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' P ' resonance states in positroninm ions
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Doubly excited "P' autodetaching resonances in Ps have been calculated using the complex-
rotation method, which has the advantage of giving resonance position and width at the same time. The
wave function is of the Hylleraas type with number of terms up to 1330. Feshbach resonances associated
with the positronium n =4, 5, and 6 thresholds are reported. In addition, we have also identified 'P'
shape resonances associated with the positronium n =4 and 6 thresholds, and a P' shape resonance as-
sociated with the n =5 positronium threshold.

I. INTRODUCTION II. CALCULATIONS

In a continuing e8'ort to accurately calculate resonance
parameters in positronium negative ions, Ps, we now re-
port results for ' P' resonances associated with the
n =4, 5, and 6 thresholds of Ps atoms. The results are
obtained by using the method of complex-coordinate ro-
tation [1] together with employing Hylleraas-type wave
functions. Studies of Ps are due to, in part, the observa-
tions of such a species in the laboratory by Mills [2], and
the subsequent measurement of its annihilation rate [3].
Theoretical studies of various properties of Ps have also
continuously appeared in the literature [4]. These studies
include calculation of its ground-state energy [5—8] and
annihilation rate [5,6,9], and the nonexistence of the P'
state [10,11]. Resonance phenomena in Ps have also at-
tracted considerable interests, as studies of resonances in
two-electron systems are well documented in the litera-
ture [12]. Several methods have been used to investigate
resonance phenomena in Ps . These methods include
the complex-coordinate rotation [13,14], the close-
coupling scattering approximation [15], and using adia-
batic potential curves [16]. In an earlier complex-
coordinate calculation for ' P' resonances, we reported
results below the Ps (n =2) and Ps (n =3) thresholds
[17]. The existence of such resonances is due to the di-
pole potential resulting from the degeneracy of ns-np
states of the target positronium atom [18]. In this work,
we extend the calculation to the energy regions up to the
n =6 Ps threshold. The advantage of using this method
is that resonance parameters can be obtained by using
bound-state-type wave functions and no asymptotic wave
functions are necessarily used. Such an advantage be-
comes apparent when we are calculating a resonance in
which many channels are open. The calculation of the
resonance position and total width for a many-channel
resonance is as straightforward as that for an elastic reso-
nance. Elaborate Hylleraas-type wave functions are used
in the present work.

where D are the rotational harmonics, depending on the
symmetric Euler angles 8, P, and g [20]. The trial func-
tion f is of the Hylleraas type and is given by

CXT] Pf p m nf (r&, r2, r&2) =e r& g Ci „r&r r2&2+(1~2) .
l, m, n +0

(2)

It is understood that

f(ri, r2, ri2)=f (r re, riq) (3)

and I +I +n ~co, where co is )0. The Hamiltonian is
given by

H = —2V& —2V2 —2V&.V2 —2/r& 2/rz+2/r&2= T+ V, —

(4)

where r, and r2 are the coordinates of electrons with
respect to the positron, and r, 2

=
~ r, —r2 .

In the complex-rotation method, the radial coordinates
are rotated through an angle 0:

r~ r exp(i8)

and the Hamiltonian can be written as

H =T exp( 2i8)+ V—exp( —i8) .

The eigenvalues are calculated by diagonalizing the ex-
pression

E =(NH@)/(@@), (7)

The most general two-electron wave function for ' P
states of odd parity is [19]

4( r „r2 ) = —cos(8,2)(f+f )D',

—sin(8, 2)(f +f )D',

2890 1991 The Am. erican Physical Society



' P' RESONANCE STATES IN POSITRONIUM IONS 2891

wherein the wave function is complex. Since the rotated
Hamiltonian is complex, complex eigenvalues are ob-
tained. The resonance parameters are determined by
finding a root that is stable with respect to the variation
of the nonlinear parameters a, P, and the angle 8, provid-
ed it is greater than arg(E„, )/2. The complex-resonance
energy is given by

E„,=E,—iI /2 .

