [37] and Southworth et al. [10]
near a photon energy of 22 eV is due to autoionization
leading to the C X„+ state of Nz+ which is not included
in any of the present calculations [9].

In Figs. 7 and 8 we present the cross sections and

asymmetry parameters for photoionization leading to the

(2o„) ' state of Nz+. All three of the present calcula-

tions for the total cross sections are in fair agreement
with the experimental data of Hamnett, Stoll, and Brion

[8] and Plummer et al. [9] although the SCFCHF seems

to be in somewhat better agreement with the experi-
ments. The agreement between the present RPA and the

previously reported RPA is fairly good in terms of the
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perimental data, it is unclear which feature in the experi-
mental data corresponds to the resonance which occurs
at 17.40 eV in the MQDT and at 17.55 eV in the
MCFCHF result. The MCFCHF results presented here
would suggest that the feature which appears as a win-
dow resonance in the data of Plummer et al. [9] at 17.6
eV is a dip between two resonant peaks, one being the
resonance in the 3o.

g
~ko. „channel found at 17.55 eV in

the MCFCHF calculation and the other being a reso-
nance at 17.65 eV due to a different vibrational progres-
sion [3].

The cross sections and asymmetry parameters for the
( ltr„) ' channel in the region of the Hopfield series are
given in Figs. 12—14. Again we can see a reasonable
correspondence between theory and experiment for the
n =3 and 4 Hopfield transitions. The theory correctly
shows that the intensities of all four peaks are roughly
the same, whereas in the (3os) ' channel there was a
definite alternation of intensity. The agreement with the
experimental asymmetry parameters shown in Fig. 13 is
fairly good. The experimental data of West et al. [11]
shows a fair amount of structure, which seems to be in
reasonable agreement with the present theory in both the
amplitude of the oscillations and in their locations. The
partial cross sections for this channel are shown in Fig.
14, where we can see that there are window resonances in
both of the hm =1 channels (i.e., the ka' and k5 chan-
nels) but most of the variation in the intensity comes
from the b, m =0 channel (i.e., the km channel). This re-
sult is in contrast to the MQDT result of Raoult et al. [3]
in which the structure in the cross section is only due to
the window resonance in the Am =1 channel with very
little contribution from the Am =0 channel. The larger
discrepancies between the MQDT and MCFCHF results
found in the ( ltd„) ' channel can be attributed to the use
of a modified potential in the 1~„—+keg ionization chan-
nel in the MQDT calculation but not in the MCFCHF
calculation. As noted in the Introduction, this procedure
was necessary to remove a strong valence transition from
the continuum in any SCFCHF calculation such as the
one used to obtain the MQDT parameters [3].

IV. CONCLUSIONS

We have found that the mixed form of the MCFCHF
cross section gives a result that is qualitatively very simi-
lar to the RPA result. Thus there seems to be little
motivation for using the RPA formalism considering that
it is more computationally intensive than the MCFCHF
calculation and that it does not have the correct ioniza-
tion thresholds so that one cannot study autoionization
with the RPA.

Comparing the four-channel MCFCHF and SCFCHF
calculations, we see that the MCFCHF method has quali-
tatively improved the calculation by yielding autoioniza-
tion resonances, by dramatically reducing the intensity in
the 1m„—+km continuum channel, and by including the
important interchannel coupling effects which lead to the
structure in the (2o „) ' photoelectron asymmetry pa-
rameters near 33 eV. Although the qualitative features of
the computed cross sections are improved by considering
the effects of the interchannel coupling, quantitative
agreement is made worse in some channels as exemplified
by the fact that the SCFCHF results give better agree-
ment with the experiments for the width and position of
the resonance in the (3cr ) ionization channel.

The MCFCHF method gives a good qualitative repre-
sentation of the autoionization resonances in the Hopfield
series, although the details of the cross sections do not
yet agree with the experimental data. We are currently
developing methods which will allow a more detailed
study of the position and qualitative nature of the au-
toionizing states.
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