The theoretical aspects of the complex-rotation
method have been discussed in previous publications [1]
and will not be repeated here. Instead we only brieAy de-
scribe the computational procedures. First, we use the
stabilization method to obtain optimized wave functions
with which complex-coordinate calculations will then be
carried out. The use of the stabilization method as a first
step for the method of complex-coordinate rotation has
been demonstrated in a recent review [1]. Once the stabi-
lized wave functions for a particular resonance are ob-
tained, a straightforward complex-rotation method is ap-
plied, and the so-called "rotational paths" are examined
after the complex transformation r +r exp(i—8) is made.
We then determine the optimized 0 by examining the res-
onance complex eigenvalue when it exhibits the most sta-
bilized characters. This is usually done by employing
smaller basis-expansion sets. For example, for the n =4
'P'(1) resonance, it is found that when 8=0.20 rad ap-
proximately, the resonance complex eigenvalue would ex-
hibit the most stabilized character, i.e.,
B~E /88=minimum. Once the optimized value for 8 is
obtained, we can examine the convergence behaviors for
the resonance parameters for different expansion lengths.
Table I shows the results when different expansion
lengths are used for the n =4 'P'(1) state. We estimate
the resonance position as E,= —0.0377807+1X10
Ry with a half-width of 3.08X10 '+1X10 6 Ry. It
should also be mentioned that the present calculation is
not a bound calculation. The error estimates for the reso-
nance parameters are based on the stabilized behaviors of
such parameters. Throughout the text, we believe our er-
ror estimates are quite conservative.

Table II shows the similar convergence behavior for
the n =4 'P'(2) resonance once the optimized nonlinear
parameters a=P=0.09 and optimized rotational angle
0=0.2 are obtained. It is seen that the convergence
character is somewhat slow so we extend the calculation
to N =1330 terms (co=18) in order to have a better esti-
mate on the accuracy of the width. Table III summarizes
the result for the n =4 'P'(3) state. For the 'P' reso-
nances below the n =4 Ps threshold, we have identified a
total of six resonances. We will summarize them later in
the text. In addition to these Feshbach-type resonances
lying below the n =4 Ps threshold, we have also
identified a stabilized complex eigenvalue lying "above"
the n =4 threshold. Recall that the energy level of the Ps
(n =4) threshold is E = —0.031 25 Ry. The convergence
behavior for this shape resonance is shown here in Table
IV, and we estimate that it would lie at
E„=—0.030 975+5 X 10 Ry, about 0.000 24 Ry above
the n =4 threshold. We conclude that such a stabilized

TABLE I. Convergence behaviors for the n =4 'P'(1) reso-
nance in Ps (a=P=0. 12, 8=0.20).

12
13
14
15
16
17

455
560
680
816
969

1140

—E, (Ry)

0.037 780 98
0.037 781 33
0.037 780 42
0.037 781 08
0.037 780 89
0.037 780 74

2
I (Ry)

3.164x 10-'
3.030 X 10
3.098 X 10
3.100X 10
3.075 x 10-'
3.078 x 10-'

TABLE II. Convergence behaviors for the n =4 'P'(2) reso-
nance in Ps ia=P=0. 09, 8=0.20).

—E„(Ry) —' I (Ry)

15
16
17
18

816
969

1140
1330

0.034 080 9
0.034 082 7
0.034 082 4
0.034 082 4

2.90X 10
1.46 x 10-'
1.16x 10
1.24 x 10-'

TABLE III. Convergence behaviors for the n =4 'P'(3) res-
onance in Ps ia=P=0. 09, 8=0.20).

—Z, (Ry) —' I (Ry)

14
15
16
17
18

680
816
969

1140
1330

0.033 073 5
0.033 076 5
0.033 077 2
0.033 076 9
0.033 076 7

1.511x 10-'
2.191X 10
1.992 X 10
1.961 x 10-'
1.981 X 10

15
16
17

816
969

1140

—E„(Ry)

0.030 962
0.030 966
0.030 975

2 I (Ry)

0.000 027 5
0.000 029 7
0.000 030 1

TABLE V. Convergence behaviors for the n =5 'P'(1) reso-
nance in Ps (a=P=0. 12, 8=0.20).

13
14
15
16
17

560
680
816
969

1140

—E, (Ry)

0.024 920 54
0.024 926 33
0.024 925 97
0.024 925 77
0.024 925 90

—' I (Ry)

2.176x 10-'
2.933 X 10
3.057 x 10-'
3.041 x 10-'
3.061 X 10

TABLE VI. Convergence behaviors for the n =5 'P'(2) reso-
nance in Ps (a=P=0.09, 8=0.20).

15
16
17
18

816
969

1140
1330

—E„(Ry)

0.022 415 9
0.022 436 4
0.022 431 2
0.022 432 0

—' I (Ry)

1.461 x 10-'
3.054 x 10-'
2.68 x 10-'
1.93 X 10

TABLE IV. A 'P' shape resonance lying above the n =4 Ps
threshold ia=P=0.08, 8=0.20).
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TABLE VII. Convergence behaviors for the n = 5 'P'(3) res-
onance in Ps (a=P=0.09, 0=0.20).

TABLE XI. Convergence behaviors for the n =4 P'(2) res-
onance in Ps (a=P=0. 12, 0=0.25).

15
16
17
18

816
969

1140
1330

—E„(Ry)

0.022 086 3
0.022 088 0
0.022 087 5

0.022 087 4

—,'r (Ry)

0.000 029 9
0.000 033 6
0.000 031 5

0.000 031 3

13
14
15
16
17

560
680
816
969

1140

—E„(Ry)

0.034 631 9
0.034 840 8
0.034 842 1

0.034 842 5
0.034 842 1

—' I (Ry)

0.000 131 8
0.000 1158
0.000 1160
0.000 1167
0.000 1170

—E„(Ry) —,'r (Ry)

TABLE VIII. Convergence behaviors for the n =S 'P'(4)
resonance in Ps (o.=P=0.09, 9=0.20). TABLE XII. Convergence behaviors for the n =4 'P'(3) res-

onance in Ps (a=P=0. 12, 9=0.25).

14
15
16
17
18

680
816
969

1140
1330

0.021 660 66
0.021 660 15
0.021 661 07
0.021 660 34
0.021 660 93

0.000 137 37
0.000 135 88
0.000 136 17
0.000 135 87
0.000 135 84

11
12
13
14
15
16

364
455
S60
680
816
969

—E„(Ry)

0.034 262 3
0.034 261 0
0.034 259 1

0.034 259 2
0.034 259 4
0.034 259 3

—,'r (Ry)

0.000 169 6
0.000 164 4
0.000 165 5

0.000 165 2
0.000 165 0
0.000 165 1

—E„(Ry) —'r (Ry)

TABLE IX. 'P' resonances associated with n =4, 5, and 6
positronium thresholds.

—E„(Ry) —,'r (Ry)

TABLE XIII. Convergence behaviors for the n =5 'P'(1)
resonance in Ps (a=P=0.09, 0=0.20).

1PO( 1 )
1PO(2)
1PO(3)
1po(4)
1po( 5 )

1po(6)
1po

N=4
0.037 7807+1 X 10
0.034082 5+1 X 10
0.033 077+1 x 10-'
0.032 322+ S x 10-'
0.031 760+S X 10
0.031 605+2 X 10
0.030 975+ 1 X 10

0.000030 8+1 X 10
1.3 x10-'
0.0000196+1X10 '
4.7x10 '+Sx10-'
1.7 x 10-'+5 x 10-'
2.5X 10 +2X 10
0.000030+ 1 x10-'

14
15
16
17

680
816
969

1140

0.025 98S 0
0.025 931 4
0.025 964 7
0.025 965 1

0.000 1137
0.000 105 7
0.000 099 7
0.000 106 5

'P'(1)
'P'(2)
1Po( 3 )

1po(4)

1PO( 1)
1PO(2)
1Po( 3 )
1po(4)
1po

N=s
0.024925 5+1 X 10
0.022 431+5X 10
0.022087 S+1X 10
0.021 660+1 x 10-'

N=6
0.017 595+5 X 10
0.015 925+ 1 X 10
0.015 890+2x10 '
0.01S 804+S x10-'
0.013 750+5 X 10

0.000030 5+1 X 10
2.7 X 10
0.000031 5+1 X 10
0.000 136+1X 10

0.000 055+5 X 10
1.6X10 '+1X10
0.000062 0+2 x 10-'
0.000 060+5 X 10
0.000 026+5 X 10

12
13
14
15
16
17

455
560
680
816
969

1140

—E„(Ry)

0.023 291 3
0.023 295 0
0.023 296 8
0.023 299 1

0.023 300 8
0.023 299 9

—' I (Ry)

5.70 x 10-'
4.69 x 10-'
5.54 X 10
5.13X 10
5.12 X 10
5.16x 10-'

TABLE XIV. Convergence behaviors for the n =5 'P'(2)
resonance in Ps (a=P=0.09, 0=0.20).

' Shape resonance.

TABLE XV. A P' shape resonance lying above the n =5 Ps
threshold (a=P=0.09, 0=0.20).

13
14
15
16

560
680
816
969

—E„(Ry)

0.040 169 68
0.040 167 21
0.040 167 56
0.040 167 55

—' I (Ry)

0.000 1180
0.000 120 5
0.000 1195
0.000 1199

TABLE X. Convergence behaviors for the n =4 'P'(1) reso-
nance in Ps (a=P=0. 12, 0=0.25). 12

13
14
15
16
17
18

455
560
680
816
969

1140
1330

—E„(Ry)

0.019656 9
0.019672 2
0.019681 8
0.019689 0
0.019695 6
0.019702 0
0.019707 8

—'r (Ry)

0.000 074 5

0.000 058 0
0.000 049 1

0.000 042 6
0.000 037 3
0.000 034 2
0.000 032 9
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TABLE XVI. 'P' resonances associated with n =4, 5, and 6
positronium thresholds.

—E„(Ry) —' I (Ry)

3Po( 1 )
3Po(2)
3P0( 3 )

P'(4)
3po( 5 )

%=4
0.040167 5+1 X 10-'
0.034 842+2 X 10
0.034 259 5+1 X 10
0.032 982 4+3 X 10
0.032 549+1 X 10-'

0.000 1199+1X 10
0.000 116+2X 10
0.000 165+1X 10
1.3X10 +3X10
0.000 043+ 1 X 10

P'(1)
3Po(2)
3P0( 3 )
3po(4)
3po( 5 )
3po( 6 )
3p0

N=S
0.025 965+5 X 10-'
0.023 299 8+1 X 10
0.022 965+5 X 10-'
0.021 817+1 X 10
0.021 36+2 X 10
0.020 914+5X 10
0.019708+S X 10

0.000 106+5X 10
0.000051+1X 10
0.000113+SX 10-'
1.3X10 +1X10
0.000 066+2 X 10
0.000026+5 X 10-'
0.000 033+5 X 10

»o(1)
P'(2)

3Po(3)
3po(4)
P'(5)

3po( 6)

%=6
0.018 125+1X 10
0.016760+1 X 10
0.01625+3 X 10-'
0.015 548+2 X 10
0.015 110+5X 10
0.014 801 5+1 X 10

0.000075+1 X 10
0.000011+1X 10-'
6.0X 10 +3 X 10
6 OX 10 +2X 10
1.3 X 10-'+5 X 10-'
0.000 101+1X 10

' Shape resonance.

complex eigenvalue would lead to a shape resonance in
e -Ps scattering, or in photoionization cross sections of
Ps . It is noted that the counterpart of this shape reso-
nance in H would lie below the hydrogen threshold
[21]. It seems that this case is similar to that for the
n =2 P'state. The bound P'state in Ps does not exist
[10,11], but in H it lies below the n =2 threshold.
Furthermore it was found by Bhatia and Drachman [22]
that the energy contribution due to the mass polarization
term would not decrease su%ciently enough to lead to a
bound state for Ps when the mass of the positively
charged proton is reduced to that of a positron. An in-
dependent investigation of the effect for such a mass po-
larization term on the 'P' shape resonance is of interest.

Tables V—VIII show the convergence behaviors for the
'P' resonances below the n = 5 Ps threshold. We summa-
rize all the 'P' resonances in Table IX. Also in Table IX,
we show the 'P' resonances below the n =6 Ps threshold.
The estimated errors for such resonances are somewhat
larger than those below the n =4 and 5 thresholds.
Again, in addition to these Feshbach resonances, we have

identified a stabilized complex eigenvalue lying above the
n =6 Ps threshold, recalling that the energy level for the
n =6 Ps states is of E = —0.013 889 Ry. Our resonance
energy of E = —0.013 750 Ry lies at about 0.000 139 Ry
above the n =6 threshold. It is noted that the counter-
part of this 'P' shape resonance in H would lie below
the n =6 hydrogen threshold and becomes a Feshbach
resonance [21].

In the present work we also report resonance parame-
ters for P' resonances associated with the n =4, 5, and 6
Ps thresholds. Tables X—XII show convergence behav-
iors for the first three resonances below the n =4 thresh-
old. We have identified a total of five P' resonances in
this energy region and they are summarized later in the
text. Tables XIII and XIV show Feshbach resonances
below the n =5 threshold, and a total of six Feshbach
resonances are identified in this energy region. In addi-
tion, we have also found a stabilized complex eigenvalue
lying above the n =5 threshold. The convergence behav-
ior for this shape resonance is shown in Table XV. Re-
calling that the n =5 Ps states having an energy of
E = —0.02 Ry, our stabilized eigenvalue would lie at
E = —0.019 708 Ry, about 0.000 292 Ry above the
threshold. We conclude that such a stabilized eigenvalue
would lead to a shape resonance in e -Ps scattering. The
counterpart of this P' shape resonance in H was not,
however, calculated in Ref. [21]. We summarize all the
P' resonances in Table XVI, including six members of

Feshbach-type resonances that lie below the n =6 Ps
threshold. The estimated errors for the n =6 resonances
are somewhat larger than those for the n =4 and 5 reso-
nances.

In summary, we have carried out an accurate calcula-
tion for ' P' resonance states in Ps below the n =4, 5,
and 6 Ps thresholds. A total of 31 Feshbach-type reso-
nances (those below various Ps thresholds) are reported.
We have also found three shape resonances, two for 'P'
and one for P', as they lie immediately above their
respective thresholds. All of our calculations for Ps
would provide motivation and useful references for future
theoretical and experimental investigations for such a
purely leptonic three-particle system.
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